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Abstract
Proofs of Retrievability (POR) is a cryptographic formu-
lation for remotely auditing the integrity of files stored in
the cloud, without keeping a copy of the original files in lo-
cal storage. In a POR scheme, a user Alice backups her
data file together with some authentication data to a poten-
tially dishonest cloud storage server Bob. Later, Alice can
periodically and remotely verify the integrity of her data
file using the authentication data, without retrieving back the
data file. Besides security, performances in communication,
storage overhead and computation are major considerations.
Shacham and Waters (Asiacrypt ’08) gave a fast scheme with
O(sλ) bits communication cost and a factor of 1/s file size
expansion where λ is the security parameter. In this paper,
we incorporate a recent construction of constant size polyno-
mial commitment scheme (Kate, Zaverucha and Goldberg,
Asiacrypt ’10) into Shacham and Waters scheme. The result-
ing scheme requires O(λ) communication bits (particularly,
920 bits if a 160 bits elliptic curve group is used or 3512 bits
if a 1024 bits modulo group is used) per verification and a
factor of 1/s file size expansion. Experiment results show
that our proposed scheme is indeed efficient and practical.
Our security proof is based on Strong Diffie-Hellman As-
sumption.

Categories and Subject Descriptors H.3.2 [Information
Storage and Retrieval]: Information Storage; D.4.6 [ Secu-
rity and Protection]: Cryptographic controls

General Terms Storage, Integrity, Security, Algorithm

Keywords Cloud Storage, Proofs of Retrievability, Remote
Data Integrity Check, Homomorphic Authentication Tag,
Polynomial Commitment
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1. Introduction
Storing data in a cloud storage, for example Amazon Cloud
Drive, Microsoft Skydrive, or Dropbox, is gaining popularity
recently. We are considering scenarios where users may have
concerns of the integrity of their data stored in the cloud
storage. Such prudent users may have doubts about the cloud
storage server’s promise on maintaining the data integrity.
Instead, they desire a technical way to be assured that the the
cloud storage server is keeping his promise and following the
service level agreement (SLA).

Threats to integrity of data stored in cloud is indeed
realistic. Several events about data loss in Amazon cloud
storage have been reported [16, 27]. There are also plenty
of data loss cases that are claimed by individuals but not
confirmed officially by the cloud server, e.g. data loss cases
in Dropbox [14].

Proofs of Retrievability (POR) model proposed by Juels
and Kaliski [21] is among the first few attempts to formulize
the notion of “remotely and reliably verifying the data in-
tegrity without retrieving the data file”. A POR scheme
consists of setup phase and a sequence of verification phases.
In the setup phase, a data owner Alice preprocesses her data
file using her private key to generate some authentication
information. Then Alice sends the data file together with au-
thentication information to the potentially dishonest cloud
storage server Bob, and removes them from her local stor-
age. Consequently, in the end of setup phase, Alice only has
her private key in her local storage, and Bob has both the
data file and the corresponding authentication information.
In each subsequent verification phase, Alice generates a ran-
dom challenge query and Bob is supposed to produce a short
response upon the received challenge query, based on Alice’s
data file and the corresponding authentication information.
In the end of a verification phase, Alice will verify Bob’s re-
sponse using her private key and decide to accept or reject
this response.

The performance of a POR scheme is determined by
a few factors: the number of communication bits (i.e. the
bit lengths of a challenge and a response) exchanged be-
tween Alice and Bob per verification, storage overhead on
Alice/Bob’s side, computation time on Alice/Bob’s side in a
verification, and computation time for data preprocessing in
setup on Alice side.



Shacham and Waters [26] proposed two POR schemes,
where one supports private verifiability and the other sup-
ports public verifiability. In this paper, we are interested in
the POR scheme [26] with private verifiability and refer to
it as SW scheme. In this SW scheme, the size of a response
(or proof) is dominated by s group elements where each is
λ bits long. We manage to aggregate these s group elements
into two group elements, leading to a reduction in proof size
from O(sλ) bits to O(λ) bits, by exploiting an intriguing
property of polynomial, which is recently used by Kate, Za-
verucha and Goldberg [22] to construct a polynomial com-
mitment. Combining with the result of Dodis, Vadhan and
Wichs [13], which reduced the challenge size of SW scheme
fromO(λ2) toO(λ), we reduce the communication cost per
verification of SW scheme from O(λ2 + sλ) to O(λ).

1.1 Our Contributions
Our contributions can be summarized as below: We propose
a new efficient POR scheme in Section 5. In this scheme,
a data block consists of s group elements and a subset of
` data blocks are accessed in each verification. The stor-
age overhead is 1/s of the data file size, and communica-
tion cost is O(λ) bits per verification where λ is the se-
curity parameter, and the computation cost is O(s) group
exponentiations on the server side (prover) and O(`) group
addition/multiplication/PRF on the client (verifier) side. We
prove that the proposed POR scheme is secure ( Theorem 1
in Section 5.2) under Strong Diffie-Hellman Assumption.

The empirical study in Section 6 shows that our scheme
is practical in computation under reasonable setting. In
a typical setting where an elliptic curve group of prime
order p (the bit-length of p is λ = 160) is used and the
system parameter s = 100, during each verification, 920
communication bits are exchanged between the data owner
and the cloud storage server where 440 bits for challenge and
480 bits for response, and 100 elliptic curve exponentiations
are required to generate a response on the cloud storage
server side. The small number of communication bits is
also desirable in situations where the challenge and response
could be piggybacked into other communication packets
between the data owner and the cloud storage server.

1.2 Organization
The rest of this paper is organized as below: We brief
the background on SW scheme [26] and review the re-
lated works in Section 2. Particularly, in Section 2.1.3, we
overview our proposed scheme in the context of background
works [13, 26]. Section 3 reviews the security formulation of
Proofs of Retrievability. We describe background knowledge
on the polynomial commitment scheme [22] in Section 4 and
present our main scheme in Section 5. We analyze the per-
formance of the proposed scheme, conduct experiments and
report the empirical results in Section 6. After that, Section 7
concludes this paper.

Section 5 is self-contained and readers may jump to Sec-
tion 5 directly to read our main construction.

2. Background and Related work
In this section, we brief the background on Shacham and
Waters [26] POR scheme and improvement on this scheme
by Dodis, Vadhan and Wichs [13], and review related works
on proofs of storage. We also overview our result in this
paper, based on works by Shacham and Waters [26] and
Dodis et al. [13].

2.1 SW scheme and Our Improvement
2.1.1 Original SW scheme
Shacham and Waters [26] proposed two POR schemes,
where one supports private verifiability and the other sup-
ports public verifiability. Here we adopt the interpretation of
[13] to review the SW POR [26] scheme with private veri-
fiability.

