## A Simultaneous Search Problem<sup>1</sup>

E.-C. Chang<sup>2,3</sup> and C. Yap<sup>2</sup>

**Abstract.** We introduce a new search problem motivated by computational metrology. The problem is as follows: we would like to locate two unknown numbers  $x, y \in [0, 1]$  with as little uncertainty as possible, using some given number k of probes. Each probe is specified by a real number  $r \in [0, 1]$ . After a probe at r, we are told whether  $x \le r$  or  $x \ge r$ , and whether  $y \le r$  or  $y \ge r$ . We derive the optimal strategy and prove that the asymptotic behavior of the total uncertainty after k probes is  $\frac{13}{7}2^{-(k+1)/2}$  for odd k and  $\frac{13}{10}2^{-k/2}$  for even k.

Key Words. Algorithm, Binary search, Probe model, Comparison model, Metrology.

**1. Introduction.** The following search problem was introduced by [4] in the context of geometric tolerancing and metrology [2], [1], [3]. Given a closed interval  $B \subseteq \mathbb{R}$ , our task is to estimate its length L = |B|. In practice, *B* is a rod or some body whose length we wish to estimate. Toward this end, we are to *probe B* using a *grid* which, after a scaling factor, may be identified with  $\mathbb{Z}$ . The *initial probe* amounts to placing *B* arbitrarily on the real line—if a *placement* is specified by a real number  $s_0 \in \mathbb{R}$ , then the *position* of *B* in placement  $s_0$  corresponds to the interval  $B + s_0 = \{x + s_0: x \in B\}$ . See Figure 1 for an illustration.

The *result* of the initial probe is the discrete set

$$S_0 := (B + s_0) \cap \mathbb{Z}.$$

In Figure 1,  $S_0$  has five points. It is immediate that if  $n_0 = |S_0|$ , then

$$(n_0 - 1) \le L < (n_0 + 1).$$

So the uncertainty about *L* is 2 after the initial probe.

In subsequent probes, we are allowed to *shift* B by any desired amount. If the first probe after the initial probe is obtained by shifting B by  $s_1$ , then B is next placed in position  $B + s_0 + s_1$ , and the result of this probe is the set

$$S_1 := (B + s_0 + s_1) \cap \mathbb{Z}.$$

Received November 11, 1996; revised October 2, 1997, and July 13, 1998. Communicated by D. P. Dobkin.

<sup>&</sup>lt;sup>1</sup> This research was supported in part by NSF Grant #CCR-9619846 and by NATO Grant #CRG-950367.

<sup>&</sup>lt;sup>2</sup> Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA.

<sup>&</sup>lt;sup>3</sup> Current address: Department of Computational Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 11926.



Fig. 1. A rod B at position s<sub>0</sub> on a grid.

To ensure that  $S_1$  is nonempty, we assume L > 1. In general, if the *k*th shift is  $s_k$ , then the result of the corresponding probe is the set

$$S_k := \left(B + \sum_{i=0}^k s_i\right) \cap \mathbb{Z}.$$

For any given  $k \ge 0$ , our goal is to devise a strategy of choosing k shifts so that the worst case uncertainty concerning L is minimized. It is not hard to see that we may restrict  $s_i$  so that  $0 < s_i < 1$ .

**2. The Abstract Problem.** We reformulate the above problem in an abstract setting. To establish the context, recall the classic problem of searching for an unknown real number x, known to lie in some interval  $I_0 \subseteq \mathbb{R}$ . We are allowed to compare x with any chosen real number  $r \in \mathbb{R}$ . Such a *comparison*, denoted x : r, has one of two possible outcomes " $x \leq r$ " or " $x \geq r$ ." The classic binary search algorithm, after making k comparisons, determines a subinterval  $I_k \subseteq I_0$  of size  $|I_k| = 2^{-k}|I_0|$ . Interpreting  $|I_k|$  as the *uncertainty* of x after k comparisons, it is well known that the binary search algorithm is optimal, that is, it achieves the minimax uncertainty after k comparisons.

