
Competitive Online Scheduling
with Level of Service�

(Extended Abstract)

Ee-Chien Chang1 and Chee Yap2

1 Department of Computational Science
National University of Singapore

changec@cz3.nus.edu.sg
2 Department of Computer Science

Courant Institute, New York University

Abstract. Motivated by an application in thinwire visualization, we
study an abstract on-line scheduling problem. Unlike most scheduling
problems, our schedulers can gain partial merit from a partially served
request. Thus our problem embodies a notion of “Level of Service” that
is increasingly important in multimedia applications. We give two sched-
ulers FirstFit and EndFit based on two simple heuristics, and generalize
them into a class of greedy schedulers. We show that both FirstFit and
EndFit are 2-competitive, and any greedy scheduler is 3-competitive.
These bounds are shown to be tight.

1 Introduction

We study an abstract on-line scheduling problem motivated by visualization
across a “thinwire” network [4, 3]. An example of such a visualization problem
is a server-client model where the server and client are connected by a thinwire
(that is, a bandwidth-limited connection such as the Internet), with the server
holding a very large image that the client wishes to visualize. The viewer on the
client side can control the transmission process by moving a mouse cursor over a
low-resolution copy of the image to be visualized. This mouse motion generates,
in real-time, a sequence of sampled positions along the mouse cursor trajectory.
Each sampled position (x, y) corresponds to a request for higher resolution data
at the position. As the bandwidth is limited, we could only partially serve each
request. This is where an on-line scheduler is needed to optimize the decisions.
In most scheduling problems, a partially served request does not contribute to
the performance of the scheduler. However, in this problem, a partially sent data
can still provide useful information to the user. Thus, instead of sending all the
requested data, the server has the option of lowering the “level” of the requested
service in order to gain an overall better response time. This paper focuses on
this level of service property. Note that there is considerable interest in similar
Quality of Service (QoS) issues in multimedia research.
� This research was partially funded by NSF grant CCR-9619846.

J. Wang (Ed.): COCOON 2001, LNCS 2108, pp. 453–462, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

454 Ee-Chien Chang and Chee Yap

We use the standard notion of “competitiveness” in the sense of Sleator and
Tarjan [8]. to judge the quality of our online schedulers. A scheduler S produces
a feasible schedule S(I) for each instance I of our scheduling problem. Each S(I)
has an associated merit, where merit(S(I)) ≥ 0. Let opt(I) denote any feasible
schedule for I that maximizes the merit. We say S is c-competitive (c ≥ 1) if for
all I,

merit(opt(I)) ≤ c ·merit(S(I)) + b,

where b is a fixed constant. The competitive ratio of S is defined by

C(S) := sup
I

merit(opt(I))
merit(S(I))

.

Thus, we want schedulers S with C(S) ≥ 1 as small as possible. There is a fairly
large literature on competitive algorithms (e.g., [1, 2, 7]. The class of problems
most closely related to ours is the online interval packing problem for a single
server, where a schedule is a subset of non-overlapping intervals. Lipton and
Tomkins [6] study a variant where the input intervals are sorted by their left
endpoints. They give a randomized scheduler that is 2-competitive. As we will
see, our problem is different from theirs in several ways. Woeginger [9] studied
a problem that has several of the features of our problem. Other online interval
packing problems can be found in [10, 5].

2 Problem Formulation

We formalize our problem as an on-line scheduling problem. Each request q has
four parameters

q = (s, t, v, w),

where s the start time, t the termination time (or deadline), v is the volume (or
size), and w is the weight. We require

v ≥ 0 and w ≥ 0.

Write st(q), dl(q), sz(q), wt(q) for the above parameters of q, respectively. Call
the half-open interval (s, t] the span of q, written span(q). A request q can only
be served within its span (s, t], and at any time moment t0, at most one request
can be served.