In the setup, the data owner Alice encodes her data
file using some error erasure encoding scheme (e.g. Reed-
Solomon code [25]), such that the encoded file consists of
many blocks and each block is a vector of s group elements
from Zp, where p is a λ bits long prime. Next, Alice gen-
erates an authentication tag for each block in the encoded
file, using a homomorphic linear authenticator. Alice then
sends the encoded file together with all authentication tags
to the potentially dishonest cloud storage server Bob. Thus,
at the end of setup, Alice has only a private key in her local
storage, and Bob has Alice’s encoded data file and authen-
tication tags. Since an authentication tag is a group element
in Zp, the size of all authentication tags is 1/s of the size
of encoded file. The error erasure encoding in the setup is
called as primary encoding (or initial encoding) by Dodis et
al. [13].

In a verification, the data owner Alice, who is taking
the role of verifier, interacts with cloud storage server Bob,
who is taking the role of prover. Alice chooses a random
challenge, which consists of two parts: The first part C is a
subset of block indices that specifies a random subset of `
blocks in the encoded file. Let us denote the selected blocks
as ` vectors {~xi ∈ Zsp : 0 ≤ i ≤ ` − 1}. The second part
is an `-dimensional vector ~ν = (ν0, . . . , ν`−1) ∈ Z`p. Bob
computes linear combination ~µ :=

∑`−1
i=0 νi~xi ∈ Zsp, and an

authentication tag σ~µ of ~µ using the linear homomorphism
of the homomorphic linear authenticator. Bob sends (~µ, σ~µ)
to Alice as response and Alice checks the validity of the
received message-tag pair. Dodis et al. [13] pointed out that,
for each j ∈ [0, s − 1], the j-th component of ~µ is just a
Hadamard codeword with parameter ~ν of j-th components
of selected blocks ~xi:

~µ[j] = 〈~ν, (~x0[j], . . . , ~x`−1[j])〉 =
`−1∑
i=0

νi~xi[j].



They [13] called this Hadamard coding as secondary encod-
ing. In contrast, in the MAC based POR scheme implied in
[23], the prover just returns the long message {~xi ∈ Zsp :
0 ≤ i ≤ ` − 1} and corresponding authentication informa-
tion, without secondary encoding.

In each verification, the challenge size is in O(λ2): the
first part C of challenge is of size O(` log n) and the second
part ~ν is of size O(`λ), where ` = O(λ) is the number of
blocks selected in each verification, and n = poly(λ) is the
number of blocks in the encoded file. The response size is in
O(sλ): the message ~µ ∈ Zsp and the tag σ~µ ∈ Zp, where
λ ≈ log p.

2.1.2 Improved SW scheme
Dodis, Vadhan and Wichs [13] reduces the size of chal-
lenge in SW scheme from O(λ2) to O(λ). They made two
modifications: Firstly, instead of choosing the subset C in a
challenge uniformly randomly, they [13] samples C using a
(δ, γ)-hitter given by Goldreich [19]. Consequently, the size
of the first part of challenge is reduced to O(λ). Secondly,
the Hadamard code is replaced with Reed-Solomon code.
That is, the vector ~ν = (ν0, . . . , ν`−1) is replaced by vector
(ν0, ν1, . . . , ν`−1) for some ν ∈ Zp, and the second part of a
challenge is changed from vector (ν0, . . . , ν`−1) to a single
group element ν.

However, the size of response in a verification is still
unchanged.

2.1.3 Overview of Our result
Based on works of [13, 26], in this paper, we apply Reed-
Solomon code again on the response (~µ, σ~µ) of SW scheme [13,
26] as tertiary encoding: the new challenge will contain a
group element r ∈ Zp in addition, and the new response will
be (〈~µ, ~r〉 , σ′), where ~r = (r0, . . . , rs−1) and the authen-
tication tag σ′ of the inner product 〈~µ, ~r〉 is computed from
(~µ, σ~µ) using the idea of [22] (We will review [22] later in
Section 4).

As a result, this paper further reduces the response size
in a verification of SW scheme from O(sλ) to O(λ), where
the size of all authentication tags is unchanged—still 1/s
of the size of encoded file, the same as the original SW
scheme [26].

The asymptotic complexities in communication and stor-
age of the resulting POR scheme will match the Provable
Data Possession (PDP) scheme proposed by Ateniese et
al. [1, 3], where it is well known that PDP is a weaker
security model than POR. Compared to the PDP scheme
given by Ateniese et al. [1, 3], on the dark side, our pro-
posed scheme has a longer public key (O(sλ) bits versus
O(λ) bits); on the bright side, our proposed scheme is much
more practical in computation in the setup. Essentially, Ate-
niese et al. [1, 3] requires one group multiplication per each
bit of the data file in the setup, while the proposed scheme
requires one group multiplication per each chunk of data bits

(160 bits per chunk if elliptic curve is used or 1024 bits per
chunk if modulo group is used).

The costs of our modifications are: (1) the computation of
the authentication tag σ′ of the inner product 〈~µ, ~r〉 requires
s group exponentiations in Zp; (2) the per-user public key1

consists of s group elements from Zp. We will measure the
computation time of our proposed scheme through experi-
ments; the size of a public key is about 100 kilobits (Kbit)
when s = 100 and λ = 1024 ≈ log p.

We remark that our proposed scheme can be alternatively
instantiated over an elliptic curve group (bilinear map is not
required) with small size (e.g. 2160).

2.2 Related work
Recently, there are extensive studies [1–3, 7–10, 13, 15,
20, 21, 26, 28, 29] on remote data integrity check. Juels
and Kaliski [21] presented a strong security model called
“Proofs of Retrievability” (POR) and a POR scheme with
bounded-use, and Ateniese et al. [1, 3] gave an efficient
scheme which is secure under a weaker “Provable Data
Possession” (PDP) model. Efficient methods using some
sorts of homomorphic authentication tag are proposed in
[2, 9, 26]. Dynamic-PDP [15] extends to dynamic setting,
public verifiability is exploited in Shacham and Waters [26]
and Wang et al. [29], and the privacy issue in public verifica-
tion is studied in Wang et al. [28]. Readers can refer to Yang
and Jia [30] for a survey of secure cloud storage.

The most efficient variant scheme E-PDP in Ateniese et
al. [1] suffers from the attack by Shacham and Waters [26].
In the main scheme of Ateniese et al. [1], the prover is
required to compute the product

∏
(i,ai)∈Chal T

ai
i for all tags

Ti selected by the challenge Chal. The authors proposed
an efficient variant scheme, named E-PDP, by setting all
coefficients ai in the challenge Chal as 1, so that only
multiplication is involved and expensive exponentiation is
avoided. Shacham and Waters [26] presented an attack on
E-PDP, such that the adversary can answer correctly a non-
negligible fraction of queries, but there exists no extractor
that can recover any data block.

Dodis et al. [13] reduces the communication cost of SW
scheme fromO(λ2) toO(λ) in the special case where s = 1
and the size of all authentication tags is equal to the size of
error erasure encoded file.

