
Tagged-MapReduce: A General Framework for Secure Computing with
Mixed-Sensitivity Data on Hybrid Clouds

Chunwang Zhang1, Ee-Chien Chang, Roland H.C. Yap

School of Computing, National University of Singapore
{chunwang, changec, ryap}@comp.nus.edu.sg

Abstract—This paper presents tagged-MapReduce, a general
extension to MapReduce that supports secure computing with
mixed-sensitivity data on hybrid clouds. Tagged-MapReduce
augments each key-value pair in MapReduce with a sensitivity
tag. This enables fine-grained dataflow control during execution
to prevent data leakage as well as supporting expressive secu-
rity policies and complex MapReduce computations. Security
constraints for preventing data leakage impose restrictions
on computation and data storage/transfer, hence, we present
scheduling strategies that can exploit properties of the map
and reduce functions to rearrange the computation for greater
efficiency under these constraints while maintaining MapRe-
duce correctness. We present a general security framework
for analyzing MapReduce computations in the hybrid cloud
which captures how dataflow can leak information through
execution. Experiments on Amazon EC2 with our prototype
in Hadoop show that we are able to obtain security while
effectively outsourcing computation to the public cloud and
reducing inter-cloud communication.

Keywords-Data security; MapReduce; hybrid clouds; infor-
mation leakage

I. INTRODUCTION

Cloud computing promises to provide scalable and on-

demand compute resources for processing large data. Rather

than simply using a public cloud (e.g., Amazon EC2),

an enterprise could use a hybrid cloud consisting of a

private cloud (e.g., enterprise’s in-house servers) together

with a public cloud. A seamless combination of these two

clouds offers increased scalability. The private cloud can

be used for typical workloads which fit within the local

resources, but when additional resources are needed during

peak computation, the public cloud is harnessed. This hybrid

cloud model has gained adoptions and is still undergoing

rapid development [1].

However, hybrid cloud computing needs to address the

security and privacy issues with public clouds. Security and

privacy are ranked as the top concerns for organizations

considering moving their data and applications to the cloud

[2]. There are good reasons for these concerns, e.g., Ris-

tenpart et al. [17] demonstrate that confidential information

This research is supported by the National Research Foundation, Prime
Minister’s Office, Singapore under its Competitive Research Programme
(CRP Award No. NRF-CRP8-2011-08).

1Zhang is partially supported by the research grant R-252-000-514-112.

can be extracted through side-channel information leakage

in VMs. Data breach incidents have also been reported over

the years for various cloud service providers, e.g. [3]. On

the other hand, an organization’s data often involves both

sensitive and non-sensitive information, e.g., the organiza-

tion’s filesystem may contain general (non-sensitive) files

mixed with confidential business data. Also, many datasets

for analytical tasks such as network logs, email archives and

healthcare records may involve data from public sources

mixed with sensitive private data. Computation on such

mixed-sensitivity data should not be carried out on the public

cloud without security measures to prevent data leakage.

Cryptographic techniques such as fully homomorphic en-

cryption [12] enable computations to be carried out on the

encrypted domain on the public cloud but are still far from

efficient for large data.

One solution for secure computation in a hybrid cloud is

to separate the computation on non-sensitive data from that

on sensitive data, such that the former can be comfortably

outsourced to the public cloud while the latter, possibly

much smaller in size, can be easily handled on the private

cloud. In this way, the computation can be carried out both

securely while being elastic. However, this hybrid computing

model is not well supported by MapReduce [10] (MR),

the most popular data-intensive computing framework. MR

provides a seamless distribution of computing tasks among

nodes in the cloud in a way which is transparent to the

programmers/users. MR is designed for only one (logical)

cloud and does not distinguish between data and servers with

differing sensitivities. Hence, cloud users who want to run

MR jobs with mixed-sensitivity data on a hybrid cloud need

to manually split the data, compute each partition on one

corresponding cloud separately and combine the results in

their own code. This is neither transparent nor efficient. Our

objective is an automatic and general framework to facilitate

secure MR computation on hybrid clouds.

Sedic [21] addresses this problem to some degree by pre-

labeling the input data which is then replicated to both the

public and private clouds, but with sensitive portions in the

public cloud “sanitized”. During computation, map tasks

operate in both clouds and send all intermediate results to

the private cloud for reducing to prevent data leakage from

2014 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

978-1-4799-2784-5/14 $31.00 © 2014 IEEE

DOI 10.1109/CCGrid.2014.96

31

the intermediate results. However, the sanitization approach

taken by Sedic has limitations in terms of flexibility - it

does not fit well with complex MR jobs such as chained

or iterative MR, which is important to many data analytical

tasks and realistic applications [16]. In addition, the sanitiza-

tion approach may still reveal relative locations and length

of sensitive data, which could lead to crucial information

leakage in certain applications [14]. Hence, a more generic,

flexible and secure framework is desired.