An instance I is a sequence 〈q1, q2 . . . qn〉 of requests where the start times of
the qi’s are in increasing order: note that we allow st(qi) = st(qi+1) even though
we nominally say qi starts before qi+1. How requests are served is described by
the schedule. Formally, a schedule for I is a piece-wise constant function

H : R → {q1, q2, . . . , qn} ∪ {∅},

where |H−1(qk)| ≤ sz(qk) and H−1(qk) ⊆ span(qk) for k = 1, . . . , n. Intuitively,
H(t0) = qk means the kth request is served at time t0 and H(t0) = ∅ means

Competitive Online Scheduling with Level of Service 455

no request is being served. A time moment t0 is called a breakpoint if H is
discontinuous at t0. (More precisely, for every ε > 0, there exists δi (0 < δi < ε,
i = 1, 2) such that H(t0) = H(t0 − δ1) �= H(t0 + δ2)). We further require a
schedule H to has finitely many breakpoints. In addition, for each request q,
|H−1(q)| ≤ sz(q). A half-open interval of the form (t0, t1] is called a time-slot.
Without loss of generality, we may assume H−1(q) is a finite union of time slots.
The merit merit(H) of a schedule is

n∑
j=1

wt(qj)|H−1(qj)|.

Relative to a schedule H at any time t0, we call

v′ := sz(q) − |H−1(q) ∩ (−∞, t0]|
the residual size of q. A request q is completely served if v′ = 0. If v′ > 0 and
st(q) ≤ t0 ≤ dl(q), then we say q is pending. The residue of a pending q at time
t0 is the modified request q′ = (t0, dl(q), v′, wt(q)).

For each completely served request, the scheduler gains sz(q)wt(q) merit
points (so weights are multiplicative). Moreover, partially served requests gains
a proportional fraction of this merit. This is unlike usual scheduling problems
in which partially served requests receive no merit. Our model is meaningful
for the “foveated visualization” studied in [4, 3] because a scheduler can reduce
the amount of requested visualization data along a finely graduated scale. This
can be achieved by reducing two parameters, the foveal radius and/or foveal
resolution. The foveal radius measures how fast the resolution falls away from
the foveal center, and the foveal resolution measures the maximum resolution
(which is at the foveal center).

Preemption. It is implicit in the above definitions that the servicing of any
request can be preempted as often as we like with no penalty. Hence we may
imagine the scheduler to “plan” a schedule based on all the currently residual
requests. It services the requests according to this plan until the arrival of a new
request. Then it suspends the current plan, recomputes a new plan based on the
new set of residual requests, and repeats the process.

Optimal Schedules. We say H is optimal for I if merit(H) is maximum among
all schedules for I. The existence of optimal schedules is not immediate.

Lemma 1. For all sequences I of n requests, there exists an optimal schedule
with at most 2n2 + n breakpoints.

The optimal schedules for an instance may not be unique. In the full paper,
we give a canonical representation whereby the optimal schedule is unique. Let
opt(I) denote the canonical optimal schedule for I.

Ordering of Requests. The schedulers in this paper make decisions by giving
priority to heavier weighted requests. In case wt(p) = wt(q), we resolve the tie
by treating p as “heavier” than q if and only if p starts before q.

456 Ee-Chien Chang and Chee Yap

2.1 FirstFit

The online scheduler that always serves the heaviest residual request at each
moment is called the FirstFit scheduler. Figure 1 shows the schedule produced
by FirstFit on an instance of two requests q1 and q2. Although this example
may appear contrived, we can modify q1 to q̃1 where q̃1 = (0, 2, 1, 1 + ε). For any
ε > 0, the FirstFit schedule is the one shown in Figure 1.

opt(I)

FirstFit(I)

q1

q2

I

210

Fig. 1. The top figure illustrates the instance I = 〈q1, q2〉 where q1 = (0, 2, 1, 1)
and q2 = (0, 1, 1, 1). Each horizontal “dashed” line represents the span of the
request. Although wt(q1) = wt(q2), q1 is “heavier” than q2 by our tie-breaking
rule. In opt(I), q1 and q2 are served in the time-slots (1, 2] and (0, 1], respectively.
However, in FirstFit(I), only q1 is served.