Kate et al. [22] proposed an efficient commitment scheme
for polynomial and Benabbas et al. [4] proposed a verifiable
delegation scheme for polynomial. Both schemes alone can
be extended to support POR easily but with limitations:
The POR scheme in Benabbas et al. [4] requires onlyO(λ)
bits response per verification due to their newly constructed
verifiable delegation scheme for polynomial. However, in
this scheme, the size of all authentication tags is also equal
to the size of error erasure encoded file. In a POR scheme
implied by Kate et al. [22], either every bit in the data

1 In contrast, the public key of Ateniese et al. [1] is onlyO(λ) bits long.



Notation Semantics

x
$←− S Uniformly randomly choose x from the finite set S.

λ Bit-length of group size, i.e. group size is 2λ.
s The number of group elements in a data block. Typi-

cally, an authentication tag consists of one group
element. So s is also the ratio of the size of a data
block to the size of an authentication tag.

` The number of data blocks accessed during a verifi-
cation.

n The number of data blocks in an encoded data file.
Thus the size of an encoded data file is nsλ bits.

~m A vector of form (m0,m1,m2, . . . ,md−1), where d
is the dimension of vector ~m.

f ~m(x) A polynomialm0+m1x+m2x
2+ . . .+md−1x

d−1

of degree d− 1 with vector ~m as coefficient, where d
is the dimension of vector ~m.

PRF Pseudorandom function [18].
POR Proofs of Retrievability [21].
PDP Provable Data Possession [1].
EPOR Efficient Proofs of Retrievability; it is the name of the

scheme proposed in this paper.

Table 1. Summary of Key Notations in this paper.

file has to be accessed during each verification, or there is
linear storage overhead w.r.t. the number of file blocks on
data owner side. We will elaborate more on the polynomial
commitment scheme [22] in Section 4.

3. Formulation
The key notations used in this paper are summarized in
Table 1.

3.1 System Model
We restate the POR [21, 26] model as below, with slight
modifications on notations. We adopt the 1-round prove-
verify version in Juels and Kaliski [21] for simplicity.

DEFINITION 1 (POR [21, 26]). A Proofs Of Retrievabil-
ity (POR ) scheme consists of four algorithms (KeyGen,
DEncode, Prove, Verify):

• KeyGen(1λ) → (pk, sk): Given security parameter
λ, the randomized key generating algorithm outputs a
public-private key pair (pk, sk).
• DEncode(sk,M) → (idM, M̂): Given the private key
sk and a data file M, the encoding algorithm DEncode
produces a unique identifier idM and the encoded file
M̂.
• Prove(pk, idM, M̂, C) → ψ: Given the public key pk,

an identifier idM, an encoded file M̂, and a challenge
query C, the prover algorithm Prove produces a proof ψ.
• Verify(sk, idM, C, ψ)→ accept or reject: Given the

private key sk, an identifier idM, a challenge query
C, and a proof ψ, the deterministic verifying algorithm
Verify will output either accept or reject.

Completeness. APOR scheme (KeyGen, DEncode, Prove,
Verify) is complete, if an honest prover (who ensures the
integrity of his storage and executes the procedure Prove
to compute a proof) will always be accepted by the veri-
fier. More precisely, for any key pair (pk, sk) generated by
KeyGen, and any data file M, any challenge query C, if
ψ ← Prove(pk, idM, M̂, C), then Verify(sk, idM, C, ψ)
outputs accept with probability 1, where (idM, M̂) ←
DEncode(sk, M).

3.2 Security Model
3.2.1 Trust Model and Scope of Topic
In a POR system, only the data owner is trusted and the
cloud storage server is treated as untrusted and potentially
malicious.

The following topics are out of the scope of this paper,
since most existing techniques in these topics can be applied
with our work: (1) Support of dynamic operations (e.g. in-
sertion or deletion of a data block after setup); (2) Denial of
Service Attack; (3) Frame attack where dishonest data owner
claims that an honest cloud storage server was cheating.

3.2.2 POR Security Game
We rewrite the POR security game in [21, 26] in a standard
way. The security game between a probabilistic polynomial
time (PPT) adversary A and a PPT challenger C w.r.t. a
POR scheme E = (KeyGen, DEncode, Prove, Verify) is
as below.
Setup: The challenger C runs the key generating algorithm
KeyGen to obtain public-private key pair (pk, sk), and gives
pk to the adversary A.
Learning: The adversary A adaptively make queries where
each query is one of the following:

• Store query (M): Given a data file M chosen by A, the
challenger C responds by running data encoding algo-
rithm (id, M̂) ← DEncode(sk,M) and sending the en-
coded data file M̂ together with its identifier id to A.
• Verification query (id): Given a file identifier id chosen

by A, if id is the first part of output of some previous
store query that A has made, then the challenger C ini-
tiates a POR verification with A w.r.t. the data file M
associated to the identifier id in this way:

C chooses a random challenge Chal;

A produces a proof ψ w.r.t. the challenge Chal;
Note: adversary A may generate the proof in an ar-
bitrary method rather than applying the algorithm
Prove.

C verifies the proof ψ by running algorithm Verify(sk,
id, Chal, ψ). Denote the output as b.

At the end C sends the decision bit b ∈ {accept, reject} to
A as feedback. Otherwise, if id is not in the output of any
previous store query that A has made, C does nothing.



Commit: Adversary A chooses a file identifier id∗ among
all file identifiers she obtains from C by making store queries
in Learning phase, and commit id∗ to C. Let M∗ denote the
data file associated to identifier id∗.
Retrieve: The challenger C initiates ζ number of POR
verifications with A w.r.t. the data file M∗, where C plays
the role of verifier and A plays the role of prover, as in
the Learning phase. From messages collected in these ζ
interactions with A, C extracts a data file M′ using some
PPT extractor algorithm. The adversaryA wins this game, if
and only if M′ 6= M∗.

The adversary A is ε-admissible [26], if the probability that
A convinces C to accept in a verification in the Retrieve
phase, is at least ε. We denote the above game as GameEA(ζ).

DEFINITION 2 ([21, 26]). A POR scheme E is sound, if
for any PPT ε-admissible adversary A with non-negligible
ε, there exists a polynomial ζ, such that the advantage
AdvEA(ζ) defined as below is negligible.

AdvEA(ζ)
def
= Pr

[
A wins GameEA(ζ)

]
(1)

3.3 Assumption
DEFINITION 3 (s-SDH Assumption [5, 6]). Let p and q =
2p + 1 be prime, and QR be the subgroup with order p of
quadratic residues in Z∗q . Let g be a random generator of

QR. Let α $←− Zp be chosen at random. Given as input
a tuple (p, q, T = (g, gα, gα

2

, . . . , gα
s−1

)), for any PPT
adversary A, the probability

Pr
[
w = g1/(α+c) where (c, w) = A(p, q, T )

]
is negligible in log p.

We remark that when our scheme is alternatively instan-
tiated over an elliptic curve group, the elliptic curve version
of Strong Diffie-Hellman Assumption is required.

