
Remote Integrity Check with
Dishonest Storage Server ?

Ee-Chien Chang Jia Xu

School of Computing
National University of Singapore

{changec,xujia}@comp.nus.edu.sg

Abstract. We are interested in this problem: a verifier, with a small
and reliable storage, wants to periodically check whether a remote server
is keeping a large file x. A dishonest server, by adapting the challenges
and responses, tries to discard partial information of x and yet evades
detection. Besides the security requirements, there are considerations on
communication, storage size and computation time. Juels et al. [10] gave
a security model for Proof of Retrievability (POR) system. The model
imposes a requirement that the original x can be recovered from multiple
challenges-responses. Such requirement is not necessary in our problem.
Hence, we propose an alternative security model for Remote Integrity
Check (RIC). We study a few schemes and analyze their efficiency and
security. In particular, we prove the security of a proposed scheme HENC.
This scheme can be deployed as a POR system and it also serves as an
example of an effective POR system whose “extraction” is not verifiable.
We also propose a combination of the RSA-based scheme by Filho et al.
[7] and the ECC-based authenticator by Naor et al. [12], which achieves
good asymptotic performance. This scheme is not a POR system and
seems to be a secure RIC. In-so-far, all schemes that have been proven
secure can also be adopted as POR systems. This brings out the question
of whether there are fundamental differences between the two models. To
highlight the differences, we introduce a notion, trap-door compression,
that captures a property on compressibility.

1 Introduction

Recently, there is growing interests in remote verification of storage server. Con-
sider the scenario where Alice has a large file x which she wants to store in a
peer-to-peer backup system, and she does not want to keep it locally. Bob, a peer
node, promises to keep the file for Alice. However, Bob might discard portion of
x to save storage, or temporarily move the file to a slower storage, hoping that
Alice may not need it during the period. To prevent cheating, periodically, Al-
ice wants to remotely check that Bob indeed has x readily available for reading
without retrieving the whole x.
? This is a revised version of the paper that appeared in ESORICS 2008 with some

important typo corrections. (1) Table 1, “wκ ” changed to “mκ” (2) Page 11, “r1+r2”
changed to “ r1r2”.

Besides the security requirements, the scheme has to be efficient. There are a
few resources to be considered: (1) The amount of communication bits required
per verification should be small. (2) The storage at the verifier should be small.
We want to limit it to a constant factor of κ, where κ is a security parameter
sufficiently large for cryptography, for e.g. κ = 1024. (3) The size of the addi-
tional storage at the server should be small. Although it is desired to have O(κ)
additional storage, sublinear (w.r.t. the original file size) is also acceptable. (4)
Finally, computation per verification should be low. To quantify the amount of
computation, we measure the number of bits accessed from the storage.

Security model. Let us call the problem considered in this paper Remote
Integrity Check (RIC). Formulating the security requirement is tricky since the
server is free to transform the data. Juels et al. [10] proposed a security model for
Proof Of Retrievability (POR) system. Roughly, a scheme is secure if, there is a
polynomial time extractor, s.t. for any server that is able to pass the verification,
the extractor can recover the original file by carrying out multiple verifications.
There is a subtle but crucial difference between POR system and the RIC.
Under POR, the original can be recovered by interacting with the server. This
requirement on recovery is not necessary in remote integrity check, where ver-
ification and recovery can be carried out in two different phases. For example,
in the previous application of peer-2-peer backup, when Alice decides to recover
the file x, she can retrieve the whole x and then checks the integrity of x using
the usual message authentication code or signature, without carrying out the
verification protocol.

Without the recovery requirement, we may be able to design schemes with
better performance. One possible candidate is the simple and yet interesting
RSA-based scheme by Filho et al. [7]. In this scheme, the server’s response is
rx mod n, where x is the file treated as a single integer, r a randomly chosen
challenge and n a composite. Since the responses only contain information of
x mod φ(n), thus it is impossible to recover x from multiple challenges-response.
Nevertheless, the RSA-based scheme seems able to detect a dishonest server who
has discarded partial information. Another example is a scheme by Ateniese et
al. [2]. Similarly, it is impossible to recover the original by interacting with their
server. Thus it is inappropriate to prove the security of these schemes using
security model of POR, and a “weaker” security model for RIC is needed.

We propose a variant of security requirement where the extractor, instead
of interacting with the server, has complete access to the server’s storage. Two
forms based on the computing power of the extractor are considered. We first
consider extractor which is a maximum likelihood decoder and does not impose
constrain on its computing time. If a scheme is secure under this setting, we call
it weakly-secure. We also consider extractors that are probabilistic polynomial
time. The security of a scheme is parameterized by (β, γ). Intuitively, a scheme
is (β, γ)-secure (or weakly secure) if, for any server that can pass the verification
with probability β, then there is an extractor who can recover the original from
the verifier’s and server’s storages with probability at least γ.