In this paper, we propose a conservative extension to MR

that deals automatically with mixed-sensitivity data in hybrid

clouds and supports a new MR programming model where

data sensitivity can be manipulated during computation, e.g.,

security-aware programs can be used to downgrade the sen-

sitivity of data in execution. We propose tagged-MapReduce

that (conceptually) augments each key-value pair in MR

with a sensitivity tag [20], extending the map and reduce

functions appropriately. The tagging helps to achieve the

following goals: 1) it enables fine-grained dataflow control

during execution to prevent leakage and supports scheduling

of map and reduce tasks in the two clouds; 2) it allows

programmers to code sophisticated security policies to guide

sensitivity transformation during execution and supports

sensitivity downgrading which is useful in sensitivity-aware

applications; 3) it provides sensitivity information for data

across multiple MR jobs which is necessary for complex MR

computations with chained jobs. The flexibility also allows

legacy MR programs to be supported by simply having a

default tagging policy. Sedic programs can be expressed as a

special class of tagged-MR programs, however, Sedic cannot

express all tagged-MR programs.

The concerns of preventing data leakage mean that there

is a security constraint on where computations are run and

where data is sent in a hybrid cloud computing job. We

provide scheduling strategies for reduce tasks so that some

reducers can execute in the public cloud. The scheduling str-

ategies exploit useful properties of common map and reduce

functions to rearrange the computation for more effective

load-balancing and inter-cloud network usage while main-

taining MR correctness. For example, if a reduce operation

is “partitionable”, tagged-MR will automatically carry out

partial reduce computation on the public cloud (with non-

sensitive data), which lessens not only the private cloud’s

workload but also the total amount of inter-cloud data traffic.

Our prototype implementation allows the properties met

to be easily coded into the tagged-MR programs, from

which the scheduler decides automatically which scheduling

strategy is to be employed.

Nevertheless, special care must be taken in designing

such scheduling strategies as different strategies lead to

different actual dataflows during execution, which in turn

leads to different amounts and types of information being

exposed to the public cloud. In particular, a scheduler that

aggressively rearranges the computation to the public cloud,

while improving efficiency and maintaining MR correctness,

may leak more information than a “conservative” scheduler

that carries out all reduce computation in the private cloud.

Such leakage is beyond the programmers’ anticipation and

could be unacceptable in some scenarios. To analyze the

scheduling strategies, we propose the first security model

that captures how dataflow can leak information during exe-

cution. This model is suitable for analyzing what additional

leakage a scheduler might make through execution on a

hybrid cloud over a reference “baseline” scheduler whose

information exposure is deemed to be acceptable. Using

this model, we are able to show that some potentially more

effective scheduling strategies indeed leak more information

than the baseline, whereas, ours do not.

We implement a prototype of tagged-MR on Hadoop with

experiments to evaluate the feasibility of the system and

the effectiveness of the proposed scheduling strategies. The

experiments are run on a small-sized hybrid cloud we built

on Amazon EC2, using both single and chained MR jobs.

The results show that the tagged-MR prototype which imple-

ments the security constraints for preventing data leakage is

able to automatically and efficiently outsource computation

to the public cloud and reduce inter-cloud data traffic. The

system is practical with only small overheads compared to

baseline Hadoop which ignores the data confidentiality and

security constraints.

II. OVERVIEW

A. MapReduce

MapReduce [10] (MR) is a popular framework for per-

forming distributed computation over large data sets. In MR,

data are represented as key-value pairs (or tuples). Users

provide a map and a reduce function. A map function takes

as input a key-value pair and produces a set of intermediate

key-value pairs, while a reduce function aggregates all in-

termediate values associated with a same key. The execution

of map and reduce tasks are automatically distributed across

all the nodes in the cluster, and the data movement between

map and reduce is known as shuffling. MR has mecha-

nisms to ensure scalability and fault tolerance by replicating

data multiple times, dynamically scheduling tasks, handling

failures, etc. Thus, it is easy to write programs working

on large clusters, with no experience in parallel/distributed

systems. A popular open-source implementation of MR is

Hadoop, which offers a distributed file system (HDFS) and

an execution framework for managing MR jobs and tasks.