Now consider a generalization called a *simultaneous searching problem*: we are given two intervals  $I, J \subseteq \mathbb{R}$  and a number  $k \ge 0$ . Our goal is to locate two unknown numbers  $x \in I$  and  $y \in J$  as accurately as possible using k probes. Each probe is specified by a real number  $r \in \mathbb{R}$  called the *discriminant*, and it corresponds to making a pair of simultaneous comparisons, x : r and y : r. If the outcome is  $x \ge r$ , then I is next reduced to  $I' = I \cap \{\alpha \in \mathbb{R} : \alpha \ge r\}$  and otherwise  $I' = I \cap \{\alpha \in \mathbb{R} : \alpha \le r\}$ . The outcome of the comparison on y is similarly treated, and let J be updated to J'. Notice that if  $I \cap J = \emptyset$ , then a probe amounts to a choice of one of the two intervals I or Jupon which to perform an ordinary comparison.

The *uncertainty* of *I*, *J* is given by |I| + |J|. After a probe, uncertainty is reduced to |I'| + |J'|. Let  $U_k(I, J)$  denote the minimax uncertainty after *k* probes. Let  $\sigma_k(I, J)$  be the discriminant *r* of the first probe in an optimal *k*-probe strategy. We are interested in two special cases:

DISJOINT CASE. This is when  $I \cap J = \emptyset$ . Clearly,  $U_k(I, J)$  depends only on the lengths  $\alpha = |I|$  and  $\beta = |J|$ . If  $\alpha + \beta = 1$ , we write  $V_k(\alpha)$  for  $U_k(I, J)$ .

JOINT CASE. This is when I = J. If I = J = [0, 1], we write  $U_k$  and  $\sigma_k$  instead of  $U_k(I, J)$  and  $\sigma_k(I, J)$ , respectively. Hence  $U_0 = 2$  and, by definition,  $\sigma_0 = 0$ .

In our metrology problem to estimate the length L of a rod B, we began with an initial probe (Figure 1). Let x (respectively y) be the distance of the rod's left (respectively right) end to the nearest grid point on the left. Clearly  $x, y \in [0, 1]$ . Thus x and y correspond to the unknown numbers of the abstract problem with I = J = [0, 1]. In general, after the *i*th probe (i = 0, 1, ..., k), the left and right endpoints of B can be located within two intervals  $I_i$ ,  $J_i$  which can be specified as follows. Let  $S_i = (B + \sum_{j=0}^k s_i) \cap \mathbb{Z}$  be the result of the *i*th probe as in the Introduction. If  $S_i$  comprises the integers  $m_i, m_i + 1, ..., n_i - 1, n_i$ , then it is sufficient to specify the intervals  $\hat{I}_i$  and  $\hat{J}_i$  which relate to  $I_i$  and  $J_i$  via the equations  $I_i = m_i - 1 + \hat{I}_i$  and  $J_i = n_i + \hat{J}_i$ . Initially,  $\hat{I}_0 = \hat{J}_0 = [0, 1]$ . For  $i \ge 1$ ,

$$\hat{I}_i = \begin{cases} (s_i + \hat{I}_{i-1}) \cap [0, 1] & \text{if } m_i = m_{i-1}, \\ (s_i - 1 + \hat{I}_{i-1}) \cap [0, 1] & \text{if } m_i = m_{i-1} + 1, \end{cases}$$

and similarly for  $\hat{J}_i$ . It is easy to see that  $x \in I_i - (\sum_{j=1}^i s_j) - (m_0 - 1)$ , and  $y \in J_i - (\sum_{j=1}^i s_j) - n_0$ , so that  $|\hat{I}_i| + |\hat{J}_i|$  is the uncertainty about the numbers x, y after the *i*th probe. The *i*th probe corresponds to the comparisons  $x : r_i$  and  $y : r_i$ , where  $r_i = (-\sum_{j=1}^i s_j) \mod 1$ .