4. Background on Polynomial Commitment
Scheme

Kate, Zaverucha and Goldberg [22] proposed a constant2

size commitment scheme for polynomial. This scheme has
a property which is desirable for our construction of POR
scheme, that is, their commitment scheme allows the com-
mitter of a polynomial f(x) to generate a constant size proof
for the correctness of the polynomial evaluation f(r) at any
particular point x = r. Their scheme exploits a simple and
elegant algebraic property of polynomials: For any polyno-
mial f(x) ∈ Zp[x] and for any scalar input r ∈ Zp, the
polynomial x− r divides the polynomial f(x)− f(r).

2 Here “constant size” meansO(λ) bits where λ is the security parameter, in
other words, constant number of group elements where each group element
is λ bits long.

Let us denote with f ~m(x) ∈ Zp[x] the polynomial with
coefficient vector ~m = (m0, . . . ,ms−1) ∈ (Zp)s, that is,
f ~m(x) ≡

∑s−1
j=0mjx

j . Let G and GT be two multiplicative
group of prime order p and e : G × G → GT be a bilinear
map.

The commitment scheme [22] can be summarized as be-
low: In the setup, a trust party chooses a public key pk :=

(g, gα, . . ., gα
s−1

) ∈ Gs, where g is a generator of group G
and α ∈ Zp is chosen at random and kept secret. In order
to commit a polynomial f ~m(x) :=

∑s−1
j=0mjx

j with coef-
ficient vector ~m = (m0, . . . ,ms−1) ∈ (Zp)s, a committer
can compute a commitment C using the public key pk, that
is, C :=

∏s−1
j=0

(
gα

j
)mj

= gf ~m(α) ∈ G, and then publish
C. Later, for any scalar r ∈ Zp, the committer can compute
y := f ~m(r) ∈ Zp and generate a short proof ψ (or witness
as in [22]) to convince a verifier that y is indeed the cor-
rect evaluation of f ~m(r), without revealing the polynomial
f ~m(x). The proof (or witness) ψ is generated in the follow-
ing steps:

1. Divide the polynomial f ~m(x) − f ~m(r) with (x − r)
using polynomial long division, and denote the coeffi-
cient vector of the resulting quotient polynomial as ~w =

(w0, w1, . . . , ws−2), that is, f~w(x) ≡ f ~m(x)−f ~m(r)
x−r .

2. Then compute ψ := gf~w(α) using the public key pk in the
same way as computing gf ~m(α), i.e.ψ :=

∏s−2
j=0

(
gα

j
)wj

= gf~w(α) ∈ G.

After receiving (r, y, ψ) from the committer, a verifier can
verify whether y ?

= f ~m(r) with the proof ψ and public
key pk = (g, gα, . . . , gα

s−1

) and the public commitment C
of the unknown polynomial f ~m(x), using a bilinear map 3

e : G×G→ GT :

e(g, C)/e(g, g)y ?
= e(ψ, gα/gr). (2)

Note that the left hand side of above equation (2) is
e(g, C)/e(g, g)y = e(g, g)f ~m(α)−y, and the right hand side
is e(ψ, gα/gr) = e(gf~w(α), gα−r) = e(g, g)(α−r)f~w(α).

5. EPOR: Efficient Proofs of Retrievability
In this section, we construct an efficient POR scheme with
private verifiability and call it EPOR. Our construction in-
tegrates the idea of Kate et al. [22] and Shacham and Wa-
ters’ POR scheme [26] (the private verifiability version) in
a seamless way. In the following description, EPOR is con-
structed over a modulo group. In addition, EPOR can also
be alternatively instantiated over an elliptic curve group (bi-
linear map is not required since our scheme does not support
public verifiability).

Recall that: (1) the notation f ~m(x) denotes the polyno-
mial with coefficient vector ~m = (m0, . . . , ms−1), that is,

3 We remark that in the scheme proposed in this paper, bilinear map is not
required, since our proposed scheme does not support public verifiability.



f ~m(x) ≡
∑s−1
j=0mjx

j ; (2) our scheme described below ex-
ploits an algebraic property of polynomials: for any polyno-
mial f(x) and for any scalar input r, the polynomial x − r
divides the polynomial f(x)− f(r).

5.1 Construction
KeyGen(1λ)→ (pk, sk)

Choose at random a (λ + 1) bits safe prime q such that
p = (q − 1)/2 is also prime. Let QR be the cyclic sub-
group of quadratic residue modulo q in Z∗q . Choose at ran-
dom a generator g of group QR. Choose at random two
elements τ, α from Z∗p: τ, α $←− Z∗p. Choose at random a
PRF key, denoted as seed, from the key space of a pseu-
dorandom function family {PRFseed : {0, 1}2λ → Zp}.
The public key is pk := (p, {gαj mod q}s−1j=0) and the
private key is sk := (p, seed, α, τ).
Note: (1) Both the size of the group QR and the multi-
plicative order of g modulo q are equal to p. (2) Zero is
not in Z∗q or QR.

DEncode(sk,M)→ (id, M̂)

Let ρ ∈ (0, 1) be a system parameter. Apply a rate-ρ
error erasure code (e.g. Reed-Solomon code [25]) on data
file M to generate file blocks ( ~m0, . . . , ~mn−1), such that
each block ~mi = (mi,0, . . . ,mi,s−1) ∈ Zsp is a vector of
group elements mi,j ∈ Zp, and any ρn number of blocks
~mi’s can recover the original file M using the error
erasure decoding algorithm. Choose a unique identifier
id from domain {0, 1}λ. Parse the private key ssk as
(p, seed, α, τ). For each ~mi, 0 ≤ i ≤ n − 1, compute
an authentication tag ti as below

ti := PRFseed(id‖i) + τf ~mi
(α)

= PRFseed(id‖i) + τ

s−1∑
j=0

mi,jα
j mod p, (3)

where id‖i denotes an unambiguous string combination
of the λ bits string id and the λ bits string representation
of index i ∈ [0, n − 1]. The final encoded file M̂ is
{(i, ~mi, ti) : 0 ≤ i ≤ n− 1}.

Prove(pk, id, M̂, Chall)→ (y, ψ, σ)

Parse Chall as ({(i, νi) : i ∈ C}, r), where C ⊂
[0, n − 1], νi ∈ Z∗p for each i ∈ C, and r ∈ Z∗p.
Find the encoded file {(i, ~mi, ti) : i ∈ [0, n − 1]}
associated to the identifier id and find all data blocks
~mi = (mi,0, . . . ,mi,s−1) and tags ti with index i ∈ C.
Compute

µj :=
∑
i∈C

νimi,j mod p, for 0 ≤ j ≤ s− 1, (4)

σ :=
∑
i∈C

νiti mod p. (5)

Let vector ~µ := (µ0, . . . , µs−1),i.e., ~µ =
∑
i∈C νi ~mi.