In-so-far, all schemes that have been proven secure under RIC can also be
employed as a secure POR. This indicates some intriguing differences between
POR and RIC. To highlight this issue, we reformulate the model to a simple
form which we call trap-door compression: Consider a keyed-hash family. With a
secret key, the owner can lossily (that is, some information has been discarded)
compress the file x to x̃, s.t. for any r, the hashed value H(r,x) can be computed
from x̃, r and the secret key. However, without the secret key, any dishonest
server is unable to discard partial information and yet able to compute the hash.
In other words, without the secret key, compression w.r.t. the keyed-hash family
is computationally difficult. Note that from a trap-door compression, it is easy
to build a RIC which is not a POR system. This property on “compressibility”
could be of independent interest.

Proposed schemes. The error correcting code (ECC) based authenticator
[4, 12] can be directly employed as a RIC and POR (we call this scheme AUTH).
The scheme AUTH introduces redundancy into the file to achieve tradeoff between
additional storage and the number of bits read per verification. Such generic
technique is effective and hence we want to design schemes whereby the technique
can be incorporated. On the other hand, the main drawback of AUTH is the large
server’s storage required. For example, it requires at least 4 times more storage
space if a single verification achieves less than 0.5 false acceptance rate. To lower
the false acceptance rate, multiple verifications can be made but that will incur
more communication bits.

To reduce the communication bits, we can use a simple homomorphic MAC
and an almost universal hash family. This scheme is also proposed by Shacham
et al. [14] and this paper is an independent work. Let us call this scheme HTAG.
Essentially, HTAG hashes and aggregates multiple challenge-response into one,
and thus reducing the number of communication bits to a constant factor of κ.
However, there is no reduction in the storage size.

We next give a simple scheme HENC which requires sub-linear (w.r.t. the file
size) additional storage but more communication bits. HENC sends a sequence of
the form (gαr mod p), (gαr2

mod p), . . . during verification, where α and r are
secrets. Using a bilinear map, the communication bits can be reduced by square-
root of the original. We can show that HENC is a weakly-secure RIC. By using
the Paillier cryptosystem, we can obtain a variant that is a secure RIC. HENC can
be used as POR system: to recover the file, the owner uses another algorithm to
generate the queries. However, the response from the server cannot be verified.
Hence, HENC also serves as an example of a POR system whose extraction is
not verifiable [5]. We also propose HYB, a hybrid of HENC with HTAG, that further
reduces communication bits.

Along another direction in improving AUTH, we incorporate a redactable sig-
nature [9] scheme to reduce the additional storage down to a constant factor of
κ. Let us call this scheme REDACT. During setting up, the original file x is en-
coded and expanded to y as in AUTH, and a redactable signature of y is obtained.
However, the server only need to store the original x and the signature. When

the verifier wants to know the i-th object in y, the server derives y from x, and
computes the redactable signature for the requested object. It is not difficult to
show that REDACT is a secure RIC and POR. Clearly, the main disadvantage is
the computation time, and it is not clear how to aggregate multiple responses
to reduce communication bits.

Filho et al. [7] proposed a scheme based on a collision resistant hash, which is
a candidate of trap-door compression function. Let us call it RSAb. It seems to be
secure but there is no rigorous proof. RSAb consumes the same resource as REDACT
and require intensive computation. Fortunately, we can exploit its homomorphic
properties to trade-off the number of bits read with the storage size, while keeping
communication cost unchanged. Let us call this extension RSAh. Among the
schemes studied in this paper, RSAh achieves the best asymptotic performance.

Performance. Table 1 gives a summary on performance. A reasonable
choice of the parameters is: c = 0.2, w = 500, ` = 1000 and κ = 1000. Thus, if
the file is 1Gbits, then for AUTH-(c, w), the total storage required at the server
is roughly 2.4Gbits, and the server has to send at least 1Mbits during verifica-
tion. In contrast, HTAG-(c, w) requires only 4000 communication bits although it
still requires 2.4Gbits total storage. HYB-(c, w) and REDACT-(c, w, `) require only
roughly 1.2Gbits total storage. RSAh-(c, w, `) reduces the total storage size to
roughly 1.2Gbits and communication cost to 5000 bits.

Contribution. We propose a security model for RIC. Unlike the previously
known model for POR, the extractor can access the server’s storage. We propose
a few schemes: HTAG, HENC, HYB, REDACT and RSAh. Shacham et al. [14] gave a
scheme same as HTAG and this paper is an independent work. The performance
of these schemes is summarized in Table 1. The scheme HTAG, HENC, HYB and
REDACT can be shown to be secure under reasonable cryptographic assumptions.
Interestingly, schemes that have been proven secure under RIC can also be
deployed as POR systems. To highlight the difference between the two models,
we introduce the notion of trap-door compression.