It is not hard to see that  $U_1 = 1$ . Next we claim that

$$U_2 = \frac{2}{3}.$$

To see that  $U_2 \leq \frac{2}{3}$ , let the discriminant of the first probe be  $\frac{1}{3}$ . There are basically two cases of the resultant intervals (I', J') to consider:  $(I', J') = ([\frac{1}{3}, 1], [\frac{1}{3}, 1])$  or  $(I', J') = ([0, \frac{1}{3}], [\frac{1}{3}, 1])$ . In either case, the discriminant of the next probe (second probe) can be chosen as  $\frac{2}{3}$ . We see that the uncertainty is at most  $\frac{2}{3}$  after this probe. To see that  $U_2 \geq \frac{2}{3}$ , suppose the first probe discriminant is  $r \neq \frac{1}{3}$ . If  $r > \frac{1}{3}$ , then  $U_2 \geq U_1([0, r], [r, 1]) > \frac{2}{3}$ ; otherwise  $r < \frac{1}{3}$  and we have  $U_2 \geq U_1([r, 1], [r, 1]) > \frac{2}{3}$ .

We have the following bound for any |I| = |J| = 1:

(1) 
$$2^{1-k} \le U_k(I, J) \le 2^{1-\lfloor k/2 \rfloor}$$

The lower bound of  $U_k$  comes from the fact that each probe reduces the uncertainty by a factor of at most  $\frac{1}{2}$ . The upper bound on  $U_k$  comes from the fact that we can reduce the uncertainty by a factor of at least  $\frac{1}{2}$  with every two probes.

The main result of this paper determines the behavior of  $U_k$  as  $k \to \infty$ . To understand this behavior, we first normalize  $U_k$  by defining

$$u_k := U_k 2^{\lceil k/2 \rceil}.$$

Table 1 lists the initial values of  $U_k$  and  $\sigma_k$ , separated into two parts depending on the parity of *k*. These values are computed by a procedure described in Section 4. It turns out that the sequence  $\{u_k\}_{k=1}^{\infty}$  does not converge but has two limits, depending on whether *k* is even or odd:

$$u_{2k} \to \frac{13}{10}, \qquad u_{2k-1} \to \frac{13}{7},$$

This can be seen in Table 1 as well.

| k        | $\sigma_k$                         | $U_k$                                                   |
|----------|------------------------------------|---------------------------------------------------------|
| 1        | $\frac{1}{2} = 0.5$                | $1 = 2^{-1}(2)$                                         |
| 3        | $\frac{5}{17} = 0.2941\dots$       | $\frac{8}{17} = 2^{-2}(1.8823\ldots)$                   |
| 5        | $\frac{79}{275} = 0.2872\dots$     | $\frac{64}{275} = 2^{-3}(1.8618\ldots)$                 |
| 7        | $\frac{1261}{4409} = 0.2860\ldots$ | $\frac{512}{4409} = 2^{-4} (1.8580)$                    |
|          | :                                  |                                                         |
| $\infty$ | $\frac{2}{7} = 0.28571\dots$       | $\frac{13}{7}2^{-(k+1)/2} = 2^{-(k+1)/2}(1.8571\ldots)$ |
| 2        | $\frac{1}{3} = 0.3333\ldots$       | $\frac{2}{3} = 2^{-1}(1.3333\ldots)$                    |
| 4        | $\frac{15}{49} = 0.3061\ldots$     | $\frac{16}{49} = 2^{-2}(1.3061\ldots)$                  |
| 6        | $\frac{237}{787} = 0.3011\ldots$   | $\frac{128}{787} = 2^{-3}(1.3011\ldots)$                |
| 8        | $\frac{3783}{12601} = 0.3002\dots$ | $\frac{1024}{12601} = 2^{-4} (1.3002)$                  |
|          | :                                  |                                                         |
| $\infty$ | $\frac{3}{10} = 0.3$               | $\frac{13}{10}2^{-k/2} = 2^{-k/2}(1.3)$                 |