Evaluate polynomial f~µ(x) at point x = r to obtain y :=
f~µ(r) mod p. Divide the polynomial f~µ(x) − f~µ(r)
with (x − r) using polynomial long division, and de-
note the coefficients vector of the resulting quotient
polynomial as ~w = (w0, . . . , ws−2), that is, f~w(x) ≡
f~µ(x)−f~µ(r)

x−r . Compute ψ with the public key pk =

(p, {gαj mod q}s−1j=0) as below

ψ :=

s−2∏
j=0

(
gα

j
)wj

= gf~w(α) mod q ∈ QR. (6)

Output (y, ψ, σ).

Verify(sk, id, Chall, (y, ψ, σ))→ accept or reject

Parse Chall as ({(i, νi) : i ∈ C}, r), where C ⊂
[0, n − 1], νi ∈ Z∗p for each i ∈ C, and r ∈ Z∗p.
Verify the following equality Eq (7) with the private key
sk = (p, seed, α, τ). If Eq (7) holds and ψ ∈ QR, then
output accept; otherwise, output reject.

ψα−r
?
= gτ

−1(σ−
∑
i∈C νiPRFseed(id‖i)) − y mod q

(7)

Remark 1.
1. The challenge Chall consists of three parts: a subset
C ⊂ [0, n − 1] of size `, ` weights {νi ∈ Zp : i ∈ C},
and a group element r ∈ Zp. The challenge can be repre-
sented compactly by two short PRF seeds and r like Ate-
niese et al. [1], and consequently the resulting scheme
can only be proved secure in random oracle model [13,
26]. Alternatively, as mentioned in our overview in Sec-
tion 2.1.3, we will apply Dodis et al. [13]’s result to rep-
resent a challenge Chall compactly as below, so that the
proposed scheme can be proved without random oracle:

(a) Choose the subset C using Goldreich [19]’s (δ, γ)-
hitter4, where the subset C can be represented com-
pactly with only log n+3 log(1/γ) bits. Assume n <
240 (i.e. file size less than 1024 Terabits) and let γ =
2−80. Then C can be represented with 280 bits.

(b) The sequence (. . . , νi, . . .) of ` weights νi, i ∈ C,
ordered by increasing i, forms a simple geometric
sequence (ν0, ν1, . . . , ν`−1) for some ν ∈ Z∗p.

2. Compared to Shacham and Waters [26]’ scheme, the al-
gorithm Prove in EPOR is able to aggregate the s number
of weighted sums µ0, µ1, . . . , µs−1 into two short num-
bers y and φ using the idea in [22], where y = f~µ(r) =∑s−1
j=0 µjr

j ∈ Zp (r is a random nonce chosen by the data

owner) and ψ = g
f~µ(α)−f~µ(r)

α−r ∈ Z∗q . In this way, EPOR

4 Goldreich [19]’s (δ, γ)-hitter guarantees that, for any subsetW ⊂ [0, n−
1] with size |W | ≥ (1 − δ)n, Pr[C ∩W 6= ∅] ≥ 1 − γ. Readers may
refer to [13] for more details.



requires only O(λ) communication bits per verification.
In comparison, the Shacham and Waters [26] scheme re-
quires O(sλ) communication bits per verification, since
(µ0, µ1, . . . , µs−1) are sent back directly as the response.

5.2 Security
THEOREM 1. The proposed scheme EPOR is a complete
and sound POR scheme as defined in Section 3, if the SDH
Assumption in Definition 3 holds and PRF is cryptographic
secure pseudorandom function.

The proof is given in the Appendix.

6. Performance Analysis
In this section, we analyze the performance of our proposed
scheme EPOR in communication, storage, computation and
false acceptance rate. We also compare our scheme with
existing works by Shacham and Waters [26] and Ateniese et
al. [1], and measure the computation time of the proposed
scheme based on our prototype implementation. We remark
that, although our implementation adopts a modulo group of
size 21024, our scheme can alternatively use an elliptic curve
group of size 2160.

6.1 Communication
During a verification, the communication cost is the size of
a challenge plus the size of its corresponding response (or
proof). As discussed in Remark 1 (in Section 5.1), in our
scheme EPOR, a challenge consists of a subset C, and two
group elements ν, r ∈ Zp. The subset C can be compactly
represented with 280 bits due to results of [19]. The group
element r is used to retrieve a polynomial function value
f(r) for some polynomial f(x) determined by a linear com-
bination of the data blocks specified in the set C. In the se-
curity analysis, the goal of r is to retrieve multiple function
values f(ri)’s for different inputs ri, and then recover the
polynomial f(x) by solving a linear equation system. For
this reason, we can simply choose r from a smaller range
[1, 280] without any sacrificing in the security. Similarly, we
may choose ν ∈ [1, 280]. As a result, the challenge size is
280 + 80× 2 = 440 bits.

In our scheme EPOR, a response, i.e. the proof, consists
of three group elements y, σ, ψ, which are derived from the
challenge, the data blocks and authentication tags. So the
size of a response is 3λ bits. Therefore, the communication
cost per verification is 3λ+ 440 bits.

6.2 Storage
During verification, the data owner only keeps the private
key in her local storage. The size of private key is 3λ + 80
bits.

The storage overhead (due to authentication tags) on the
cloud storage server side is 1/s of the data file size, where
the system parameter s is the block size and equals to the ra-
tio of the size of a data block to the size of an authentication

tag. The public key is also kept in the cloud storage and its
size is (s + 1)λ bits. Note that in our scheme, there is only
one public key per user, without regarding to the number of
files the user stores in the cloud storage server.

6.3 Computation
The proposed scheme EPOR is very efficient in setup. Key
generation requires s number of group exponentiations. Sup-
pose an nsλ bits encoded data file consists of n data blocks,
each block has s group elements and each group element
has λ bits. The data preprocess (i.e. the DEncode algorithm)
requires only ns number of group multiplications and addi-
tions, together with n PRF evaluations. Note that the PRF is
simulated with an AES [11] stream cipher, which runs in the
counter model [31].

During a verification, the computation complexity on the
cloud storage server side is dominated by the computation
of ψ in Equation (6) in the algorithm Prove on page 6. This
dominant step takes (s − 1) number of group exponentia-
tions, and is the bottleneck of efficiency of our scheme when
the block size s becomes large.

6.4 False Positive Rate
Recall that, error erasure code is applied at the beginning
of the algorithm DEncode. Suppose a rate-ρ Reed-Solomon
code is adopted, that is, any ρ fraction of data blocks in the
encoded file can recover the original file, and the ratio of the
size of encoded file to the original is 1/ρ. If an encoded file is
corrupted such that it is unable to recover the original using
the erasure decoding, then more than 1 − ρ fraction of data
blocks are corrupted. In this case, a randomly chosen data
block is not corrupted with probability smaller than ρ, and
the probability5 that ` independently randomly chosen data
blocks will not hit any corrupted data block is smaller than
ρ`, independent on the file size. Our scheme guarantees that
if a corrupted data block is hit in a verification, then the data
owner will accept with only negligible probability. So the
false acceptance rate is smaller than ρ`, if ` independently
random blocks are accessed in a verification.