B. Overview of the Proposed System

A hybrid cloud seamlessly integrates an enterprise’s pri-

vate data center with public cloud resources. The idea is to

use the elasticity of the public cloud to handle peak loads

which are beyond one’s private cloud resources. While the

private cloud is trusted, the public cloud may be vulnerable

32

Worker

Worker

Worker

Worker

Worker

Worker

Scheduler

File 1

File 2

File 3

…

File n
meta
file

MapReduce
Program meta

file

Private Cloud

Public Cloud

Submit data

Code
Submit job

Assign
map tasks

Assign
reduce tasks Programmer

Input data

Map phase Intermediate
key-value pairs

Reduce phase Output

Computing job

Figure 1. Overview of tagged-MapReduce from the perspective of users
and programmers. Shaded rectangles are files/tuples marked as sensitive,
shaded ellipses are workers/scheduler run in the private cloud. Note that
the output tuples carry sensitivity information which can be fed to the next
job, thus multiple MapReduce jobs can be naturally supported.

to various data leakages [17], hence, one should ensure that

using the hybrid cloud does not leak sensitive information.

MR is not designed for processing a mix of sensitive and

non-sensitive data in the hybrid cloud, as data can flow freely

between all nodes in the two clouds, increasing the risk of

information leakage. To prevent such leakage, we propose

to extend MR by explicitly tagging each key-value pair as

either sensitive or non-sensitive. The tags serve as auxiliary

information for the system to move data during execution,

ensuring that sensitive tuples never leave the private cloud.

We propose tagged-MapReduce, as shown in Fig. 1, which

involves: (1) a scheduler in the private cloud that schedules

map and reduce tasks to workers and controls the flow of

intermediate data w.r.t. their security tags, and (2) multiple

workers across the public and private clouds that carry out

the assigned tasks.

Tagged-MapReduce programs are similar to MR pro-

grams, the difference being that a programmer can program

in the map and reduce routines various policies that guide

how the sensitivity should be changed during execution. For

instance, in the classic word-count example that reads in text

files and counts how often each word occurs, one can code

in the map routine that: a tuple, i.e. 〈word, 1〉 is output as

sensitive iff word is from a sensitive input file and not in the

set of “stop words”. The logic for deciding the sensitivity of

the output tuples is broadly called the sensitivity policy in

this paper (Sect. III). Fig. 2 illustrates how sensitivity policies

can be programmed using the word-count example with the

aforementioned security policy.

To perform a computation over tagged-MapReduce, the

input data have to be tagged first by indicating the sensitive

portions. As manual tagging or individual tuple-level tagging

can be tedious, for simplicity and usability, our prototype

implementation considers file-level tagging,1 i.e., the input

data consists of multiple files and each file contains either

all sensitive data or all non-sensitive data. The sensitivity

1File-level tagging is simple and yet does not lose generality as more
sophisticated tagging, e.g., tuple-level tagging, can be simply done by
having an initial tagged-MapReduce job with all input files being tagged
sensitive and output tuples with the desired sensitivities.

of input files is specified in a meta file which is then

uploaded to the framework together with the input data. The

underlying distributed file system then starts to replicate the

data in a privacy-aware way, ensuring that sensitive files are

only stored in the private cloud.

In addition, the programmer can also specify the proper-
ties (partitionable-reduce or unique-tag as in Sect. IV) that

the map or reduce function meets. Such information helps

the system to decide how to schedule the tasks using the

appropriate scheduling modes (Sect. IV).

III. PROGRAMMING MODEL

Original MR has map and reduce functions operating

on key-value tuples. Our tagged-MapReduce framework

extends the programming model of MR to support tags with

the corresponding functions tagged-map and tagged-reduce
operating on tagged-tuples. Specifically, we extend the key-

value pair 〈k, v〉 in MR where k and v are binary strings

with tagged-tuples of the form 〈k, v; t〉, where t is a symbol

sensitive or non-sensitive,2 and k and v are as in MR.

A tagged-map μ̂ extends a given map μ in the original MR

framework. If μ on input 〈k, v〉 with a random string r as

the auxiliary bits for randomness,3 outputs a finite multiset

{〈k1, v1〉, . . . , 〈km, vm〉} for some m, then the correspond-

ing tagged-map μ̂ is a function that on input 〈k, v; t〉 and

with r as the auxiliary data, outputs {〈k1, v1; t1〉, . . . , 〈km,
vm; tm〉} for some tags t, t1, . . . , tm.