**Table 1.**  $\sigma_k$  and  $U_k$ .

**3.** The Disjoint Case. Assume  $I = [0, \alpha]$  and  $J = [\alpha, 1]$ . Let  $V_k(\alpha) := U_k(I, J)$  be the minimax uncertainty for this particular setup. Observe that if *h* probes are performed on the interval *I*, then the amount of uncertainty remaining in *I* is  $2^{-h}\alpha$ . Thus,

$$V_k(\alpha) = \min_{0 < h \le k} \left\{ \frac{\alpha}{2^h} + \frac{1 - \alpha}{2^{k-h}} \right\}.$$

Normalize  $V_k(\alpha)$  by considering the function

 $v_k(\alpha) := 2^{\lceil k/2 \rceil} V_k(\alpha).$ 

For example, with  $\alpha = \frac{1}{2}$ , it is easy to see that  $V_k(\frac{1}{2}) = 2^{-k/2}$  when k is even and  $V_k(\frac{1}{2}) = \frac{3}{2}2^{-(k+1)/2}$  when k is odd. Hence  $v_k(\frac{1}{2}) = 1$  or 1.5, depending on whether k is even or odd. This behavior is seen generally in the next lemma.

LEMMA 1. Fix  $0 < \alpha \leq \frac{1}{2}$ . As k goes to infinity, the sequence  $\{v_k(\alpha)\}_{k=1}^{\infty}$  does not converge but has two limit points. For even k it converges to  $v_{\text{even}}(\alpha)$ , whereas for odd k it converges to  $v_{\text{odd}}(\alpha)$ , where

$$\begin{aligned} v_{\text{even}}(\alpha) \ &= \ 2^{i}\alpha + 2^{-i}(1-\alpha) \qquad \left( where \ i = \lfloor \log_{4}(1-\alpha) - \log_{4}\alpha + \frac{1}{2} \rfloor \right) \\ &= \begin{cases} \alpha + 1 - \alpha & \text{if} \quad \frac{1}{2^{1}+1} \le \alpha \le \frac{1}{2}, \\ 2\alpha + \frac{1-\alpha}{2} & \text{if} \quad \frac{1}{2^{3}+1} \le \alpha \le \frac{1}{2^{1}+1}, \\ 2^{2}\alpha + \frac{1-\alpha}{2^{2}} & \text{if} \quad \frac{1}{2^{5}+1} \le \alpha \le \frac{1}{2^{3}+1}, \\ & \cdots \\ 2^{i}\alpha + \frac{1-\alpha}{2^{i}} & \text{if} \quad \frac{1}{2^{2i+1}+1} \le \alpha \le \frac{1}{2^{2(i-1)+1}+1}, \\ & \cdots \end{cases}$$

and

$$v_{\text{odd}}(\alpha) = 2^{i}\alpha + 2^{-i}(1-\alpha) \qquad \left(where \ i = \lfloor \log_{4}(1-\alpha) - \log_{4}\alpha \rfloor\right)$$

$$=\begin{cases} 2\alpha + 1 - \alpha & \text{if } \frac{1}{2^2 + 1} \le \alpha \le \frac{1}{2}, \\ 4\alpha + \frac{1 - \alpha}{2^1} & \text{if } \frac{1}{2^4 + 1} \le \alpha \le \frac{1}{2^2 + 1}, \\ 8\alpha + \frac{1 - \alpha}{2^2} & \text{if } \frac{1}{2^6 + 1} \le \alpha \le \frac{1}{2^4 + 1}, \\ \dots & \dots & \\ 2^i \alpha + \frac{1 - \alpha}{2^{i-1}} & \text{if } \frac{1}{2^{2i}} \le \alpha \le \frac{1}{2^{2i-2} + 1}, \\ \dots & \dots & \end{cases}$$