We list out the false acceptance rate w.r.t. various chal-
lenge size and various erasure code rate in Table 2. The
choices of value of challenge size ` is 100, 300, 500, or
700; the choices of erasure encode rate ρ is 0.99 or 0.98.
Note that the the storage overhead due to erasure encoding
is 1/0.99 − 1 ≈ 0.0101 of original file size, if ρ = 0.99;
1/0.98− 1 ≈ 0.0204, if ρ = 0.98.

6.5 Recommended System Parameters
We recommend the following system parameter for our pro-
posed scheme EPOR: The error erasure rate is 0.98, block
size s is around 160, the challenge size is around 500. In
this setting, the false acceptance rate is 4.1024 × 10−5, the

5 Note that this argument is based on the case of choosing indices of data
blocks at random with replacement. The other case where choosing indices
at random without replacement will have a larger error detection rate.



Challenge
Size

False Accept Rate ρ` False Accept Rate ρ`

with ρ = 0.99 with ρ = 0.98

` = 100 0.366032341 0.132619556
` = 300 0.049040894 0.002332506
` = 500 0.006570483 0.000041024
` = 700 0.000880311 0.000000722

Table 2. The False Accept Rate Versus Challenge Size and
Erasure code rate. Recall that the challenge size ` represents
the number of data blocks accessed in a verification.

number of communication bits required in a verification is
920 for elliptic curve group or 3512 for modulo group, the
storage overhead is about 2% due to erasure encoding and
1/160 = 0.625% due to authentication tags. Our experiment
will confirm that the query latency is within 1 second.

6.6 Comparison
We give a comparison on the performances of our scheme
with SW [26] and Ateniese et al. [1] in Table 3 with an
example. A more detailed and generic comparison is given
in Table 4 on page 9. Note that in our proposed scheme
EPOR, the practical choice of value s is bounded by the
computation on the server side, which is similar to the case
of Ateniese [1]. In contrast, in SW [26], the largest practical
value of s is limited by the communication requirement.

We also compare the proposed scheme EPOR with
Shacham and Waters’ scheme [26] in communication and
storage overhead. For a 1GB data file, we plot the number of
communication bits (i.e. the size of a challenge and a proof)
against the storage overhead for both schemes in Figure 1.

6.7 Experiment to measure computation time
The goal of this experiment is to measure the actual running
time of the four algorithms KeyGen,DEnc,Prove,Verify in
the proposed EPOR scheme, with disk IO time included
and networking communication time excluded. Note that the
reported query latency includes of running time of Prove and
Verify and disk IO time.

6.7.1 Experiment Environment and Setting
We have implemented a prototype of our EPOR scheme in C
programming language. The large integer arithmetic is com-
puted using GNU MP [17] library version 5.0.1. The pseu-
dorandom function PRF are simulated with AES symmet-
ric cipher provided in OpenSSL [24] library version 1.0.0d.
The disk IO is handled by C library function mmap. We ob-
serve a low memory consumption for all experiments con-
ducted. Our implementation is not optimized (e.g. it is a
single process/thread program) and further performance im-
provements of our scheme can be expected.

The test machine is a laptop computer, which is equipped
with a 2.5GHz Intel Core 2 Duo CPU (model T9300), a
3GB PC2700-800MHZ RAM and a 7200RPM hard disk.
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Figure 1. Comparison on communication (in bits) and storage
overhead (in megabytes) w.r.t. a 1GB data file. SW denotes the
POR scheme with private verification by Shacham and Wa-
ters [26]; EPOR (E.C.) denotes our proposed scheme instantiated
over elliptic curve group; EPOR (Z∗q ) denotes our proposed scheme
instantiated over group Z∗q . Note: In this comparison, the size of
public key is counted as a part of storage overhead for EPOR.

Semantics Choices of Values
λ Bit-length of group size 1024
s Block size, i.e. the number of group

elements in a data block
40, 80, 160, 320,
640, or 960

` Challenge size, i.e. the number of
data blocks accessed in a verification

100, 300, 500 or
700.

Table 5. The choices of values of various system parameters
in our experiment

The test machine runs 32 bits version of Gentoo Linux OS
with kernel 2.6.36. The file system is EXT4 with 4KB page
size.

Our test data files are of size 16MB, 32MB, 64MB,
128MB, 256MB and 512MB, respectively (These are the
file sizes after error erasure encoding). The choices of val-
ues of various system parameters, i.e. group size 2λ, block
size s and challenge size `, are listed in Table 5.

Our experiments are conducted in this way:

• Key generation: For each choice of block size s, we
generate a key pair with size s using the key generating
program KeyGen. The generated public key consists of s
group elements.
• Data preprocess: For each test file, for each choice of

value of block size s, we run the data encoding program
DEncode to generate a set of authentication tags.
• Verification: For each test file, for each choice of value

of block size s, for each choice of value of challenge



Scheme Group element
size (bits)

Communication bits Computation (Data Preprocess) Computation (Prove)

[3][1] λ = 1024 2λ+ 520 = 2568 223 exp over Z∗N (100 + `) exp over Z∗N
[26] λ = 80 (s+ 1)λ+ 360 = 8440 227 mul over Zp 100` mul over Zp

EPOR (E.C.) λ = 160 3λ+ 440 = 920 226 mul over Zp 100 exp over Elliptic Curve
EPOR (Z∗q ) λ = 1024 3λ+ 440 = 3512 223 mul over Zp 100 exp over Z∗q

Table 3. Comparison with an example among the PDP scheme by Ateniese et al. [1], the POR scheme by Shacham and
Waters [26], and the POR scheme named EPOR proposed in this paper. After erasure encoding, the file size is 1GB, block
size is s = 100, and storage overhead due to authentication tags is about 10MB for all schemes. For all schemes listed below,
we assume that, during a verification, the (part of) challenge {(i, νi) : i ∈ C} are represented compactly with 280 bits due to
results of [13, 19]. System parameter ` represents the size of set C. All computation times are represented by the corresponding
dominant factor. “exp” and “mul” denote the group exponentiation and group multiplication respectively in the corresponding
group. Note: (1) In Ateniese et al. PDP scheme, exponentiation with a large integer exponent of size sλ is required. We
represent such exponentiation as a number of s normal group exponentiation exp, where the exponent is λ bits long. (2) One
1024 bits modular exponentiation or one 160 bits elliptic curve exponentiation takes roughly 5 millisecond in a standard PC.

Scheme Group el-
ement size
(bits)

Communica-
tion (bits)

Storage
Over-
head

Computation (Prover) Computation (Verifier) Computation (Data Prepro-
cess)

[12] λ = 1024 2λ Zero |F|/λ exp 1 exp 1 exp

[22] λ = 160 3λ Zero |F|/λ exp + 2|F|/λ (mul +
add)

2 pairing |F|/λ (mul + add) + 1 exp

[4] λ = 160 2λ+ 440 |F| |F|/λ (exp + mul + add) 2 exp |F|/λ (exp + mul + add)
[3][1] λ = 1024 2λ+ 520 |F|/s (` + s) exp + 2` mult. + `

add + 1 hash + 1 samp

` (exp + mult.) + 1
hash + 1 samp

|F|/λ exp + n hash

[26] λ = 80 (s + 1)λ +
360

|F|/s s` (add + mult) + 1 samp (`+ s) (add + mult) +
` PRF + 1 samp

|F|/λ (mul + add) +
|F|/(λs) PRF

EPOR
(E.C.)

