
Finding the Original Point Set Hidden among Chaff

Ee-Chien Chang Ren Shen Francis Weijian Teo

School of Computing
National University of Singapore

{changec,shenren,teoweiji}@comp.nus.edu.sg

ABSTRACT
In biometric identification, a fingerprint is typically repre-
sented as a set of minutiae which are 2D points. A method
[4] to protect the fingerprint template hides the minutiae
by adding random points (known as chaff ) into the origi-
nal point set. The chaff points are added one-by-one, con-
strained by the requirement that no two points are close to
each other, until it is impossible to add more points or suf-
ficient number of points have been added. Therefore, if the
original template consists of s points, and the total number
of chaff points and the original points is m, then a brute-
force attacker is expected to examine half of m chooses s pos-
sibilities to find the original. The chaff generated seem to be
“random”, especially if the minutiae are also randomly gen-
erated in the same manner. Indeed, the number of searches
required by the brute-force attacker has been used to mea-
sure the security of the method. In this paper, we give an
observation which leads to a way to distinguish the minutiae
from the chaff. Extensive simulations show that our attacker
can find the original better than brute-force search. For e.g.
when s = 1 and the number of chaff points is expected
to be about 313, our attacker on average takes about 100
searches. Our results highlight the need to adopt a more
rigorous notion of security for template protection. We also
give an empirical lower bound of the entropy loss due to the
sketch.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Authentication; E.3
[Data]: Coding and Information Theory

General Terms
Security, Algorithms

Keywords
Secure Sketch, Fingerprint template, Biometric privacy
protection, Online parking.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS’06March 21-24, 2006, Taipei, Taiwan.
Copyright 2006 ACM 1-59593-272-0/06/0003 ...$5.00

1. INTRODUCTION
Biometric data is usually noisy due to noise introduced dur-
ing data capturing. For instance, two scanned images of
a same finger are probably different. The inevitable noise
poses challenges in applying classical cryptographic tech-
niques on biometric templates. Recently, a few schemes have
been proposed to handle the noise, for example fuzzy com-
mitment[8], shielding function[9], and secure sketch[5, 2].
These schemes use a short piece of public information to re-
cover the original data from the noisy version. More specif-
ically, the public data PX is constructed from the original
biometric template X. The data PX has the property that,
from PX and another biometric template Y , the original X
can be recovered, provided that Y is close to X. In other
words, PX can be used to remove the noise from Y , if Y is
close to X. We follow the definitions by Dodis et al.[5] and
call the public data PX a sketch.

The following example illustrates an application of a sketch.
In this application, the fingerprint is to be used as the secret
key in encrypting a file. Before encryption, the fingerprint
of the owner is scanned, and the fingerprint features are
extracted. The extracted features X, represented as a string,
serves as the secret key. The file is then encrypted using the
secret key. Next, a sketch PX is computed from X, and PX

is stored in the header of the encrypted file in clear. To
decrypt the file, a fingerprint is obtained and its features
Y are extracted. From the secure sketch PX and Y , by
property of the sketch, the original X can be reconstructed
if Y is closes to X. Now, from the reconstructed X, the
secret key can be recovered and the file can be decrypted.
Since PX is published in clear, it is important that it does
not reveal too much information about X.

The design of sketch is dependent on the underlying metric
in measuring the distance between two templates. Finger-
prints are widely used in biometric identification. Typically,
a fingerprint is represented as a set of 2D points, known as
minutiae[10]. Under noise introduced during scanning and
processing, each minutia may be perturbed by a small dis-
tance. Let us call this type of noise the white noise. In
addition, a small number of minutiae may be missing and
some new minutiae may be introduced. Let us call this type
of noise the replacement noise. Figure 1 shows an example
of minutiae and the noise1.

Although extensive studies have been conducted for finger-

1Fingerprint raw image is obtained from [1]



(a) (b)

Figure 1: (a) The original fingerprint. The dots
are the extracted minutiae. (b) The dots are the
original minutiae. The “+” are minutiae extracted
from another scan of the same finger.

prints, there are few secure sketch constructions on finger-
prints. Perhaps the earliest construction is by Clancy et al.
[4], which is the focus of this paper. Yang et al. [13] followed
the approach of adding chaff and proposed an alternative
feature representation that reduces (but not eliminates) the
effect of white noise. Chang et al. [3] gave a provably secure
(under the notion of entropy loss) construction using a com-
bination of rounding and a different way of generating chaff
points. However, it is not clear whether the construction by
Chang et al. loses less entropy compared to the construction
by Clancy.