2.2 EndFit

Consider an online scheduler which always serves according to the optimal sched-
ule for the current set of residual requests. This was first suggested by Estie
Arkin1. To implement such a scheduler, we can invoke a general off-line algo-
rithm for computing optimal schedules upon each new arrival of a request. But
it turns out that a very simple scheduler can be used. This scheduler, on an
arbitrary instance I, operates as follows:

Starting from the heaviest request down to the lightest, allocates each request
q ∈ I to the latest available time-slot(s) within span(q).

Call this the OffEndFit scheduler. It is an off-line algorithm because it must see
the entire set of requests to make its decisions. This scheduler is optimal for a
special class of instances.

Lemma 2. If I is an instance in which all requests have a common starting
time, then OffEndFit(I) is the canonical optimal schedule for I.

Let EndFit be the online scheduler which always serves according to the
OffEndFit schedule for the residual requests. More precisely, on arrival of a new

1 Private communication (1997).

Competitive Online Scheduling with Level of Service 457

request q, EndFit preempts the current service. It computes a new schedule P
for the current residual requests using OffEndFit, and continues by servicing P .
Call P the plan upon arrival of q. Since all residual requests have a common
starting time, P is the canonical optimal schedule. Figure 2 shows the EndFit
schedule for an instance I = (q1, q2). The EndFit schedule for this example may
appear contrived. To see that it is “correct in the limit”, let Iε = 〈q0, q1, q2〉
where q0 = (0, 1, 1, ε). For any 0 < ε < 1, the off-line optimal schedule for the
current residual requests is unique. As ε → 0, EndFit(Iε) approaches the one
schedule shown in Figure 2.

opt(I)

EndFit(I).

q1

q2

I

10 2

Fig. 2. The top figure illustrates the instance I of two requests: q1 = (0, 2, 1, 1)
and q2 = (1, 2, 1, 1). In the opt(I), q1 and q2 are served. However, in EndFit(I),
only q1 is served.

3 Competitive Ratio of FirstFit

Example 1 (Figure 1) shows that the competitive ratio of FirstFit is at least
2. We will show that FirstFit is 2-competitive. Before presenting the proof, let
us give two definitions.

Charging Scheme. Let H, H1 and H2 be schedules for an instance I. We often
need to argue that the merit of H is no larger than the sum of the merits of
H1 and H2. Our approach is to charge a portion of H to H1 and the remaining
to H2. Intuitively, the charging process can be viewed as first cutting H1 and
H2 into pieces and then piecing them together again to form another piecewise-
constant function Hchg. Each piece, after cutting, may be translated before being
placed into their slot in Hchg. As it may turn out that |H−1

chg(q)| > sz(q) for some
request q, Hchg is not necessarily a schedule. The cut-and-paste is done in a way
that for all t, wt(Hchg(t)) ≥ wt(H(t)). Therefore,

merit(H) ≤ merit(Hchg) ≤ merit(H1) +merit(H2). (1)

In particular, if H1 = H2, then we have merit(H) ≤ 2 ·merit(H1). When we use
the phrase: “charge (s′, e′] from H to H1 at (s, e]”, we mean that a piece (s, e]
is cut from H1 and placed into the slot (s′, e′] in Hchg. Equivalently, if H−1(q)

458 Ee-Chien Chang and Chee Yap

is the interval (s′, e′], we may say that the request q is charged from H to H1 at
(s, e] (see Figure 3). Thus, to show (1), we need to charge each time slot of H to
either H1 or H2, and ensure that no part of H1 or H2 is charged more than one.

H1

s e

s0 e0q

Hchg

H

Fig. 3. Charging the request q in H to H1 at (s, e].

Intactness. A request q is intact in a schedule H if H−1(q) is connected, and
either |H−1(q)| = 0 or sz(q). Most of our proofs will be simplified if we assume
intactness.