PROOF. First assume *k* is even and sufficiently large so that  $(2^{k+1} + 1)^{-1} \leq \alpha$ . Let  $I = [0, \alpha]$  and  $J = [\alpha, 1]$ . For any positive integer  $\ell \leq k/2$ , let  $E_{\ell}(\alpha) = \alpha 2^{\ell} + (1 - \alpha)2^{-\ell}$ . If we perform  $(k/2) - \ell$  comparisons in *I* and the remaining  $(k/2) + \ell$  comparisons in *J*, then the remaining uncertainty is  $2^{-k/2}E_{\ell}(\alpha)$ . Observe that  $v_k(\alpha) = \min_{\ell} E_{\ell}(\alpha)$ . Writing  $\alpha_i := (2^{2i+1} + 1)^{-1}$ , we may verify

$$E_i(\alpha_i) = E_{i+1}(\alpha_i).$$

We also note that

$$\alpha < \alpha_i \quad \iff \quad E_i(\alpha) > E_{i+1}(\alpha).$$

Thus  $\alpha = \alpha_i$  is the cross-over point between optimally assigning k/2 - i versus k/2 - i + 1 comparisons to the first interval  $[0, \alpha]$ . This proves that

$$v_k(\alpha) = v_{\text{even}}(\alpha) = E_i(\alpha)$$

for  $\alpha \in [\alpha_i, \alpha_{i-1}]$ , as desired.

We can similarly calculate the cross-over point when k is odd to verify the other half of the lemma.

Note that the proof actually shows a stronger result, namely, for fixed  $\alpha$ ,  $v_k(\alpha)$  is equal to  $v_{\text{even}}(\alpha)$  or  $v_{\text{odd}}(\alpha)$  for k large enough.

In the next section we need the following more precise statement of the lemma when  $\alpha \in [\frac{1}{9}, \frac{1}{3}]$ : for all  $k \ge 2$ ,

(2) 
$$v_k(\alpha) = \begin{cases} \frac{1+3\alpha}{2} & \text{if } k \text{ is even,} \\ 1+\alpha & \text{if } k \text{ is odd.} \end{cases}$$

The following properties are easy to verify.

LEMMA 2. Let  $k \ge 1$  be fixed.

- 1. For  $\alpha$  in the range  $[0, \frac{1}{2}]$ , the functions  $v_k(\alpha)$ ,  $v_{\text{even}}(\alpha)$ , and  $v_{\text{odd}}(\alpha)$  are continuous, increasing, and piecewise linear.
- 2.  $v_k(0) = 2^{-\lfloor k/2 \rfloor}$ . Hence  $v_{\text{even}}(0) = v_{\text{odd}}(0) = 0$ .
- 3.  $v_{odd}(\alpha) \ge v_{even}(\alpha)$  with equality if and only if  $\alpha = 0$ .

**4. The Joint Case.** Now consider the joint case where I = J = [0, 1], so  $U_k(I, J)$  and  $\sigma_k(I, J)$  are simply written  $U_k$  and  $\sigma_k$ . If the resulting intervals after the first probe

are I' and J', there are only two cases to consider: either I' and J' are disjoint (for which we can use the analysis of the previous section) or they are equal (which is a recursive situation). This observation implies that, for all  $k \ge 1$ ,  $U_k$  satisfies the recurrence

$$U_k = \min_{0 \le \alpha \le 1/2} \left\{ \max \left\{ V_{k-1}(\alpha), (1-\alpha) U_{k-1} \right\} \right\},\$$

with  $U_0 = 2$ . By the definition of  $\sigma_k$ , the right-hand side is minimized by the choice  $\alpha = \sigma_k$ . Multiplying the equation by  $2^{\lceil k/2 \rceil}$ , we obtain the normalized form.

(3) 
$$u_k = \min_{0 \le \alpha \le 1/2} \left\{ \max \left\{ \varepsilon_k v_{k-1}(\alpha), \varepsilon_k (1-\alpha) u_{k-1} \right\} \right\},$$

where  $\varepsilon_k = 2$  if k is odd, otherwise  $\varepsilon_k = 1$ .