Clancy et al. [4] proposed the following method of generat-
ing a sketch which comprises of 2 parts. The first part is an
unordered set of points R = (X ∪ C), where X is the orig-
inal minutiae, and the points in C are randomly selected
and are called the chaff. The set R is δ-separated in the
sense that no two points are within a distance of δ to each
other. The chaff points are selected one-by-one in the fol-
lowing manner: First, uniformly and randomly pick a 2D
point. If this point is within a distance δ to any point in
X, or any selected chaff, then discard it. If not, select it as
a chaff point. The process is repeated until it is impossible
to add any more chaff points or sufficient number of chaff
points have been selected. Now, the description of R will
be the first part of the sketch. Suppose Y is a noisy version
of X corrupted by white noise, from Y together with R, we
can recover X. The role of the second part of the sketch is
to recover X from replacement error.

We are interested in the first part of the sketch R = (X∪C).
Intuitively, the minutiae X are hidden among the random
chaff and it seems impossible to distinguish them. Sup-
pose |X| = s and |X ∪ C| = m, then on average, a brute-

force search examines 1
2

(
m
s

)
possible combinations in order

to find X. In fact, the amount of searches required by the
brute-force search has been used to measure the security of
the sketch. Based on the typical number of minutiae, noise
parameters, and the assumption that the attackers employ
brute-force search, it was estimated the attacker has to in-
vest 269 more time to find X compared to a user who has
a noisy version of the minutiae [4]. Now, this leads to the
following interesting questions: Is it possible to distinguish
X from C? Is there an attacker that can perform better than
the brute-force-search?

We give a method that on average, can find the original X
among (X ∪ C) better than the brute force search. Based
on simulation results, when |X| = 1 and the average size
|R| = 312.6, on average we can find the sole minutia using
about 100 searches, whereas a brute-force search on average
requires 156.5 searches. When |X| = 38, then the average
speedup factor compare to the brute-force search is 2192.7.

The speedup provided by our attacker does not sufficiently
imply that the sketch R = (X ∪ R) reveals too much in-
formation and hence is insecure. Instead, it highlights the
need to adopt a more rigorous formulation of security in
analyzing sketches. For example, using the notion of en-
tropy loss proposed by Dodis et al. [5]. On the other hand,
the stochastic process in generating the chaff is intriguing
and difficult to analyze. A corresponding process known
as online parking has attracted much attention[12, 11, 6].
Many fundamental questions remain open, for example the
Palasti’s conjecture[11]. This is especially so in 2D due to
the involvement of geometry. Hence, establishing a bound
of the entropy loss analytically would not be easy. Never-
theless, based on our simulation and some approximations,
we are able to give an empirical lower bound of the entropy
loss.

Main Idea. Our method is based on the following obser-
vation. Recall that the chaff points are generated one-by-
one. We observe that a chaff point that is generated late in
the process, tends to have smaller free area. We will define
free area later in Section 2. Informally, a point with smaller
free area has more neighboring points in (X ∪ C). In other
words, we observe that for different local arrangements, the
likelihood of a point being the minutia can be different. This
observation is formulated as the inequality (3). However, we
are unable to prove it analytically. Nevertheless, it is verified
experimentally. This observation leads to an attacker who
gives higher priority to points with large free area during
the search.

2. MODELS AND ASSUMPTIONS
Attacker Model. Given the sketch PX of the original X
where |X| = s, the goal of an attacker is to find X. The at-
tacker can query a blackbox. On input of a set Q of s points,
the blackbox will return YES iff Q = X. The effectiveness of
an attacker is measured by the number of queries he sent.
In the application given in introduction, the blackbox is the
decryption of the file using the key Q. The output of YES
corresponds to the situation where the file is successfully
decrypted. Note that we only count the number of calls to
the blackbox. Other computations carried out by the at-
tackers, for example, in deciding which query to be sent,
are not counted. It is appropriate and convenient to count
only the blackbox calls. Typically, the blackbox operation
is computationally intensive, for instance, file decryption in
the above application. In addition, in some applications, the
blackbox operations are carried out by a remote server. The
attackers have limited access to the server, but have ample
computing resources.

