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A Simultaneous Search Problem1

E.-C. Chang2,3 and C. Yap2

Abstract. We introduce a new search problem motivated by computational metrology. The problem is as
follows: we would like to locate two unknown numbersx, y ∈ [0,1] with as little uncertainty as possible,
using some given numberk of probes. Each probe is specified by a real numberr ∈ [0,1]. After a probe atr ,
we are told whetherx ≤ r or x ≥ r , and whethery ≤ r or y ≥ r . We derive the optimal strategy and prove
that the asymptotic behavior of the total uncertainty afterk probes is13

7 2−(k+1)/2 for oddk and 13
102−k/2 for

evenk.
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1. Introduction. The following search problem was introduced by [4] in the context
of geometric tolerancing and metrology [2], [1], [3]. Given a closed intervalB ⊆ R,
our task is to estimate its lengthL = |B|. In practice,B is a rod or some body whose
length we wish to estimate. Toward this end, we are toprobe Busing agrid which,
after a scaling factor, may be identified withZ. Theinitial probe amounts to placingB
arbitrarily on the real line—if aplacementis specified by a real numbers0 ∈ R, then the
positionof B in placements0 corresponds to the intervalB+ s0 = {x+ s0: x ∈ B}. See
Figure 1 for an illustration.

Theresultof the initial probe is the discrete set

S0 := (B+ s0) ∩ Z.

In Figure 1,S0 has five points. It is immediate that ifn0 = |S0|, then

(n0− 1) ≤ L < (n0+ 1).

So the uncertainty aboutL is 2 after the initial probe.
In subsequent probes, we are allowed toshift B by any desired amount. If the first

probe after the initial probe is obtained by shiftingB by s1, then B is next placed in
positionB+ s0+ s1, and the result of this probe is the set

S1 := (B+ s0+ s1) ∩ Z.
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Fig. 1.A rod B at positions0 on a grid.

To ensure thatS1 is nonempty, we assumeL > 1. In general, if thekth shift issk, then
the result of the corresponding probe is the set

Sk :=
(

B+
k∑

i=0

si

)
∩ Z.

For any givenk ≥ 0, our goal is to devise a strategy of choosingk shifts so that the worst
case uncertainty concerningL is minimized. It is not hard to see that we may restrictsi

so that 0< si < 1.

2. The Abstract Problem. We reformulate the above problem in an abstract setting.
To establish the context, recall the classic problem of searching for an unknown real
numberx, known to lie in some intervalI0 ⊆ R. We are allowed to comparex with any
chosen real numberr ∈ R. Such acomparison, denotedx : r , has one of two possible
outcomes “x ≤ r ” or “ x ≥ r .” The classic binary search algorithm, after makingk
comparisons, determines a subintervalIk ⊆ I0 of size|Ik| = 2−k|I0|. Interpreting|Ik| as
theuncertaintyof x afterk comparisons, it is well known that the binary search algorithm
is optimal, that is, it achieves the minimax uncertainty afterk comparisons.

Now consider a generalization called asimultaneous searching problem: we are given
two intervalsI , J ⊆ R and a numberk ≥ 0. Our goal is to locate two unknown numbers
x ∈ I and y ∈ J as accurately as possible usingk probes. Each probe is specified by
a real numberr ∈ R called thediscriminant, and it corresponds to making a pair of
simultaneous comparisons,x : r and y : r . If the outcome isx ≥ r , then I is next
reduced toI ′ = I ∩ {α ∈ R: α ≥ r } and otherwiseI ′ = I ∩ {α ∈ R: α ≤ r }. The
outcome of the comparison ony is similarly treated, and letJ be updated toJ ′. Notice
that if I ∩ J = ∅, then a probe amounts to a choice of one of the two intervalsI or J
upon which to perform an ordinary comparison.

Theuncertaintyof I , J is given by|I | + |J|. After a probe, uncertainty is reduced to
|I ′| + |J ′|. Let Uk(I , J) denote the minimax uncertainty afterk probes. Letσk(I , J) be
the discriminantr of the first probe in an optimalk-probe strategy. We are interested in
two special cases:

DISJOINTCASE. This is whenI ∩ J = ∅. Clearly,Uk(I , J) depends only on the lengths
α = |I | andβ = |J|. If α + β = 1, we writeVk(α) for Uk(I , J).