Scheme Additional Storage Bits accessed Communication Refer to

AUTH-(c, w) [12] (1 + 2c)mκ + O(κ) 2wκ (1 + 2w)κ Section 4.1
HTAG-(c, w) [14] (1 + 2c)mκ + O(κ) 2wκ O(κ) Section 4.2

HYB-(c, w, `) (c + 1+c
`

)mκ + O(κ) O(wκ`) O(κ
√

`) Section 4.4
REDACT-(c, w, `) (c + 1+c

`
)mκ + O(κ) O(wκ`) O(wκ) Section 4.5

RSAh-(c, w, `) (c + 1+c
`

)mκ + O(κ) O(wκ`) O(κ) Section 4.6
Table 1. The size of the original file is mκ bits. The file is expanded to a factor of
(1 + c) using ECC, grouped into blocks where each block contains ` elements, and w
“requests” are made during a single verification. When w = κ and c = 1, they are
either (2−κ, 1− negl(κ))-secure or weakly secure. For RSAh, there is no formal proof of
its security.

2 Related Work

This paper is motivated by applications in remote-backup and peer-to-peer
backup ([1, 3, 11]). Peer-to-peer backup system requires a mechanism to maintain
the availability and integrity of data stored in peer nodes. Li et al. [11] proposed
to choose neighboring nodes based on the social relationships and relies on the
principle that people are more likely cooperative with friends.

Recently, there is a growing interest in the cryptographic aspects of the
problem. Perhaps Filho et al. [7] first studied the scenario where the verifier
does not has the original. They described two potential applications: uncheatable
data transfer and demonstrating data procession, and proposed the RSA-based
scheme. Juels et al. formulated the POR system and gave a security model
[10]. They also proposed a sentinel-based method. However, the sentinel-based
method can only support constant number of verifications. A refined security
formulation is given in a recent technical paper [5]. The main difference of POR
and RIC is in the requirement on file recovery. Ateniese et al. [2] gave a model
for Proof of Data Procession system, and proposed a few schemes that provide
tradeoff of computing time and storage size. These schemes can be viewed as
an extension of the RSA-based scheme. Our scheme RSAh exploits similar idea,
but is enhanced with ECC and in a simple form. Ateniese et al. [2] adopted
the security model of POR and showed the security of the proposed schemes.
However, it is inappropriate to apply POR security model since the original file
cannot be recovered by interacting with the proposed server. In a recent techni-
cal paper, Shacham et al. [14] proposed a scheme which is essentially the same
as the scheme HTAG independently given in this paper. The security model of
RIC in this paper is based on notations and insight provided by Juels et al. [10]
and an earlier manuscript [6].

Remote integrity checking is closely related to memory integrity verifica-
tion [15, 4]. The notion of authenticator proposed by Naor et al. [12] is formulated
for memory integrity check. Nevertheless, an authenticator can also be deployed
as a POR and RIC system. In particular, the idea of introducing redundancy
to tradeoff resources is useful in our problem. Under the authenticator model,
the queries sent must be requests of values at particular memory locations. Such
restriction is not present in our problem, where the verifier may request for some
computation to be done on the file.

The trap-door compression may be related to a notion by Harnik et al. [8]
on compressibility of NP decision problems. Consider a NP decision problem,
they studied compression that preserves the solution to an instance rather than
preserving the instance itself.

3 Formulations and Definitions

Our formulation is based on the POR model proposed by Juels et al. [10] and
the manuscript [6]. Roughly, a scheme is (β, γ) secure if, for any adversary who
can pass verification with probability at least β, then there is an extractor who

can recover the original with probability at least γ. The main difference of our
model from POR is the type of information accessed by the extractor and its
ability. Under POR, the extractor is probabilistic polynomial time (PPT) and
it can interact with the server, and has access of the verifier’s storage. Under
RIC, the extractor has access to both the verifier’s and the server’s storages. We
consider two settings. Firstly, the extractor is a maximum likelihood decoder,
whose performance is an upper bound on all PPT extractors. For schemes that
satisfy this setting, we say that they are weakly secure. Next, we consider ex-
tractor which is PPT . If a scheme is weakly secure, the adversary is unable to
discard information and yet evade detection. However, there might not be an
efficient algorithm in recovering the original. For instance, an adversary might
apply an one-way function on the data and yet be able to carry out the verifica-
tion. Although no information is lost, there is no efficient algorithm to transform
it back to the original. Such weaker requirement is easier to handle.

3.1 Remote Integrity Check Model

A remote integrity check (RIC) system consists of two entities, the owner
and the server. The life cycle of RIC starts with a setup phase followed by a
sequence of verification phases. An owner has a small private and reliable memory
and is associated with three PPT (polynomial w.r.t. the security parameter κ)
algorithms, the key generator K, the encoder E and verifier V. A server has a
large storage and is associated with a PPT algorithm, the prover P.