Online Parking. Let us call the following process on-
line parking. This process selects a set of points one-by-one.
Each point is uniformly and randomly chosen from the do-



main [0, n]× [0, n]. If it is within unit distance from any pre-
viously selected points, then it is discarded. If not, it is se-
lected. The process is repeated until the stopping condition
is met. Here are two possible stopping conditions. We can
repeat the process until it is impossible to add more points.
Note that if we employ this condition, the total number of
points selected is not deterministic. Alternatively, we can
repeat the process until a predetermined number of points
have been selected. In this paper, we employ the first con-
dition to generate the sketch. We also conduct preliminary
investigation for the second condition (Section 4.6).

For each selected point, if it is the k-th point selected, then
we say that its arrival order is k.

Distribution of minutiae. The minutiae X is a set of s
points from the bounded domain [0, n] × [0, n]. The set X
is separated in the sense that for any two different points
x, y ∈ X, the Euclidean distance ‖x− y‖2 > 1.

We assume that the distribution of the set of s minutiae is
same as the distribution of the first s points generated by
the online parking process. In practice, the minutiae might
follow another distribution. Knowledge of such distribution
may further help to identify the minutiae.

Sketch generation. Recall that the sketch PX consists of
two parts. Let us call the first part the white noise sketch,
since its role is to recover from white noise, and the sec-
ond part the replacement sketch. As mentioned in the in-
troduction, the white noise sketch is the description of the
unordered set R = (X ∪ C), where X is the original and
C is generated by the online parking process. The role of
replacement sketch is to correct t replacement errors (that
is, t points are replaced by t random points), where t is a
predetermined parameter. The actual value of t is not cru-
cial in our analysis. There are a number of known sketch
schemes for replacement noise [7, 5, 3]. For instance, Juels
et al. [7] proposed using a polynomial of degree (s− 2t+1),
and employed BCH in decoding.

The sketch PX reveals some information of X. For instance,
the white noise sketch, which is the point set R = (X ∪ C),
reveals that a minutia must be one of the points in R. The
replacement sketch further reveals information on X, and
imposes more restrictions on the point sets that can generate
PX . Let us say that a point set X ′ is a candidate consistent
with a sketch, if the sketch can be generated from X ′.

Brute-force attacker. A brute-force attacker enumerates
all candidates consistent with the given sketch, and sends
the candidates to the blackbox one-by-one until a YES is ob-
tained. The white noise sketch reveals possible locations of
the minutiae, and the number of candidates consistent with
white noise sketch is

(
m
s

)
when |X ∪ C| = m. The num-

ber of candidates can be further reduced by considering the
replacement sketch. If the replacement sketch can correct
up to t errors, and the set-difference scheme [7] is employed,
then the average number of candidate consistent with both

white noise and replacement sketch is approximately

(
m

s

)
m−(s−2t).

Point X

Figure 2: Illustration of free area. FR(x) is the area
of the shadow. Each circle is a unit disk.

We assume that the brute-force attacker is randomized. The
order of sending the candidates to the black box is randomly
permuted. Hence, for any sketch, the expected number of
calls required is half of the total number of candidates.

Free area. Given a set of points W , define A(W ), the
available region, to be the set

A(W ) = {x ∈ [0, n]× [0, n] : for all w ∈ W, ‖x− w‖2 > 1}.
A point in the available region can be added into W and yet

W remains separated. For a point set R̃ and a point x ∈ R̃,

define the free area of x with respect to R̃ as,

F
R̃
(x) = |A(R̃− {x})−A(R̃)|, (1)

where “−” is the set difference operator, and | · | gives the
area of the region. Figure 2 illustrates the free area. When

it is clear in the context, we omit R̃ and write the free area
as F(x).

Consider the online parking process. Let Ax be the random
variable on the arrival order of x, given that x is selected.
Let us write F(x) = f as the event that x is selected and
contained in some point set, and its free area in that point
set is f . We are interested in the conditional probability

Pr(Ax ≤ s | F(x) = f). (2)

Since X and C follow the distribution of online parking,
we can treat R as the output of an online parking process.
Hence, if the arrival order of x is not more than s, then x is
a minutia. Although the attackers know the point set R, the
conditional probability (2) does not exploit full knowledge
of R. Instead, only the free area of x is used. Nevertheless,
such partial information is sufficient in distinguishing the
minutiae.