JOINT CASE. This is whenI = J. If I = J = [0,1], we writeUk andσk instead of
Uk(I , J) andσk(I , J), respectively. HenceU0 = 2 and, by definition,σ0 = 0.
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In our metrology problem to estimate the lengthL of a rodB, we began with an initial
probe (Figure 1). Letx (respectivelyy) be the distance of the rod’s left (respectively
right) end to the nearest grid point on the left. Clearlyx, y ∈ [0,1]. Thus x and y
correspond to the unknown numbers of the abstract problem withI = J = [0,1].
In general, after thei th probe (i = 0,1, . . . , k), the left and right endpoints ofB can
be located within two intervalsIi , Ji which can be specified as follows. LetSi =
(B +∑k

j=0 si ) ∩ Z be the result of thei th probe as in the Introduction. IfSi comprises

the integersmi ,mi +1, . . . ,ni −1,ni , then it is sufficient to specify the intervalsÎ i and
Ĵi which relate toIi andJi via the equationsIi = mi −1+ Î i andJi = ni + Ĵi . Initially,
Î0 = Ĵ0 = [0,1]. For i ≥ 1,

Î i =
{
(si + Î i−1) ∩ [0,1] if mi = mi−1,

(si − 1+ Î i−1) ∩ [0,1] if mi = mi−1+ 1,

and similarly for Ĵi . It is easy to see thatx ∈ Ii − (
∑i

j=1 sj ) − (m0 − 1), and y ∈
Ji − (

∑i
j=1 sj ) − n0, so that| Î i | + | Ĵi | is the uncertainty about the numbersx, y after

the i th probe. Thei th probe corresponds to the comparisonsx : ri and y : ri , where
ri = (−

∑i
j=1 sj )mod 1.

It is not hard to see thatU1 = 1. Next we claim that

U2 = 2
3.

To see thatU2 ≤ 2
3, let the discriminant of the first probe be13. There are basically

two cases of the resultant intervals(I ′, J ′) to consider:(I ′, J ′) = ([ 1
3,1], [ 1

3,1]) or
(I ′, J ′) = ([0, 1

3], [ 1
3,1]). In either case, the discriminant of the next probe (second

probe) can be chosen as2
3. We see that the uncertainty is at most2

3 after this probe.
To see thatU2 ≥ 2

3, suppose the first probe discriminant isr 6= 1
3. If r > 1

3, then
U2 ≥ U1([0, r ], [r,1]) > 2

3; otherwiser < 1
3 and we haveU2 ≥ U1([r,1], [r,1]) > 2

3.
We have the following bound for any|I | = |J| = 1:

21−k ≤ Uk(I , J) ≤ 21−bk/2c.(1)

The lower bound ofUk comes from the fact that each probe reduces the uncertainty by a
factor of at most12. The upper bound onUk comes from the fact that we can reduce the
uncertainty by a factor of at least1

2 with every two probes.
The main result of this paper determines the behavior ofUk ask→∞. To understand

this behavior, we first normalizeUk by defining

uk := Uk2dk/2e.

Table 1 lists the initial values ofUk andσk, separated into two parts depending on the
parity ofk. These values are computed by a procedure described in Section 4. It turns out
that the sequence{uk}∞k=1 does not converge but has two limits, depending on whetherk
is even or odd:

u2k → 13
10, u2k−1→ 13

7 .

This can be seen in Table 1 as well.
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Table 1.σk andUk.

k σk Uk

1 1
2 = 0.5 1= 2−1(2)

3 5
17 = 0.2941. . . 8

17 = 2−2(1.8823. . .)

5 79
275 = 0.2872. . . 64

275 = 2−3(1.8618. . .)

7 1261
4409 = 0.2860. . . 512

4409 = 2−4(1.8580. . .)
.
.
.

∞ 2
7 = 0.28571. . . 13

7 2−(k+1)/2 = 2−(k+1)/2(1.8571. . .)

2 1
3 = 0.3333. . . 2

3 = 2−1(1.3333. . .)

4 15
49 = 0.3061. . . 16

49 = 2−2(1.3061. . .)

6 237
787 = 0.3011. . . 128

787 = 2−3(1.3011. . .)

8 3783
12601 = 0.3002. . . 1024

12601 = 2−4(1.3002. . .)
.
.
.

∞ 3
10 = 0.3 13

102−k/2 = 2−k/2(1.3)

3. The Disjoint Case. AssumeI = [0, α] and J = [α,1]. Let Vk(α) := Uk(I , J) be
the minimax uncertainty for this particular setup. Observe that ifh probes are performed
on the intervalI , then the amount of uncertainty remaining inI is 2−hα. Thus,

Vk(α) = min
0<h≤k

{
α

2h
+ 1− α

2k−h

}
.