λ = 160 3λ+ 440 |F|/s (s− 1) exp + (s`+ s+ `)
(add + mul) + 1 samp

2 exp + ` (add + mult)
+ ` PRF + 1 samp

|F|/λ (mul + add) +
|F|/(λs) PRF

EPOR
(Z∗q )

λ = 1024 3λ+ 440 |F|/s (s− 1) exp + (s`+ s+ `)
(add + mul) + 1 samp

2 exp + ` (add + mult)
+ ` PRF + 1 samp

|F|/λ (mul + add) +
|F|/(λs) PRF

Table 4. Performance Comparison. All schemes support private verification only. In each scheme (except the first two in the
table), a challenge set C ⊂ [0, n − 1] contains ` block indices and can be compactly represented with 280 bits due to results
of [13, 19]. In the table, “exp”, “mul” and “add” represent exponentiation, multiplication and addition in the corresponding
groups/fields; “samp” represents the sample method given by Goldreich [19]; notation |F| denotes the file size in bits. Recall
that the notations λ, s, `, n are as described in Table 1 in Section 3. Note: In Ateniese et al. PDP scheme, exponentiation with a
large integer exponent of size sλ is required. We represent such exponentiation as a number of s normal group exponentiation
exp, where the exponent is λ bits long. Similar for the RSA based scheme.

size `, we run the Prove and Verify programs to simulate
the interaction between the data owner and cloud storage
server.

Every single experiment case is repeated for 10 times and
the reported timing data are the averages. We remark that
experiment trials are run in sequence without parallelism.

6.7.2 Experiment Results
The experiment results are showed in Figure 2. All experi-
ment results are averaged over 10 trials. Since all experiment
results vary little across different trials, we do not report the
variances or confidence intervals.

Our experiment result in Figure 2(a) indicates that the
key generating time is proportional to the key size, i.e. the
number of group elements in a key. The experiment result
in Figure 2(b) indicates that the data preprocess time (par-
ticularly, DEncode) is proportional to the data file size and
almost independent on the block size s. The experiment also
shows that the query latency is proportional to the block size
s, almost independent on the file size, and grows very slowly
with the challenge size `, suggesting that the computation of
exponentiations becomes the bottleneck when s is so large.
All of these results agree with our analysis.
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(d) Query latency for a 512MB data file.

Figure 2. The subfigure (c) and (d) represent the results of the same experiment w.r.t. different data files, where (c) for a 128MB data file
and (d) for a 512MB data file. The key size is the number of group elements in a key; the block size is the number of group elements in one
data block; the challenge size is the number of data blocks accessed during one verification. All time measurements include disk IO time, but
do not include network communication time.

7. Conclusion
We proposed an efficient and secure POR scheme which
supports private verifiability. The proposed scheme requires
only linear communication bits w.r.t. the security parameter
(particularly 920 bits when elliptic curve group is used) per
verification and 1/s storage overhead, where s can be as
large as hundreds. The small number of communication bits
in a verification makes it possible to piggyback the challenge
and/or response of our scheme into other communication
packets between the data owner and the cloud storage server
if any.

How to apply the idea of Kate, Zaverucha and Gold-
berg [22] to reduce the response size of the other POR
scheme with public verifiability in Shacham and Waters [26],
remains an open problem.

References
[1] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner,

Z. Peterson, and D. Song. Provable data possession at un-
trusted stores. In CCS ’07: ACM conference on Computer
and communications security, pages 598–609, 2007.

[2] G. Ateniese, S. Kamara, and J. Katz. Proofs of Storage from
Homomorphic Identification Protocols. In ASIACRYPT ’09:
International Conference on the Theory and Application of
Cryptology and Information Security: Advances in Cryptol-
ogy, pages 319–333, 2009.

[3] G. Ateniese, R. Burns, R. Curtmola, J. Herring, O. Khan,
L. Kissner, Z. Peterson, and D. Song. Remote data checking
using provable data possession. ACM Transactions on Infor-
mation and System Security, 14:12:1–12:34, 2011.

[4] S. Benabbas, R. Gennaro, and Y. Vahlis. Verifiable Delegation
of Computation over Large Datasets. In CRYPTO, page 110,
2011.

[5] D. Boneh and X. Boyen. Short Signatures Without Random
Oracles. In Advances in Cryptology—EUROCRYPT 2004,
pages 56–73, 2004.

[6] D. Boneh and X. Boyen. Short signatures without random
oracles and the sdh assumption in bilinear groups. J. Cryptol.,
21:149–177, 2008. ISSN 0933-2790.

[7] K. Bowers, A. Juels, and A. Oprea. Proofs of retrievability:
theory and implementation. In CCSW ’09: ACM workshop on
Cloud computing security, pages 43–54, 2009.



[8] K. D. Bowers, A. Juels, and A. Oprea. HAIL: a high-
availability and integrity layer for cloud storage. In CCS ’09:
ACM conference on Computer and communications security,
pages 187–198, 2009.

[9] E.-C. Chang and J. Xu. Remote Integrity Check with Dishon-
est Storage Server. In ESORICS ’08: European Symposium
on Research in Computer Security: Computer Security, pages
223–237, 2008.

[10] R. Curtmola, O. Khan, R. Burns, and G. Ateniese. MR-PDP:
Multiple-Replica Provable Data Possession. In ICDCS ’08:
International Conference on Distributed Computing Systems,
pages 411–420, 2008.

[11] J. Daemen and V. Rijmen. The Design of Rijndael: AES - The
Advanced Encryption Standard. 2002.

[12] Y. Deswarte, J.-J. Quisquater, and A. Saı̈dane. Remote In-
tegrity Checking: How to Trust Files Stored on Untrusted
Servers . In Proceeding of the Conference on Integrity and
Internal Control in Information Systems, pages 1–11, 2003.

[13] Y. Dodis, S. Vadhan, and D. Wichs. Proofs of Retrievability
via Hardness Amplification. In Proceedings of the 6th The-
ory of Cryptography Conference on Theory of Cryptography,
TCC ’09, pages 109–127, 2009.

[14] Dropbox. Dropbox Forums on Data Loss Topic. http:

//forums.dropbox.com/tags.php?tag=data-loss.
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A. Security Proof
Here we provide the proof of Theorem 1.

A.1 The underlying authenticator is unforgeable
LEMMA 2. Suppose the pseudorandom function PRF is secure and
Strong Diffie-Hellman Assumption holds. In the proposed scheme
EPOR, the prover’s response (y, ψ, σ) is unforgeable.

The pseudorandom function can be replaced with a true random
generator function, with negligible difference, due the the standard
hybrid argument [18]. In the below proof, we just treat the output
of PRF as true randomness.