2.1 Summary of Notations
X, Y : X is the set of the original minutiae. Y is

a noisy version of X.
s : Number of minutiae. s = |X|.
C, R, m : C is the set of chaff. R = X ∪ C and

m = |R|.
n : Width of the domain. All points are in

[0, n]× [0, n].
PX : PX is the sketch generated from X.
A(W ) : Available region of a point set W .

F
R̃
(x),F(x) : Free area of x in the point set R̃.

LookUp : Look up table used by the attackers.
Ax : The arrival order of x, given that x is

selected.

2.2 Differences from Clancy et al. method.
For clarity, we now describe two subtle differences of our
model from the model proposed by Clancy et al. [4]. Firstly,
we measure the effectiveness of an attacker by the number
of calls to the black box. In contrast, Clancy et al. con-
sidered the number of computational steps required by the
attacker, and the authentic user during decoding (with re-
spect to a specific decoding algorithm). The effectiveness of
an attacker is the ratio of the steps taken by the attacker
over the authentic user. Secondly, Clancy et al. proposed to
generate a predetermined number of chaff points so that the
authentic user can decode efficiently. We do not consider
the decoding complexity and hence generate as many chaff
points as possible. Although there are differences in measur-
ing effectiveness of attackers, our attacker can be adopted
and successful in the scenario studied by Clancy et al.

3. ATTACKER
Our main observation is that, for f0 > f1 and any s,

Pr( Ax ≤ s | F(x) = f0) > Pr( Ax ≤ s | F(x) = f1). (3)

That is, for a R randomly generated by online parking, if a
point x ∈ R has larger free area compared to another point
y in R, then it is more likely that x arrived earlier than
y. Unfortunately, we are unable to analytically prove the
observation. Nevertheless, extensive simulations give strong
evidence to support the claim. Figure 4 shows an estima-
tion of the likelihood function. Note that each function is
increasing with respect to the free area.

3.1 Identifying one point, s = 1
To illustrate the attacker’s algorithm, we first give an at-
tacker for s = 1, that is, when there is only one minutia in
X. In this scenario, the goal of the attacker is to identify
the very first point that arrive in the online parking process.
If R has m points, then a brute force attacker, on average,
takes m/2 calls to the black box.

Given the white noise sketch, which is a description of R,
the consistent candidates are all the singleton subsets. Our
attacker carries out the following steps:

1. The attacker computes F(x) for all x ∈ R.

2. Next, it enumerates points in R in decreasing order
with respect to F(x). The enumerated points are sent

to the black box. The attacker stops when the black
box outputs YES.

3.2 Likelihood of the first s points
Online parking is not a memoryless process and thus there
is dependency between two points. Thus, Ax is dependent
on Ay. Nevertheless, if x and y are not close to each other,
the effect of one point on the other should not be significant.
Hence, we employ the following approximation:

Pr(Ax ≤ s, Ay ≤ s | F(x) = f1,F(y) = f2) ≈
Pr(Ax ≤ s | F(x) = f1) · Pr(Ay ≤ s | F(y) = f2). (4)

Using (4), we can obtain an approximation of the likelihood
for each candidate (which is a set of s points) consistent to
PX . This leads to the following attacker:

1. Computes the likelihood of each candidate consistent
to PX .

2. Enumerates the candidates in decreasing order with
respect to their likelihood. Next, send the enumerated
candidates to the blackbox until the blackbox outputs
YES.

Consider the situation where an attacker has sent a few can-
didates to the blackbox and they are all not the correct orig-
inal. Intuitively, the above attacker does not fully exploit
the fact that the previously sent candidates are not correct.
Hence, the attacker can be improved. In our simulation,
we experiment with various ways to estimate the likelihood.
We replace step 1 above by the following.

1(a). For each candidate {x1, x2, . . . , xk}, assigns it the value∏s

i=1
LookUp(F(xi)), where LookUp is a predetermined

lookup table.

In our experiments, it turns out that by using the identity
function as lookup, that is, LookUp(i) = i, we already can
achieve noticeable speedup over the brute-force attacker.

3.3 Min-entropy retained by publishing the
sketch

A way to analyze the security of a sketch is by investigating
the remaining entropy of the biometric data, given that the
sketch is made public. Dodis et al. [5] proposed using the
average min-entropy of A given B, which is,

H̃∞(A|B) = − log(Eb←B [max
a

Pr(A = a|B = b)]). (5)

By treating X and PX as the random variables for the minu-
tiae and the sketch respectively, the min-entropy loss due to
the sketch is defined as,

H∞(X)− H̃∞(X|PX),

where the min-entropy H∞(X) = − log (maxa Pr(X = a)).