NormalizeVk(α) by considering the function

vk(α) := 2dk/2eVk(α).

For example, withα = 1
2, it is easy to see thatVk(

1
2) = 2−k/2 when k is even and

Vk(
1
2) = 3

22−(k+1)/2 whenk is odd. Hencevk(
1
2) = 1 or 1.5, depending on whetherk is

even or odd. This behavior is seen generally in the next lemma.

LEMMA 1. Fix 0 < α ≤ 1
2. As k goes to infinity, the sequence{vk(α)}∞k=1 does not

converge but has two limit points. For even k it converges toveven(α), whereas for odd k
it converges tovodd(α), where

veven(α) = 2iα + 2−i (1− α) (
where i= blog4(1− α)− log4 α + 1

2c
)

=



α + 1− α if 1
21+1 ≤ α ≤ 1

2,

2α + 1−α
2 if 1

23+1 ≤ α ≤ 1
21+1,

22α + 1−α
22 if 1

25+1 ≤ α ≤ 1
23+1,

. . .

2iα + 1−α
2i if 1

22i+1+1 ≤ α ≤ 1
22(i−1)+1+1,

. . .

and

vodd(α) = 2iα + 2−i (1− α) (
where i= blog4(1− α)− log4 αc

)
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=



2α + 1− α if 1
22+1 ≤ α ≤ 1

2,

4α + 1−α
21 if 1

24+1 ≤ α ≤ 1
22+1,

8α + 1−α
22 if 1

26+1 ≤ α ≤ 1
24+1,

. . .

2iα + 1−α
2i−1 if 1

22i ≤ α ≤ 1
22i−2+1,

. . .

PROOF. First assumek is even and sufficiently large so that(2k+1+ 1)−1 ≤ α. Let I =
[0, α] and J = [α,1]. For any positive integer̀≤ k/2, let E`(α) = α2` + (1− α)2−`.
If we perform(k/2) − ` comparisons inI and the remaining(k/2) + ` comparisons
in J, then the remaining uncertainty is 2−k/2E`(α). Observe thatvk(α) = min` E`(α).
Writing αi := (22i+1+ 1)−1, we may verify

Ei (αi ) = Ei+1(αi ).

We also note that

α < αi ⇐⇒ Ei (α) > Ei+1(α).

Thusα = αi is the cross-over point between optimally assigningk/2− i versusk/2−
i + 1 comparisons to the first interval [0, α]. This proves that

vk(α) = veven(α) = Ei (α)

for α ∈ [αi , αi−1], as desired.
We can similarly calculate the cross-over point whenk is odd to verify the other half

of the lemma.

Note that the proof actually shows a stronger result, namely, for fixedα, vk(α) is
equal toveven(α) or vodd(α) for k large enough.

In the next section we need the following more precise statement of the lemma when
α ∈ [ 1

9,
1
3]: for all k ≥ 2,

vk(α) =
{

1+3α
2 if k is even,

1+ α if k is odd.
(2)

The following properties are easy to verify.

LEMMA 2. Let k≥ 1 be fixed.

1. For α in the range[0, 1
2], the functionsvk(α), veven(α), andvodd(α) are continuous,

increasing, and piecewise linear.
2. vk(0) = 2−bk/2c. Henceveven(0) = vodd(0) = 0.
3. vodd(α) ≥ veven(α) with equality if and only ifα = 0.

4. The Joint Case. Now consider the joint case whereI = J = [0,1], soUk(I , J)
andσk(I , J) are simply writtenUk andσk. If the resulting intervals after the first probe
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areI ′ andJ ′, there are only two cases to consider: eitherI ′ andJ ′ are disjoint (for which
we can use the analysis of the previous section) or they are equal (which is a recursive
situation). This observation implies that, for allk ≥ 1, Uk satisfies the recurrence

Uk = min
0≤α≤1/2

{max{Vk−1(α), (1− α)Uk−1}} ,

with U0 = 2. By the definition ofσk, the right-hand side is minimized by the choice
α = σk. Multiplying the equation by 2dk/2e, we obtain the normalized form.

uk = min
0≤α≤1/2

{max{εkvk−1(α), εk(1− α)uk−1}} ,(3)

whereεk = 2 if k is odd, otherwiseεk = 1.
Consider, withk fixed, the graphs ofvk−1(α) and(1− α)uk−1. As α increases from

0 to 1
2, both graphs intersect at most once since the latter decreases fromuk−1 (by (1),

uk−1 ≥ 21−b(k−1)/2c) while the former, by Lemma 2, increases from 2−b(k−1)/2c. Recall
that, by definition,vk−1(