Setup Phase. An owner has a file x ∈ {0, 1}∗, and chooses a key k using the
key generator: k ← K(κ). Given x and k, the encoder E outputs public data px

and private data sx, that is, E(x, k) = (px, sx). The public data px is then sent
to the server and stored in server’s storage. The private data sx is stored in the
owner’s private memory.

Verification Phase. During this phase, V (on the owner side) interacts with P
(on the server side). Let Ms denote the (possibly modified) storage content at
the server. Let 〈V(sx),P(Ms)〉 be the output of V after the interactions, which
is either 0 or 1. If it is 0, the owner rejects the server. A RIC system is valid
if 〈V(sx),P(px)〉 always outputs 1. In this phase, the owner plays the role of
verifier, hence we use the terms “owner” and “verifier” interchangeably.

3.2 Security Model

Adversary. The adversary will go through two phases: learning phase and
challenge phase. In the two phases, the adversary behaves in different modes
accordingly. We denote the adversary with A. During the learning and challenge
phase, we write it as Alearn and Achal respectively.

Learning Phase. The adversary chooses1 a data file x and sends it to the owner.
The setup phase in the previous section is then carried out. Next, polynomial
number of verifications are carried out and the adversary (who plays the role of
server) does not need to honestly follow the verification protocol. The adversary
may modify the storage but it will be fixed at the end of the learning phase. Let
us denote the storage content as Ms.

Challenge Phase. During the challenge phase, the memory content Mc of
the verifier and the Ms at the adversary will be fixed, i.e. both the verifier and
adversary are stateless.

Advantage of Adversary. The goal of an adversary is to discard some
information, but yet evade detection. We will model the information loss in two
different settings. Under the first setting, we consider the maximum likelihood
decoder given Ms and Mc. Let Y0,Y1 and Y2 denote the random variable
for data x, adversary’s memory Ms and verifier’s memory Mc respectively. We
define ML(Ms,Mc) as follow.

ML(Ms,Mc) = max
x0

Pr (Y0 = x0 | Y1 = Ms,Y2 = Mc) .

We define SuccchalA (Ms,Mc) as the probability that adversary A passes ver-
ification, given that A has Ms and the verifier has Mc.

SuccchalA (Ms,Mc) = Pr
[
ExpchalA (Ms,Mc) = 1

]
.

We define the advantage AdvML
A (β, γ; κ) of adversary w.r.t. security parameter κ

as follow.

AdvML
A (β, γ; κ) = Pr

[
(x,Ms,Mc) ← ExplearnA (κ) ∧

SuccchalA (Ms,Mc) ≥ β ∧ ML(Ms,Mc) < γ

]
.

Intuitively, the advantage of the adversary A is the probability that, A achieves
false acceptance rate of at least β after learning, but the information loss of x is
at least 1− γ.

Definition 1 A remote integrity check system is (β, γ)-weakly secure, if for any
PPT adversary A, the advantage AdvML

A (β, γ; κ) of A is negligible in κ, i.e. for
any positive polynomail poly(·), for all sufficiently large κ,

AdvML
A (β, γ;κ) ≤ 1

poly(κ)
.

1 In practice, the data file is chosen by the user. Here we assume a stronger adversary.

Note that Definition 1 is equivalent with

Pr

[
(x,Ms,Mc) ← ExplearnA (κ) ∧ SuccchalA (Ms,Mc) ≥ β

⇒ ML(Ms,Mc) ≥ γ

]
= 1− negl(κ).

That is, if A passes verification with high chance (≥ β), then the information
loss is low (< 1− γ) with overwhelming high probability.

Similarly, we define the the security for PPT extractor. The success proba-
bility of an algorithm extract, which tries to extract x from Mc and Ms, is
defined as follow.

SuccextractA (Ms,Mc;x) = Pr
[
x∗ ← extractA(·)(Ms,Mc) ∧ x∗ = x

]
.

We define the advantage Advextract
A (β, γ;κ) of adversary A w.r.t. algorithm

extract and security parameter κ as,

Advextract
A (β, γ;κ) = Pr

[
(x,Ms,Mc) ← ExplearnA (κ) ∧

SuccchalA (Ms,Mc) ≥ β ∧ SuccextractA (Ms,Mc;x) < γ

]
.

Definition 2 A remote integrity check system is (β, γ)-secure, if for any PPT
adversary A, there exists a PPT algorithm extract, the advantage Advextract

A (β, γ; κ)
of A is negligible in κ, i.e. for any positive polynomail poly(·), for all sufficiently
large κ,

AdvextractA (β, γ; κ) ≤ 1
poly(κ)

.