As mentioned in the introduction, online parking is not easy
to analyze, and hence bound on the entropy loss may be



difficult to obtain. However, from simulation and the ap-
proximation (4), we can obtain an estimation of

max
{x1,x2,...,xs}

Pr(X = {x1, . . . , xs}|FR(x1), . . . ,FR(xs)). (6)

Note that for random variables A and B, and a deterministic
function f ,

max
a

Pr(A = a|B = b) ≥ max
a

Pr(A = a|f(B) = f(b)).

Therefore, maxa Pr(X = a|PX = R) is greater or equal to
(6). This suggests an empirical method to estimate an upper
bound on the min-entropy, which in turn gives us an lower
bound on entropy loss. In the next section, we give more
details on the simulation results.

4. SIMULATION AND COMPARISON
4.1 Experiment Settings.
For convenience, to simulate the online parking process, we
discretized the domain [0, n] × [0, n]. Therefore, minutiae
and chaff points are selected from a set of discrete points.
Each unit interval is discretized into 100 points. Hence,
there are 1002 points in [0, 1)× [0, 1). For each experiment,
we collected 10000 samples. Each sample is a point set R
obtained through online parking. For each point in R, its
arrival order is recorded and its free area is approximated
by counting the discrete points in the region.

The experiments are conducted in [0, n] × [0, n] for n = 50
and n = 22. The average |R| is 1668.4 and 312.6 for n =
50 and n = 22 respectively. By treating each point as a
disk of diameter 1, the average packing density (for both
n = 50 and n = 22) is about 0.525. This is slightly less
than the Palasti’s conjecture[11] of 0.559, probably due to
the different treatment of the domain boundary.

We also conducted experiments in 1D. That is, the domain
is the interval [0, n], and for any two selected points x and
y, |x− y| ≥ 1. The free area of a 1D point x can be defined
similarly as in (1). In 1D, the free area of x is simply (xr −
xl − 2) where xr and xl is the right and left neighbors of x
respectively. For n = 1340, the average |R| is 994.8, which
gives packing density of 0.743.

4.2 Likelihood
From the 10000 samples, we can estimate the conditional
probability Pr(Ax ≤ s | F(x) = f) by first estimating
Pr((Ax ≤ s) ∩ (F(x) = f)) and Pr(F(x) = f). Figure 3
plots Pr((As ≤ s) ∩ (F(x) = f)) against the free area f for
different s. A function in Figure 4 shows Pr(F (x) = f) with
respect to f . Observe in Figure 4 that a large proportion of
points have small free space. In contrast, as illustrated in
Figure 3, for points that arrive early, relatively small pro-
portion of them have small free space. This implies that,
given that a point has large free area, it is more likely to
have arrived early, and hence more likely to be a minutia.

Figure 4 show the likelihood function for different s. Note
that Pr(Ax ≤ s | F(x) = f) is increasing as a function
of f . Since the average |R| is 1668.4, the probability that
a randomly chosen point from R to arrive not later than
165 is about 0.1. From the graph, the likelihood Pr(Ax ≤
165 | F(x) = 50) is more than 0.15. Hence a point with free

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0  10  20  30  40  50

P
ro

ba
bi

lit
y

Free Area: f

s = 165
s = 330
s = 495

Figure 3: Probability density function, Pr(Ax ≤ s ∩
F (x) = f), for s = 165, 300 and 495. The domain is
[0, n]× [0, n] where n = 50.

area more than 50 is 1.5 times as likely to arrive not later
than 165, compared to a randomly chosen point.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  10  20  30  40  50

P
ro

ba
bi

lit
y

Free Area: f

Prob(F(x) = f)
s = 165
s = 330
s = 495

Figure 4: Distribution of free area, Pr(F (x) = f),
and conditional probability of arrival order given
free area, Pr(Ax < s|F (x) = f), for different s =
165, 330, 495. The domain is [0, n]× [0, n] where n = 50.
The average |R| = 1668.4.

Similar observations can be made for experiments in the 1D
domain, illustrated in Figure 5.