Proof : Suppose a PPT adversaryA can forge a response (y′, ψ′, σ′)
such that Verify(sk, id, Chall, (y′, ψ′, σ′)) = accept. Since both
the forgery response (y′, ψ′, σ′, ) and the corresponding gen-
uine output (y, ψ, σ) which is generated by an honest prover
are accepted by the verifier algorithm Verify w.r.t. the challenge
Chall = ({(i, νi) : i ∈ C}, r), the two tuples satisfy the Equa-
tion (7) (on page 6):

ψα−r = gτ
−1(σ−

∑
i∈C νiPRFseed(id‖i)) − y mod q (8)

ψ′
α−r

= gτ
−1(σ′−

∑
i∈C νiPRFseed(id‖i)) − y′ mod q (9)

Dividing Equation (8) with Equation (9), we obtain(
ψ

ψ′

)α−r
= gτ

−1(σ−σ′) + y′−y (10)

Now we do a case analysis on whether σ′ is equal to σ.

Case 1: σ′ 6= σ mod p. If a computationally unbounded
adversary can find a valid forgery response (y′, ψ′, σ′) 6= (y, ψ, σ)
and σ′ 6= σ with non-negligible probability, then it can find the
value of τ from Eq (10) with non-negligible probability.

Recall that in this proof, the pseudorandom function PRF is
replaced by a true randomness generator. Thus, the secret value τ is
hidden perfectly in the authentication tags ti = PRFseed(id‖i) +



τf ~mi
(α) mod p. Any malicious adversary (playing the role of

Bob) cannot find the value of τ ∈ Z∗p after interacting with Alice
by running the scheme EPOR with probability larger than 1

p−1
,

even if it is computationally unbounded. Therefore, there is no
PPT adversary that can find a valid forgery response (y′, ψ′, σ′) 6=
(y, ψ, σ) and σ′ 6= σ with non-negligible probability.

Case 2: σ′ = σ mod p. In case 2, we rewrite the Eq (10) as
below (

ψ

ψ′

)α−r
= g y

′−y mod q. (11)

Now, we do a case analysis on whether y′ is equal to y.

Case 2.1: y′ = y mod p. The equality that y′ = y, implies
ψ′ 6= ψ, since (y′, ψ′, σ′) 6= (y, ψ, σ) and σ′ = σ. Note that the
verifier algorithm Verify accepts the forgery output (genuine output
respectively) only if ψ′ (ψ respectively) is a quadratic residue
modulo q. In the subgroup QR of quadratic residue modulo q,
all elements, except unity element 1, have multiplicative order p
modulo q. We know that ψ′/ψ 6= 1, so the element ψ′/ψ ∈
QRq has multiplicative order p. Thus, Equation (11) and y′ = y
mod p together imply α = r mod p. Thus adversary A can find
(c, w = g1/(r+c) = g1/(α+c)) which is a valid solution to the
s-SDH problem6.

Case 2.2: y′ 6= y mod p. Equation (10) and y′ 6= y mod p
together imply that α 6= r mod p. In this case, adversary A

computes (c = −r, w =
(
ψ
ψ′

)1/(y′−y)
mod q) as solution to

the SDH problem. Next, we will show that this solution to SDH
problem is valid.

Substituting ψ
ψ′ with

(
wy
′−y mod q

)
into the Equation (10),

we have
w(y′−y)(α−r) = gy

′−y mod q (12)

Since y′ − y 6= 0 mod p and α − r 6= 0 mod p, their inverses
1/(y′ − y) mod p and 1/(α − r) mod p exist. Therefore, the
following equality can be derived from Equation (12):

w =
(
gy
′−y
) 1

(y′−y)(α−r)
= g

1
α−r mod q (13)

The above Equation (13) shows that the adversary A’s output
(c = −r, w) is a valid solution to the SDH problem.

Therefore, Lemma 2 is proved. �

We remark that the above proof in Case 2.2 borrows ideas from
the proof in Kate et al. [22].

A.2 User file can be retrieved through erasure
decoding

The proof of retrievability through erasure decoding is sketched as
below. Full proof will be provided in the full version of this paper.

As discussed in the overview in Section 2.1.3, the proposed
scheme EPOR applies three encoding schemes subsequently upon
an input data file M, using the jargon of [13]:

1. Primary encoding: In the setup, the data owner Alice applies an
error erasure encoding scheme on her data file M, and obtain a
encoded file which consists of n data blocks { ~mi ∈ Zsp : i ∈
[0, n− 1]}.

6 From the input of SDH problem, one can simulate scheme EPOR. Details
are saved due to space constraint.

2. Secondary encoding: In a verification, Alice (i.e. verifier)
chooses a challenge (C, ν, r), where C ⊂ [0, n − 1] is a sub-
set of size ` and ν, r ∈ Zp. The cloud storage server Bob
(i.e. prover) finds all data blocks with index in set C. Let us
rename the selected data blocks (ordered by increasing block
index) as sequence (~x0, . . . , ~x`−1). Bob computes a vector
~ν = (ν0, . . . , ν`−1) and a Reed-Solomon codeword of ~xi’s:

~µ :=

`−1∑
i=0

νi~xi mod p.

The linear homomorphism of the underlying homomorphic lin-
ear authenticator allows Bob to compute an authentication tag
σ for ~µ.

3. Tertiary encoding: The third part r of the challenge (C, ν, r),
will be used for the tertiary encoding. Instead of sending (~µ, σ)
as response to Alice like [13, 26], in our proposed scheme, Bob
will apply a Reed-Solomon encoding with parameter r on the
long message ~µ, to obtain a short message: y :=

∑s−1
i=0 r

iµi,
where ~µ = (µ0, . . . , µs−1). A short authentication tag σy for y
can be computed from (~µ, σ) using the idea of [22]. As a result,
only the short message-tag pair (y, σy) is sent back to Alice as
response.

We may view our tertiary encoding for input data file M in this
way: Take the selected blocks X := (~x0, . . . , ~x`−1) as data file.
Let the primary encoding7 w.r.t. file X be:{

`−1∑
i=0

νi~xi mod p : ν ∈ Zp

}
.

In each verification, a verifier chooses a challenge (ν0, r), where
ν0 specifies one block in the encoded file of X. The prover
should apply a Reed-Solomon code on the selected block ~µ :=∑`−1
i=0 ν

i
0~xi mod p with parameter r to obtain a short message

y :=
∑s−1
i=0 r

iµi, where ~µ = (µ0, . . . , µs−1). In summary, the
tertiary encoding w.r.t. input data file M can be considered as the
secondary encoding w.r.t. file X.

Consequently, the security of the proposed scheme can be
proved using results of [13] (Precisely, apply Lemma 6 of [13]
twice8 and then apply Lemma 7 of [13].)

7 This primary encoding will be computed on the fly.
8 In contrast, the proof of the improved version of SW scheme in [13] only
applies Lemma 6 for one time.