Trap-door Compression. To highlight the difference between POR and
RIC, we introduce a notion of compressibility on hash function. From such
functions, we can design aRIC system that is not POR. We will give an informal
description here. Consider a keyed hash function H. We say that it is a trap-
door compression, if there is an efficient key generation algorithm that produces
a public key e, and private key d, and two PPT algorithms, the compression C
which is a many-to-one function that discards information, and D s.t. for any r,

D(d, C(d, x), r) = H(e, r, x).

However, without knowing d, for any PPT compression C̃ and PPT algorithm
D̃, there exist many r’s, s.t.

D̃(e, C̃(e, x), r) 6= H(e, r, x).

In other words, with the private key, it is possible to discard information and
yet compute the hash value for any r. However, it is difficult to do so without
the knowledge of the private key.

4 Schemes for Remote Integrity Check

4.1 AUTH: MAC and ECC

For completeness, we will describe the authenticator that uses message authen-
tication code (MAC) and error-correcting code (ECC) by Naor et al. [12].

Let us illustrate the scheme using Reed-Solomon code and a MAC that pro-
duces a κ bits tag. The file is represented as x = x1x2 . . . xm where each xi ∈ Zp

and p is prime. The owner chooses a secret key s. Next, x is encoded using
Reed-Solomon code, giving y = y1y2 . . . y2m. For each i, taking s as the key,
the MAC ti of (yi, i) is computed. Finally, the sequence of tuples (yi, ti), for
1 ≤ i ≤ 2m are sent to the server. During verification, the verifier chooses a
random r, 1 ≤ r ≤ 2m, and requests for the pair (yi, ti). The consistency of yi

and ti is then verified using the key s.
Any modifications of a pair (yi, ti) can be detected using MAC. From the

unmodified data, the original can be reconstructed using Reed-Solomon code as
an erasure code. If the original is unable to be reconstructed, then at least m+1
pairs of {yi, ti}’s have been modified. Therefore, with probability more than 1/2,
the verifier rejects. To reduce the probability of false acceptance to below ε, the
verification can be carried out Θ(log 1

ε) times, but incurring communication cost.
The storage required is large, which is at least 4 times larger than the original.

This authenticator can be employed for remote integrity check, and we call
it AUTH-(c, w), where the data of size mκ is expanded to size (c + 1)mκ using
ECC, and w randomly selected pairs (yi, ti)’s are accessed and checked during
each verification.

4.2 HTAG: Homomorphic MAC

This scheme also appeared in an earlier technical paper by Shacham et al. [14].
The main idea is to reduce communication bits in AUTH using homomorphic
MAC and an almost universal hash function. Each xi is associated with an
authentication tag ti. During verification, the verifier chooses a key r and asks
for the key-hashed value of x with r. Due to the homomorphic property of the
tags, the server can also compute the tag of the hashed value from ti’s. Thus the
verifier can check whether the server has carried out the computation honestly.

Setup. The owner chooses a κ bits prime p. The file is represented as x =
x1x2 . . . xm where xi ∈ Zp for each i. The owner randomly chooses s and α from
Z∗p. Let si = G(s, i) for i = 1, 2, 3, . . . ,m, where G is a secure pseudo random
number generator. The owner computes a tag ti = αxi + si mod p, for each i,
and sends x, ti’s and p to the server. The value s and α are kept as secrets.

Verification. The verifier chooses a random r from Z∗p and sends r to the
server. The server computes A and B as follow and sends them to the verifier.

A = Hp(r;x) ,
m∑

i=1

rixi mod p, B =
m∑

i=1

riti mod p.

The verifier accepts if B ≡ αA +Hp(r, s) (mod p).

Theorem 1 HTAG is (0.5, 1−negl(κ))-secure, assuming G(·, ·) is a cryptographic
secure pseudo random number generator, where negl(·) is a negligible function
and κ is the security parameter.

Tradeoff. By adding redundancy, the variant HTAG-(c, w) can reduce the
number of read accesses at the cost of storage size. The data x1x2x3 . . . xm is
encoded as y1y2 . . . ycm+m using an ECC. Each yi is associated with a tag ti.
During each verification, the verifier chooses w random indices i1, i2, . . . , iw and
sends these w indices together with the random key r to the server. The server
computes and sends A = Hp(r; yi1 , yi2 , . . . , yiw

) and B = Hp(r; ti1 , ti2 , . . . , tiw
)

to the verifier. To further reduce communication bits, the w indices are generated
from a seed r0, so that only two numbers r and r0 are sent.

4.3 HENC: Homomorphic encryption

We give another simple scheme HENC. It also uses a homomorphic tag similar
to HTAG but its goal is to reduce storage size instead of communication bits. In
its basic form, it requires high communication cost but can be made efficient by
incorporating other techniques.