For different n and s, it seems that the conditional proba-
bilities are almost the same as long as the ratio (s/nd) is
the same, where d is the dimension of the domain. This is
illustrated in Figure 6 where d = 2.

4.3 Brute-force attacker for s = 1
When |X| = 1, our attacker simply computes LookUp(x) for
all x ∈ R, and sends them to the blackbox according to the
looked-up values in descending order. For each sample R,
the number of blackbox calls required is the number of points



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

21.510.50

P
ro

ba
bi

lit
y

Free Area: f

Prob(F(x) = f)
s = 100
s = 200
s = 300

Figure 5: Distribution of free area, Pr(F (x) = f),
and conditional probability of arrival order given
free area, Pr(Ax < s|F (x) = f), for different s =
100, 200, 300. The domain is [0, n] where n = 1340.
The average |R| = 994.8.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0  10  20  30  40  50

P
ro

ba
bi

lit
y

Free Area: f

n = 50, s = 165
n = 35.5, s = 85 

n = 50, s = 330
n = 35.5, s = 170

n = 50, s = 495
n = 35.5, s = 255

Figure 6: Comparison of Pr(Ax < s|F (x) = f) with
different n and s. There are 3 pairs of functions.
For each pair, the ratio (s/nd) is approximately the
same. For example, (165/502) ≈ (85/35.52).

in R whose looked-up value is larger or equal to the looked-
up value of the sole minutia. Figure 7 gives the histogram
of the number of calls, and the average is 100. Note that
the width of domain n = 20.7, and the brute-force attacker
on average takes 156.5 calls.

4.4 Brute-force attacker for s > 1
The average speedup factor compare to the brute-force at-
tacker can be estimated in the following ways. Consider a
sample point set R = {x1, x2, . . . , xm}. We can compute
the likelihood of the actual minutiae X. Recall that we esti-
mate the likelihood of the set X by

∏
x∈X

LookUp(x). Also
recall that our attacker sends the candidates to the blackbox
in the order of decreasing likelihood. Thus, the number of
blackbox calls required to hit X is same as the number of

 0

 50

 100

 150

 200

 250

 300

 350

 0  50  100  150  200  250  300  350

F
re

qu
en

cy

number of searches required

Figure 7: Histogram of number of calls made by our
attacker. Number of Bins= 100, Bin Size= 2.97

candidates whose likelihood is larger than that of X.

Now, consider the set L = {log(LookUp(x1)), . . . ,
log(LookUp(xm))}. By Central Limit Theorem, the distri-
bution of the sum of s randomly chosen numbers from L
can be approximated by a normal distribution, whose mean
and variance can be derived from the mean and variance of
L. From this normal distribution, we can estimate the pro-
portion of subsets of R whose likelihood is larger than that
of X. Assuming that the candidates are randomly located
among all subsets of R, we can obtain the speedup factor
provided by the attacker.

 0

 50

 100

 150

 200

 250

 300

 350

-1  0  1  2  3  4  5  6  7  8

F
re

qu
en

cy

log10 ( Speedup Factor )

Speedup Factor(likehood)
Speedup Factor(idendity function)

Figure 8: Comparison on speedup factor, n = 20.7.

Figure 8 shows the histogram of the speedup factor, when
s = 38 and expected number of points in R is 312.6. The
average speedup for the 10000 samples is 77.5, and the geo-
metric mean is 18.0. It also shows the result for the same
s, but using a different LookUp. Here, we simply choose the
identity function as the lookup function. Interestingly, the
average improves to 2192.7, and the geometric mean reduces
to 13.88. Observe that for some samples, the speedup fac-
tor reaches 105. This is undesirable in security applications
because it indicates that, with some probability, small but



noticeable, the attack can be very successful.

4.5 Entropy loss
We want to estimate the min-entropy of the minutiae X

given the white noise sketch R, that is, H̃∞(X|R). Note
that each sample R is a randomly chosen white noise sketch.
Using the approximation in (4), the set {x1, x2, . . . , xs} that
maximizes the conditional probability Pr(X = {x1, . . . ,
xs}|R) is the set with s largest looked-up value. Hence, for a
sample R, we can obtain maxa Pr(X = a|R). By averaging
over all samples, we have a lower bound of min-entropy of
X given the white noise sketch. When s = 38 and n = 20.7,
the min-entropy is at most 61.2 bits. In other words, by
making the white noise sketch public, the min-entropy of
the minutiae is reduced to at most 61.2.