Consider, with *k* fixed, the graphs of  $v_{k-1}(\alpha)$  and  $(1 - \alpha)u_{k-1}$ . As  $\alpha$  increases from 0 to  $\frac{1}{2}$ , both graphs intersect at most once since the latter decreases from  $u_{k-1}$  (by (1),  $u_{k-1} \ge 2^{1-\lfloor (k-1)/2 \rfloor}$ ) while the former, by Lemma 2, increases from  $2^{-\lfloor (k-1)/2 \rfloor}$ . Recall that, by definition,  $v_{k-1}(\frac{1}{2})$  is the normalized uncertainty in the case of two disjoint intervals of equal size; thus  $v_{k-1}(\frac{1}{2}) > \frac{1}{2}u_{k-1}$ . Therefore, the two graphs intersect exactly once. The intersection is the point  $(\sigma_k, u_k/\varepsilon_k)$ . Thus we can rewrite (3) as

(4) 
$$u_k = \varepsilon_k v_{k-1}(\sigma_k) = \varepsilon_k (1 - \sigma_k) u_{k-1} \qquad (k \ge 1),$$

where the base case is  $u_1 = 2$  and  $\sigma_1 = \frac{1}{2}$ . The values in Table 1 were computed by iterating this recurrence. Figure 2 illustrates this process.

The question naturally arises whether this process "converges" in a suitable sense, and, specifically, does  $\{u_k\}$  converge? The answer is given in the next result.

THEOREM 3. The sequence  $\{(\sigma_k, u_k)\}_{k=1}^{\infty}$  converges to  $(\tilde{\sigma}_{odd}, \tilde{u}_{odd}) := (\frac{2}{7}, \frac{13}{7})$  for k odd, and to  $(\tilde{\sigma}_{even}, \tilde{u}_{even}) := (\frac{3}{10}, \frac{13}{10})$  for k even.

PROOF. We first define a sequence  $\{\tilde{\sigma}_k, \tilde{u}_k\}_{k\geq 2}$  and then relate it to our original sequence  $\{\sigma_k, u_k\}_{k\geq 1}$ . Let f(x) := 1 + x and g(x) := (1 + 3x)/2. Let  $\tilde{\sigma}_2 := \frac{1}{3}, \tilde{\sigma}_3 := \frac{5}{17}$ , and, for  $j \geq 1$ , the following equations hold:

(5) 
$$\begin{aligned} \tilde{u}_{2j} &= f(\tilde{\sigma}_{2j}) = (1 - \tilde{\sigma}_{2j})\tilde{u}_{2j-1}, \quad \text{and} \\ \tilde{u}_{2j+1} &= 2g(\tilde{\sigma}_{2j+1}) = 2(1 - \tilde{\sigma}_{2j+1})\tilde{u}_{2j}. \end{aligned}$$

We now solve for  $\sigma_k$  and  $u_k$ : by the substitutions  $\tilde{u}_{2j-1} \rightarrow 2g(\tilde{\sigma}_{2j-1})$  and  $\tilde{u}_{2j} \rightarrow f(\tilde{\sigma}_{2j})$ , we have

$$f(\tilde{\sigma}_{2j}) = 2(1 - \tilde{\sigma}_{2j})g(\tilde{\sigma}_{2j-1}), \text{ and} g(\tilde{\sigma}_{2j+1}) = (1 - \tilde{\sigma}_{2j+1})f(\tilde{\sigma}_{2j}).$$

Expanding the functions f and g and simplifying, we get

$$\tilde{\sigma}_{2j} = \frac{3\tilde{\sigma}_{2j-1}}{2+3\tilde{\sigma}_{2j-1}}$$
 and  $\tilde{\sigma}_{2j+1} = \frac{1+2\tilde{\sigma}_{2j}}{5+2\tilde{\sigma}_{2j}}$ 



**Fig. 2.** Iterative process to find  $u_{k+1}$  and  $u_{k+2}$  from  $u_k$  (k odd).

or

$$\tilde{\sigma}_{2j+2} = \frac{3 + 6\tilde{\sigma}_{2j}}{13 + 10\tilde{\sigma}_{2j}}$$
 and  $\tilde{\sigma}_{2j+1} = \frac{2 + 9\tilde{\sigma}_{2j-1}}{10 + 21\tilde{\sigma}_{2j-1}}$ 