Setup. The owner chooses a p = 2q + 1, where both p, q are primes, and a
generator g of Z∗p. The file is organized as x1x2x3 . . . xm where each xi ∈ Zp−1.
The file and p are then sent to the server. The owner also chooses r from Z∗p−1,
and computes

h =
m∑

i=1

rixi mod (p− 1). (1)

Both r and h are kept as secrets. It is not necessary to keep g secret.

Verification. The verifier picks a random α, and sends the sequence

〈 bi = gαri

mod p 〉i=1,2,3,...,m

The server is supposed to compute and return A =
∏m

i=1 bxi
i mod p. The

verifier accepts if A ≡ gαh (mod p).

Remarks.
1. HENC is (0.5, 1 − negl(κ))-weakly secure, assuming that it is difficult to
distinguish bi’s from random numbers.

Theorem 2 The scheme HENC is (0.5, 1 − negl(κ))-weakly secure under As-
sumption 3, where negl(·) is a negligible function and κ is the security param-
eter.

Assumption 3 Let p = 2q+1 where p, q are primes, and g be a generator of Z∗p.
The following two sequences, where r, r1, r2, . . . , rm are uniformly chosen from
Z∗p−1, are computationally indistinguishable.

R0 : 〈gr1mod p, gr2mod p, . . . , grmmod p〉
R1 : 〈grmod p, gr2

mod p, . . . , grm

mod p〉

The main idea of the proof is as follow. Suppose there is a successful ad-
versary. Consider a tester who, on input of m number, v1, v2, . . . , vm, generates
instances for the learning phases, and simulates the adversary. Each learning
instance is the sequence va

i mod p for i = 1, . . . , m, where a is randomly chosen.
Next, the tester simulates a honest server, and the adversary during the chal-
lenge phase. If both produce the same response, the tester outputs 1, otherwise
outputs 0. We can show that, if the input is from R0, the expected output is
less than 0.3, whereas if the input is of the form gri

mod p, then the expected
output is not less than 0.5 This contradicts Assumption 3.

2. To enhance the scheme from weakly-secure to secure, we require a PPT
extractor. This can be achieved by the following modifications. Instead of choos-
ing a prime p as modulus, we can incorporate the Paillier cryptosystem [13]
and choose n2 as modulus, where n is a composite, and an appropriate g. By
property of the Paillier cryptosystem, with the knowledge of the private key, the
verifier can perform discrete-log. To recover the original from the storage, the
extractor simulates sufficiently large number of verifications by sending the bi’s
of the form

gr̂mod n2, gr̂2
mod n2, . . . gr̂m

mod n2

where r̂ is randomly chosen for each verification. The correct response from the
server gives the sample of a m-degree polynomial evaluated at r̂. There may be
“errors” in the server’s responses, which can be corrected using list decoding.
Thus, we have a (0.5, 1− negl(κ))-secure scheme.

3. Using bilinear map, communication required can be reduced to
√

m numbers.
Note that it is not necessary to use the r, r2, r3, . . . , rm as coefficients in (1). They
can be a sequence of pseudo random numbers r1, r2, . . . , rm chosen during setup
phase. We can also construct each of the m coefficients using the product rirj ,
for i, j = 1, 2, . . . ,

√
m, where the ri’s are pseudo random. Now, using bilinear

map, the number of values to be sent is reduced to
√

m. That is, the verifier
just need to send the sequence gri

1 ’s, and the server can compute e(gri
1 , g

rj

1) to
obtain g

rirj

2 for any i and j, where e(·, ·) is the bilinear map and g1 and g2 are
generators of the two respective groups. We can show that this variant is weakly
secure. However, it is not clear how to incorporate Paillier cryptosystem into
this variant.

4.4 HYB-(c, w, `): Hybrid of HENC with HTAG

For simplicity, we first explain the algorithm when c = 0 and w = mκ/`, where
the file size is mκ. Thus, the only parameter is `. The data x is grouped into
blocks. The scheme HENC is applied on each block to obtain a sequence of hash
values. Next, the homomorphic MAC is applied on the hash values.

Setup. The owner choose a κ bits p = 2q + 1 where both p, q are prime, and
a generator g of Z∗p. Organized the file into u blocks and each block contains `
numbers from Zp−1. Let xi,j be the j-th number in the i-th block. The owner
chooses a random r from Z∗p−1, and a seed s. Let si = G(s, i) for 1 ≤ i ≤ u
where G is a pseudo random number generator. Compute the tag ti for the i-th
block as follow:

hi = Hp−1(r;xi,1, xi,2, . . . , xi,`) =
∑̀

j=1

xi,jr
j mod (p− 1),

ti = (hi + si) mod (p− 1).

Send the data xi,j ’s, tags ti’s and p to the server. Keep s and r as secrets. It is
not necessary to keep g secret.

Verification.