The above estimate does not consider the replacement sketch.
The entropy loss of many set-difference schemes is known.
For example, if we employ the scheme by Juels et al. [7], and
the replacement noise is t = 3, then the entropy loss due to
the replacement sketch is at least 2t log2 |R| < 49.72. As an
approximation, let us assume that the replacement sketch is
generated independently from the white noise sketch. Then,
the min-entropy given the sketch PX is at most 61.2 −
49.72 = 11.48.

 0.1

 0.15

 0.2

 0.25

 0.3

 0  50  100  150  200  250  300  350

C
on

di
tio

na
l P

ro
ba

bi
lit

y

Free Area: f

m = 250
m = 200
m = 150

Figure 9: Conditional probability whereby the on-
line parking generates fixed number of chaff points.
The figure shows Pr(Ax < s|F (x) = f) where m, the
number of chaff points, is 250, 200,or 150, and s = 38.
The domain is [0, n]× [0, n], where n is 20.7.

4.6 Online Parking with Fixed Number of Chaff
Points

In previous sections, we employ the first stopping condition
for online parking process (that is, the process stops when
it is impossible to add any more chaff points). It would
be interesting to investigate the second stopping condition
that stops at a fixed number of chaff points. We conduct
experiment with m = 250, 200, and 150, where m is the total
number of chaff points. The result is illustrated in Figure 9.
Observe that the conditional probability is still increasing
although for smaller m, it increases more gradually.

5. CONCLUSION
A known sketch scheme for fingerprint templates hides the
minutiae by adding random chaff points. The chaff gen-
eration is essentially the online parking process where ran-
dom points are selected one-by-one. The chaff points are
randomly selected and thus seems impossible to be distin-
guished from the minutiae. However, since the selection of
a new point depends on the location of the previously se-
lected points, the online process is not memoryless. Hence,
statistical properties of the points that arrive early may be
different from the latecomers. We observed that the late-
comers tend to have more nearby points. The observation is
formulated using free area, and we conjecture that the late-
comers are more likely to have smaller free area (inequality
(3)). This leads to the use of free area in distinguishing the
minutiae from the chaff points.

6. REFERENCES
[1] Fvc2004 databases.

http://biometrics.cse.msu.edu/fvc04db/index.html .

[2] Boyen, X. Reusable cryptographic fuzzy extractors.
In 11th ACM conf. on Computer and Communications
Security (2004), pp. 82–91.

[3] Chang, E.-C., and Li, Q. Small secure sketch for
point-set difference. Cryptology ePrint Archive, Report
2005/145 (2005).

[4] Clancy, T. C., Kiyavash, N., and Lin, D. J.
Secure smartcardbased fingerprint authentication. In
ACM SIGMM workshop on Biometrics methods and
applications (2003), pp. 45–52.

[5] Dodis, Y., Reyzin, L., and Smith, A. Fuzzy
extractors: How to generate strong keys from
biometrics and other noisy data. In Eurocrypt’04
(2004), pp. 523–540.

[6] Jr., E. C., Flatto, L., and Jelenković, P.
Interval packing: the vacant interval distribution. The
Annals of Applied Probability 10, 1 (2000), 240–257.

[7] Juels, A., and Sudan, M. A fuzzy vault scheme. In
IEEE Intl. Symp. on Information Theory (2002).

[8] Juels, A., and Wattenberg, M. A fuzzy
commitment scheme. In ACM Conf. on Computer and
Communications Security (1999), pp. 28–36.

[9] Linnartz, J.-P. M. G., and Tuyls, P. New
shielding functions to enhance privacy and prevent
misuse of biometric templates. In AVBPA 2003
(2003), pp. 393–402.

[10] Maltoni, D., Maio, D., Jain, A. K., and
Prabhakar, S. Handbook of Fingerprint Recognition.
Springer-Verlag, 2003.

[11] Palasti, I. On some random space filling problems.
Publ. Math. Inst. Hung. Acad. Sci. 5 (1960), 353–359.

[12] Rnyi, A. On a one-dimensional problem concerning
random space-filling. Publ. Math. Inst. Hung. Acad.
Sci. 3 (1958), 109–127.

[13] S. Yang, I. V. Secure fuzzy vault based fingerprint
verification system. In 38th Asilomar Conf. on Signals,
Systems, and Computers (2004), vol. 1, pp. 577– 581.