Theorem 1. For any instance I,

merit(opt(I)) ≤ 2 · merit(FirstFit(I)).

Proof. Given an instance I, let Hff := FirstFit(I) and Hopt := opt(I). We can
assume that requests in I are intact in both Hff and Hopt.

Let H0 be an identical copy of Hff. We want to charge requests served in
Hopt to H0 and Hff. Let {t1, t2, . . . , tm} be the distinct breakpoints in Hopt,
where ti < tj if and only if i < j.

For each ti, starting from i := 1 to m − 1, consider the time-slot (ti, ti+1].
Let qopt := Hopt(ti+1). Let qff be the lightest request served during (ti, tt+1] by
FirstFit. There are two cases:

1. If the request qff is not lighter than qopt, charge qopt from Hopt to Hff at
(ti, ti+1].

2. Otherwise, charge qopt from Hopt to H0 at H−1
0 (qopt).

We have to show that in the second case, |H−1
0 (qopt)| ≥ |(ti, ti+1]|. In the first

place, why is the weight of qff lighter? The request qff is chosen by FirstFit
because it is the heaviest request among the pending requests. This implies that
qopt is not a pending request, even though ti is in the span of qopt. So qopt
must have been completely served by FirstFit. This implies that |H−1

0 (qopt)| ≥
|(ti, ti+1]|.

4 Competitive Ratio of EndFit

Example 2 (Figure 2) shows that the competitive ratio of EndFit is at least 2.
We now show that this constant is the best possible.

Competitive Online Scheduling with Level of Service 459

The upper bound proof is considerably more subtle than the proof for
FirstFit. The key result is Theorem 2 below which formalizes this observa-
tion about EndFit: it never hurts the performance of EndFit to have a request
started at an earlier time. For example, in Figure 2, the performance of EndFit
will improve if the request q2 starts at an earlier time. The analogous fails for
FirstFit. For example, in Figure 1, the performance of FirstFit would improve
if q1 starts at a time later than 0.

A request q̃ is a trimmed version of q if st(q̃) ≥ st(q), dl(q̃) = dl(q), wt(q̃) =
wt(q̃) and sz(q̃) ≤ sz(q). Thus, a trimmed version of q may start later than the
original q. An instance Ĩ is a trimmed instance of I if there is a one-one (not
necessarily onto) mapping from Ĩ to I such that any q̃ in Ĩ is a trimmed version
of its corresponding request in I. Clearly,merit(opt(Ĩ)) ≤ merit(opt(I)). Similar
relationship also holds for EndFit.

Theorem 2. If Ĩ is a trimmed version of I then

merit(EndFit(Ĩ)) ≤ merit(EndFit(I)).

We now use Theorem 2 to show that EndFit is 2-competitive.

Theorem 3. For any instance I,

merit(opt(I)) ≤ 2 · merit(EndFit(I)).

Proof. We can assume that requests in I are intact in opt(I). Let Ĩ be the
trimmed instance of I such that for any request q ∈ I, if (opt(I))−1(q) = (t1, t2],
then the corresponding trimmed request q̃ satisfies st(q̃) := t1 and sz(q̃) := t2−t1;
otherwise if opt(I)−1(q) = ∅, then q̃ satisfies sz(q̃) := 0. We can further assume
that Ĩ is intact in all the plans of EndFit with Ĩ. (Recall that a plan is the
optimal schedule for the residues). By definition, we have

merit(opt(I)) = merit(opt(Ĩ)). (2)

The instance Ĩ has the nice property that requests arrive at a “constant rate”,
that is, if a request q starts at time t, then no other request starts during (t, t +
sz(q)). Let H1 and H2 be two identical copies of EndFit(Ĩ). Our theorem is
proved if we show how to charge requests in opt(Ĩ) to H1 and H2.

Consider a request q in Ĩ. Let P+ be the plan upon the arrival of q and P−

be the plan just before the arrival of q. There are two cases.