1. The verifier chooses random numbers a, α from Z∗p and computes a sequence
of numbers b1, b2, . . . , b` where bi = gαri

mod p. The verifier sends a and
the bi’s to the server.

2. The server computes values A and B as follow and sends them to the verifier.

B =
u∏

i=1

∏̀

j=1

b
aixi,j

j mod p, A =
u∑

i=1

tia
i mod (p− 1).

3. The verifier accepts if BgαHp−1(a;s1,s2,...,su) ≡ gαA (mod p).

Security. We can show that HYB is (0.5, 1−negl(κ))-weakly secure, assuming
that the sequence bi’s is pseudo random, and the following assumption. The
second assumption is required to ensure “forgery” of tags is difficult.

Assumption 4 Let p be a κ bits prime, and g be a generator of Z∗p. Given a
sequence b1, b2, . . . , bm, where bi = gαri

mod p, and α, r are uniformly randomly
distributed over Zp, it is infeasible to compute a pair of values (C, D) such that
C = Dα and D 6= 1.

Similarly, by using Paillier cryptosystem, we have a scheme that is (0.5, 1−
negl(κ))-secure.

Tradeoff. By adding redundancy, HYB-(c, w, `) can tradeoff server’s storage
with the number of read accesses per verification, without incurring more com-
munication bits. The mκ-bits file is first encoded using ECC and expanded to
(c + 1)mκ bits. During each verification, only w blocks are selected. Therefore,
the total number of bits accessed is reduced to O(wκ`).

4.5 REDACT: Redactable Signature Scheme

Redactable signature scheme is a homomorphic signature scheme [9]. We consider
such schemes for unordered sets where a message is a set x = {x1, x2, . . . , xm}
of objects, and a set x′ is a redacted message of x if x′ ⊂ x. As usual, with
the private key, the signer can compute a signature σ. A redactable signature
scheme enables an entity, known as the redactor, to compute a valid signature for
a redacted message x′ from the message x and its signature σ, without knowing
the private key. Hence, the scheme consists of three algorithms Sign, Redact,
and V erify. There are known schemes [9] that produce short signature of length
within a constant factor of the key size κ.

The main idea in REDACT is simple: The data x = x1x2 . . . xm is first encoded
using ECC to get y = y1y2 . . . y2m (so the redundancy rate c = 1). The encoded
data y is then represented as an unordered set px = {(1, y1), (2, y2), . . . , (2m, y2m)}.
The owner signs the unordered set px, and the server stores the original x and
the signature σ. Thus, the addition storage size is O(κ). During verification, the
verifier sends an index, say i. The server is supposed to compute yi from x. By
property of the redactable signature scheme, the signature σi for the singleton
set {(i, yi)} can be computed by the server. The verifier then check whether σi is
a valid signature of {(i, yi)}. Since the verifier does not need to know the private
key, this scheme can be employed in scenarios where the verifier is not the owner.

Theorem 5 REDACT is (0.5, 1−negl(κ))-secure, if the redactable signature scheme
employed by REDACT is unforgeable, where negl(·) is a negligible function and κ
is the security parameter.

Tradeoff. Let us consider the extension REDACT-(c, w, `) which reduces num-
ber of bits accessed at the cost of the server’s storage. Using ECC, the data x is
expanded by a factor of (c + 1). Next, the encoded data is divided into blocks,
where each block contains ` elements and each elements is κ bits. Each block is
signed independently. Thus there are (c+1)m/` signatures. During the verifica-
tion phase, the verifier sends w random indices i1, i2, . . . , iw to the server. The
server computes signatures σij ’s for each yij and sends them to the verifier.

4.6 RSAb: Trapdoor Compression

Filho et al. [7] proposed a RSA-based scheme. We will describe this scheme here
and call it RSAb. Note that RSAb is not a POR system, and it seems to be a
trap-door compression and secure RIC system. However, there is no proof yet.

Setup. Data x is represented as a single integer. Choose a κ bits RSA modulus
n. The owner keeps s = x mod φ(n) as secret, and sends x and n to the server.

Verification. Verifier randomly chooses r ∈ Z∗n and sends r to the server. Server
computes z = rx mod n and sends it back to the verifier. Verifier accepts if,
rs ≡ z (mod n).

Note that the function H(x, r0) = rx
0 mod n, where r0 is a fixed constant

with maximum order in Z∗n, is collision resistant, assuming factorization is diffi-
cult. It is easy to show that, an adversary who can evade detection, must employ
a one-way function to discard information. If not, the adversary can find a col-
lision.

Tradeoff. We give an extension RSAh-(c, w, `) by exploiting a homomorphic
property and incorporating ECC. This hybrid achieves the best asymptotic per-
formance among the schemes discussed here.