1
2) is the normalized uncertainty in the case of two disjoint

intervals of equal size; thusvk−1(
1
2) >

1
2uk−1. Therefore, the two graphs intersect exactly

once. The intersection is the point(σk,uk/εk). Thus we can rewrite (3) as

uk = εkvk−1(σk) = εk(1− σk)uk−1 (k ≥ 1),(4)

where the base case isu1 = 2 andσ1 = 1
2. The values in Table 1 were computed by

iterating this recurrence. Figure 2 illustrates this process.
The question naturally arises whether this process “converges” in a suitable sense,

and, specifically, does{uk} converge? The answer is given in the next result.

THEOREM3. The sequence{(σk,uk)}∞k=1 converges to(σ̃odd, ũodd) := ( 2
7,

13
7 ) for k odd,

and to(σ̃even, ũeven) := ( 3
10,

13
10) for k even.

PROOF. We first define a sequence{σ̃k, ũk}k≥2 and then relate it to our original sequence
{σk,uk}k≥1. Let f (x) := 1+ x andg(x) := (1+ 3x)/2. Let σ̃2 := 1

3, σ̃3 := 5
17, and, for

j ≥ 1, the following equations hold:

ũ2 j = f (σ̃2 j ) = (1− σ̃2 j )ũ2 j−1, and
ũ2 j+1 = 2g(σ̃2 j+1) = 2(1− σ̃2 j+1)ũ2 j .

(5)

We now solve forσk anduk: by the substitutions̃u2 j−1 → 2g(σ̃2 j−1) and ũ2 j →
f (σ̃2 j ), we have

f (σ̃2 j ) = 2(1− σ̃2 j )g(σ̃2 j−1), and

g(σ̃2 j+1) = (1− σ̃2 j+1) f (σ̃2 j ).

Expanding the functionsf andg and simplifying, we get

σ̃2 j = 3σ̃2 j−1

2+ 3σ̃2 j−1
and σ̃2 j+1 = 1+ 2σ̃2 j

5+ 2σ̃2 j
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Fig. 2. Iterative process to finduk+1 anduk+2 from uk (k odd).

or

σ̃2 j+2 = 3+ 6σ̃2 j

13+ 10σ̃2 j
and σ̃2 j+1 = 2+ 9σ̃2 j−1

10+ 21σ̃2 j−1
.

These could be written as two independent iterative equations,

σ̃2( j+1) = F(σ̃2 j ) and σ̃2 j+1 = G(σ̃2 j−1),

whereF(x) := (3+ 6x)/(13+ 10x) andG(x) := (2+ 9x)/(10+ 21x). Note that
F( 3

10) = 3
10 andG( 2

7) = 2
7. SinceF is continuous and 0< F ′(x) < 1 for all x ∈ [ 3

10,
1
3],

it easily follows that the sequence{σ̃2 j }∞j=1 converges monotonically decreasing to the

fixed point 3
10 since we started with̃σ2 = 1

3. Similarly, with starting point̃σ3 = 5
17, the

sequence{σ̃2 j+1}∞j=1 converges monotonically decreasing to2
7. Figure 3 illustrates these

two fixed points.
It remains to prove thatσk = σ̃k for all k ≥ 2. Note that, fork ≥ 2, g(x) = vk(x) if

x ∈ [ 1
9,

1
3] andk is even (see (2)). Similarlyf (x) = vk(x) if x ∈ [ 1

5,
1
2] andk is odd.

Therefore, (5) is equivalent to our original recurrence (4) providedσ̃j ∈ [ 1
5,

1
3] whenever

j ≥ 2, σ̃2 = σ2, andσ̃3 = σ3. However, we established this provision in the previous
paragraph.
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Fig. 3.The fixed point solution.

5. Remark. It is interesting to study the general case ofUk(I , J) whereI and J are
arbitrary closed intervals inR. For instance, if|I | = |J| = 1, it is not hard to verify that

1≤ U1(I , J) ≤ 1.5.

More precisely, if|I ∩J| ≤ 1
2, thenU1(I , J) = 1.5 and otherwise,U1(I , J) = 2−|I ∩J|.

Similarly, we have
2
3 ≤ U2(I , J) ≤ 1.

Furthermore, there is an obvious generalization ton intervals(I1, . . . , In) where eachIi

contains an unknownxi . Another generalization is to define the uncertainty of(I1, . . . , In)

to be
∑

i wi |Ii |, wherewi ≥ 0 are specified weights.
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