1. If q is allocated in the new plan P+, then it is possible that there are some
requests which are originally allocated in P−, but not in the new plan. Call
these requests the ousted requests.

2. Otherwise, call q the ousted request.

Let s be the total size of the ousted requests. Note that s ≤ sz(q) and the total
merit of the ousted requests is not more than the total merit of the requests

460 Ee-Chien Chang and Chee Yap

allocated in (st(q), st(q) + s] in P+. Furthermore, the new plan will be carried
out without interruption at least until st(q)+sz(q). Charge the ousted requests
to H2 at (st(q), st(q) + sz(q)] and the served requests during (st(q), st(q) +
sz(q)] to H1 at (st(q), st(q) + sz(q)]. The above is a valid charging scheme.
Thus, we have

2 ·merit(EndFit(Ĩ)) ≥ merit(opt(Ĩ)).

By Theorem 2 and (2), we have

2 ·merit(EndFit(I)) ≥ merit(opt(I)).

5 A Class of Greedy Schedulers

Looking at the behavior of EndFit and FirstFit on specific examples, it appears
that they are complementary in the sense that if EndFit performs poorly on an
instance, then FirstFit will perform well, and vice-versa. This suggests studying
some combination of these two heuristics and motivates the generalization to a
class of Greedy schedulers.

A scheduler S in this class behaves as follows.

(A) At the moment a new request q starts, it suspends the current service (that
is, it preempts the currently served request).

(B) Scheduler S computes a new plan H, which is a schedule for the set of
residues of currently pending requests. We call H a ‘plan’ because the sched-
uler may not carry out the schedule as planned due to the subsequent new
requests. The plan H is computed by considering the residues one by one,
starting from the heaviest request down to the lightest request. Let p be the
request being considered and call |H−1(p)| the allocation to p. The allocation
to p is subjected to the following restriction:

(∗) The allocation to p must be maximized. For example, if it is possible to
completely allocate p, the whole of p must be allocated. However, there
is no restriction on where p is allocated. Time-slots, once allocated, are
not subsequently revised in creating this plan.

(C) It carries out the plan until a new request starts, whereupon we go back to
step (A).

Different members of the Greedy class differ only in their strategies for (B)
subjected to the restriction(∗). Note that our first example FirstFit is a Greedy
scheduler: the request p in (∗) is allocated in the earliest possible time-slots. The
second example EndFit is also a greedy scheduler. Its strategy for (B) is rather
counter-intuitive: the request p is allocated in the latest possible time slots.

By combining the counter examples for FirstFit and EndFit, we can find
a Greedy scheduler whose competitive ratio ≥ 3. The next theorem shows that
this bound of 3 cannot be improved.

Theorem 4. Every Greedy scheduler is 3-competitive.

Competitive Online Scheduling with Level of Service 461

6 General Lower Bound

From the previous section, we know that every greedy scheduler is 3-competitive.
Are there schedulers outside the Greedy class with competitive ratio less than
2? We note a partial result in this direction: every deterministic scheduler has
competitive ratio at least 2(2 − √

2) > 1.17.
In proof, consider this adversary: at time 0, the adversary releases two re-

quests q0 :=(0, 2, 1, 1) and q1 :=(0, 1, 1,
√

2 − 1). At time t = 1, let the residual
size of q0 be s0. If s0 is less than 1/2 then the request q2 :=(1, 2, 1, 1) is re-
leased. Otherwise, no further requests will be released. It may be verified that
any deterministic scheduler achieve a merit of at most 1

2(2−√
2)

of the maximum
possible.

Unfortunately, this lower bound of 1.17 leaves a wide gap from the current
upper bound of 2. On the other hand, no simple variation of this adversary seems
to give a better lower bound.