The data x of mκ bits is encoded using ECC. The encoded data of size
(c + 1)mκ is divided into blocks, where each block is represented as a single
`κ-bits integer. Let bi be the i-th block. Each bi is associated with a tag

ti = gbi+si mod n,

where n is the κ-bits RSA modulus, g an element with large order, and the si’s
are secrets chosen by the owner. The data bi’s, tags ti’s, and n are sent to the
server.

During verification, the verifier randomly chooses α and r from Zn, and com-
putes h = gα mod n. The verifier also chooses w random indices i1, i2, . . . , iw,
and sends these w indices, h and r to the server. Let b̂j = bij , ŝj = sij and
t̂j = tij for each 1 ≤ j ≤ w. The server is supposed to compute and send back
H and T defined as follow:

H = hu mod n, where u =
w∑

i=1

ri b̂i, T =
w∏

i=1

(t̂i)ri

mod n.

The verifier accepts if Hgαv ≡ Tα (mod n) where v =
∑w

i=1 riŝi.
The w indices can be generated from a short seed using pseudo random num-

ber generator, and si’s can also be generated from another short seed. Although
not obvious at first glance, RSAh can be treated as an extension of RSAb.

Efficiency. For RSAb, the communication cost, verifier’s storage size, and
additional server’s storage size are O(κ) bits, and the number of read access
is mκ bits which is exactly the size of the data. The variant scheme RSAh-
(c, w, `) reduces the number of read access to (1 + `)wκ bits at the cost of
(c + 1+c

`)mκ + O(κ) bits of additional storage. The communication cost are still
in O(κ) bits. Hence, in term of asymptotic performance, RSAh-(c, w, `) is the
most efficient among the proposed schemes.

5 Conclusion

The subtle difference between RIC and POR seems to be profound, and related
to compressibility of hash functions. This is illustrated by the simple scheme
RSAb. Although in a simple form, RSAb is not easy to analyze and new techniques
seems to be required. In this paper, we focus on asymptotic performance. It is also
interesting to investigate the performance of the proposed schemes in practical
scenarios, and how to combine the underlying techniques for better tradeoff.

Acknowledgement. The authors wish to thank the anonymous reviewers for
pointing out relevant references and their valuable suggestions, and Aldar Chan,
National University of Singapore, for the insightful discussions.

References

1. S. Androutsellis-Theotokis and D. Spinellis. A survey of peer-to-peer content dis-
tribution technologies. ACM Comput. Surv., 36(4):335–371, 2004.

2. G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and
D. Song. Provable data possession at untrusted stores. ACM conf. on Computer
and Communications Security, pages 598–609, 2007.

3. C. Batten, K. Barr, A. Saraf, and S. Treptin. pStore: A secure peer-to-peer backup
system. LCS Technical Memo 632, MIT Laboratory for Computer Science, 2001.

4. M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking the cor-
rectness of memories. IEEE Sym. on Foundations of Comp. Sci., pages 90–99,
1991.

5. K. D. Bowers, A. Juels, and A. Oprea. Proofs of retrievability: Theory and imple-
mentation. Cryptology ePrint Archive, Report 2008/175, 2008.

6. E.-C. Chang, S. Mukhopadhyay, and J. Xu. Remote integrity check
without the original. Manuscript submitted to CRYPTO’07, 2007.
http://www.comp.nus.edu.sg/∼changec/publications/remote.pdf.

7. D. Filho and P. Barreto. Demonstrating data possession and uncheatable data
transfer. Cryptology ePrint Archive, Report 2006/150, 2006.

8. D. Harnik and M. Naor. On the Compressibility of NP Instances and Cryptographic
Applications. IEEE Sym. on Foundations of Comp. Sci., pages 719–728, 2006.

9. R. Johnson, D. Molnar, D. X. Song, and D. Wagner. Homomorphic Signature
Schemes. CT-RSA, pages 244–262, 2002.

10. A. Juels and Jr. B. S. Kaliski. Pors: proofs of retrievability for large files. ACM
conf. on Computer and Communications Security, pages 584–597, 2007.

11. J. Li and F. Dabek. F2F: reliable storage in open networks. Intern. Workshop on
Peer-to-Peer Systems, 2006.

12. M. Naor and G. N. Rothblum. The Complexity of Online Memory Checking. IEEE
Symp. on Foundations of Comp. Sci., pages 573–584, 2005.

13. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
EUROCRYPT, pages 223–238, 1999.

14. H. Shacham and B. Waters. Compact proofs of retrievability. Cryptology ePrint
Archive, Report 2008/073, 2008. http://eprint.iacr.org/.

15. G. E. Suh, D. Clarke, B. Gasend, M. van Dijk, and S. Devadas. Efficient memory
integrity verification and encryption for secure processors. IEEE/ACM Int. Sym.
on Microarchitecture, pages 339–350, 2003.