These could be written as two independent iterative equations,

$$\tilde{\sigma}_{2(i+1)} = F(\tilde{\sigma}_{2i})$$
 and  $\tilde{\sigma}_{2i+1} = G(\tilde{\sigma}_{2i-1}),$ 

where F(x) := (3 + 6x)/(13 + 10x) and G(x) := (2 + 9x)/(10 + 21x). Note that  $F(\frac{3}{10}) = \frac{3}{10}$  and  $G(\frac{2}{7}) = \frac{2}{7}$ . Since *F* is continuous and 0 < F'(x) < 1 for all  $x \in [\frac{3}{10}, \frac{1}{3}]$ , it easily follows that the sequence  $\{\tilde{\sigma}_{2j}\}_{j=1}^{\infty}$  converges monotonically decreasing to the fixed point  $\frac{3}{10}$  since we started with  $\tilde{\sigma}_2 = \frac{1}{3}$ . Similarly, with starting point  $\tilde{\sigma}_3 = \frac{5}{17}$ , the sequence  $\{\tilde{\sigma}_{2j+1}\}_{j=1}^{\infty}$  converges monotonically decreasing to  $\frac{2}{7}$ . Figure 3 illustrates these two fixed points.

It remains to prove that  $\sigma_k = \tilde{\sigma}_k$  for all  $k \ge 2$ . Note that, for  $k \ge 2$ ,  $g(x) = v_k(x)$  if  $x \in [\frac{1}{9}, \frac{1}{3}]$  and k is even (see (2)). Similarly  $f(x) = v_k(x)$  if  $x \in [\frac{1}{5}, \frac{1}{2}]$  and k is odd. Therefore, (5) is equivalent to our original recurrence (4) provided  $\tilde{\sigma}_j \in [\frac{1}{5}, \frac{1}{3}]$  whenever  $j \ge 2$ ,  $\tilde{\sigma}_2 = \sigma_2$ , and  $\tilde{\sigma}_3 = \sigma_3$ . However, we established this provision in the previous paragraph.



Fig. 3. The fixed point solution.

**5. Remark.** It is interesting to study the general case of  $U_k(I, J)$  where I and J are arbitrary closed intervals in  $\mathbb{R}$ . For instance, if |I| = |J| = 1, it is not hard to verify that

$$1 \le U_1(I, J) \le 1.5.$$

More precisely, if  $|I \cap J| \le \frac{1}{2}$ , then  $U_1(I, J) = 1.5$  and otherwise,  $U_1(I, J) = 2 - |I \cap J|$ . Similarly, we have

$$\frac{2}{3} \le U_2(I, J) \le 1.$$

Furthermore, there is an obvious generalization to *n* intervals  $(I_1, \ldots, I_n)$  where each  $I_i$  contains an unknown  $x_i$ . Another generalization is to define the uncertainty of  $(I_1, \ldots, I_n)$  to be  $\sum_i w_i |I_i|$ , where  $w_i \ge 0$  are specified weights.

## References

- S. C. Feng and T. H. Hopp. A review of current geometric tolerancing theories and inspection data analysis algorithms. Technical Report NISTIR-4509, National Institute of Standards and Technology, U.S. Department of Commerce, Factory Automation Systems Division, Gaithersburg, MD 20899, February 1991.
- [2] V. Srinivasan and H. B. Voelcker, editors. *Dimensional Tolerancing and Metrology*. CRTD, Vol. 27. The American Society of Mechanical Engineers, New York, 1993.
- [3] C. K. Yap. Exact computational geometry and tolerancing metrology. In D. Avis and J. Bose, editors, *Snapshots of Computational and Discrete Geometry*, Vol. 3. McGill School of Computer Science, Technical Report No. SOCS-94.50, 1994. A volume dedicated to Godfried Toussaint.
- [4] C. K. Yap and E.-C. Chang. Issues in the metrology of geometric tolerancing. In J.-P. Laumond and M. Overmars, editors, *Algorithms for Robot Motion Planning and Manipulation*, pages 393–400. A.K. Peters, Wellesley, Massachusetts, 1997. (Proc. 2nd Workshop on Algorithmic Foundations of Robotics (WAFR).)