7 On the Number of Breakpoints and Multi-tasking

Both FirstFit and EndFit make O(n) breakpoints where n is the number of
requests. Does the number of breakpoints affect the performance of a scheduler?
We give an alternative formulation of the scheduling problem which could be
viewed as allowing an infinite number breakpoints. In this multi-tasking envi-
ronment, several requests can be served concurrently, but each at a (possibly)
different rate. However, in any time interval of size ∆t, the total size of requests
served within this interval must not exceed ∆t. Equivalently, we allow “fractional
service” where the total service at any moment sums to 1.

A concrete example of such a scheduler is FirstEndFit: It simulates FirstFit
and EndFit concurrently and serves half of what FirstFit and EndFit would
serve. That is, if FirstFit and EndFitwill serve q and p respectively in the time
slot (s0, t0], then FirstEndFit will serve p and q concurrently but each at half
the rate. We suspect that FirstEndFit is (3/2)-competitive.

Note that FirstEndFit can be also viewed as the following randomized sched-
uler under the original single-tasking setting: Before receiving any request, it
tosses a fair coin; If the outcome is head, then it simulates FirstFit, otherwise
it simulates EndFit.

Clearly, the expected merit gained by this randomized scheduler is same as
the merit gained by FirstEndFit.

8 Conclusion

We have formulated a “level-of-service” scheduling problem that arises naturally
in our thinwire visualization applications. This formulation is also useful in real-
time systems where quality of jobs can be traded-off for time. We have derived
several competitive algorithms in this setting. We continue to investigate the

462 Ee-Chien Chang and Chee Yap

many interesting questions that are open. Besides sharpening the results in the
paper, we pose the following directions for further work: (1) Find optimal sched-
ulers which are not restricted to be on-line. (2) Study the problem with other
measures of merit (instead of multiplicative weights in this paper). (3) Introduce
a model of penalty for preemption. (4) Introduce randomization.

Acknowledgments

We thank Estie Arkin and Yi-Jen Chiang for discussions about the problem.

References

1. S. Albers. Competitive online algorithms. BRICS Lecture Series LS-96-2, BRICS,
Department of Computer Science, University of Aarhus, September 1996.

2. S. Albers and J. Westbrook. A survey of self-organizing data structures. Re-
search Report MPI-I-96-1-026, Max-Planck-Institut f�ur Informatik, Im Stadtwald,
D-66123 Saarbr�ucken, Germany, October 1996.

3. E. Chang, C. Yap, and T.-J. Yen. Realtime visualization of large images over
a thinwire. In IEEE Visualization '97 (Late Breaking Hot Topics), pages 45{48,
1997.

4. E.-C. Chang. Foveation Techniques and Scheduling Issues in Thinwire Visualiza-
tion. PhD thesis, Department of Computer Science, New York University, May
1998.

5. J. A. Hoogeveen and A. P. A. Vestjens. Optimal on-line algorithms for single-
machine scheduling. Integer Programming and Combinatorial Opt., pages 404{414,
1996.

6. R. J. Lipton and A. Tomkins. Online interval scheduling. In Proc. 5th Annual
ACM-SIAM Symp. on Discrete Algorithms, pages 302{311, 1994.

7. L. A. McGeoch and D. D. Sleator, editors. On-Line Algorithms. DIMACS series in
Discrete Mathematics and Theoretical Computer Science, volume 7. AMS, 1992.

8. D. Sleator and R. Tarjan. Amortized e�ciency of list update and paging rules.
Comm. of the ACM, 28(2):202{208, 1985.

9. G. J. Woeginger. On-line scheduling of jobs with �xed start and end times. Theor.
Computer Science, 130:5{16, 1994.

10. F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced CPU energy.
In Proc. 36th Annual Symp. on Foundations of Computer Science, pages 374{382,
1995.

	Introduction
	Problem Formulation
	FirstFit
	EndFit

	Competitive Ratio of FirstFit
	Competitive Ratio of EndFit
	A Class of Greedy Schedulers
	General Lower Bound
	On the Number of Breakpoints and Multi-tasking
	Conclusion
	Acknowledgments
	References