Similarly, a tagged-reduce ρ̂ extends a given reduce ρ. If

ρ on input a multiset {〈k, v1〉, 〈k, v2〉, . . . , 〈k, vn〉} with ran-

dom string r as the auxiliary bits, outputs a multiset of pairs

{〈k, w1〉, . . . , 〈k,wn′〉} for some n and n′, then the tagged-

reduce ρ̂ is a function that on input {〈k, v1; t1〉, 〈k, v2; t2〉,
. . . , 〈k, vn; tn〉} with r as the auxiliary data, outputs the mul-

tiset {〈k, w1; t
′
1〉, . . . , 〈k,wn′ ; t′n′〉} for some tags t1, t2, . . . ,

tn, t
′
1, t

′
2, . . . , t

′
n′ .

The tags in tagged-tuples are just auxiliary data which

do not affect the keys and values. Two different tagged-

reduces ρ̂1 and ρ̂2 that extend the same reduce ρ but

with different algorithms for deciding the output tags, will

output the same distribution of keys and values.4 Hence,

our extension is conservative since the program will not

be changed if all data are non-sensitive and it does not

affect the output distribution. The role of the tags is to

feed information to the scheduler which decides where

computation is to be carried out. This segregation of roles

provides clarity in coding programs to process sensitive data

and in analyzing algorithms. Moreover, the tags also carry

sensitivity information for data across multiple MR jobs (see

2For simplicity, we use binary tags but this can be generalized.
3The random string r provides randomness if the computation is proba-

bilistic, and can be omitted if μ is deterministic.
4The overall MapReduce computation may be non-deterministic, hence

we consider the possible outputs to be a distribution. In the case that they
are deterministic, they always output the same key-value pairs.

33

public void map(LongWritable key, Text value,
 Context context)
{
 Boolean sensitive = false;
 String line = value.toString();
 StringTokenizer tokenizer =
 new StringTokenizer(line);
 while (tokenizer.hasMoreTokens())
 {
 String val = tokenizer.nextToken();
 sensitive = context.getInputSplit().getSensitivity()
 && !inStopWords(val);
 word.setIsSensitive(sensitive);
 word.set(val);
 context.write(word, one);
 }
}

 public void map(LongWritable key, Text value,
 Context context)

 {
 // key: line number
 // value: content of this line
 String line = value.toString();
 StringTokenizer tokenizer =

 new StringTokenizer(line);
 while (tokenizer.hasMoreTokens())
 {
 String val = tokenizer.nextToken();
 word.set(val);
 context.write(word, one);
 }
 }

Figure 2. Example code corresponding to original map (left) and tagged-
map (right) for the WordCount job. The difference is the code within the
dashed box that computes and sets the tags of the output tuples.

Sect. VI), and thus complex MR computation with chained

or iterative MR can be supported naturally.

Fig. 2 gives Hadoop Java code in our prototype of tagged-

map for the extended WordCount job working on a set

of sensitive and non-sensitive files (right). Compared to the

original map (left), the difference is the extra statement (in

the dashed box) to compute the sensitivity of each word

based on some sensitivity rules (see below) and an API

setIsSensitive() to set the tags of output tuples.

When it is clear from the context, we will omit the word

“tagged” and call tagged-tuple, tagged-map and tagged-

reduce as tuple, map and reduce respectively.

A. Sensitivity Policy

In addition to normal MR programs (which do not have

code for data sensitivity), with explicit tagging, programmers

can now implement MR programs which are sensitivity-

aware, applying a policy to govern the sensitivity of tuples

created during execution in the map and reduce routines.

Such policies are called the sensitivity policies in this paper.

An example policy has the following rules: (1) A map μ̂ does

not modify the sensitivity of the data, i.e., each tuple in the

output of μ̂ has the same sensitivity as the input tuple; and

(2) the output of the reduce is sensitive iff at least one input

is sensitive. Our prototype uses this policy as the default

if the program does not specify any policy. It is also how

legacy (normal) MR programs are supported. Programmers

can choose to implement more sophisticated and application-

specific policies to override the default policy. Fig. 2 gives

an example of programming sensitivity policies.

We now address the question of whether the sensitivity

of an output tuple can be upgraded or downgraded. Let us

first consider upgrading.

1) Non-upgrading policy: An upgrading happens if, for

either a map or reduce, (all of) the input is non-sensitive but

the output contains sensitive tuples. Assume that all map and

reduce algorithms are public knowledge, the public servers

can collude and all non-sensitive tuples are stored in the

public servers, then it is meaningless to have a policy that

deems the output as sensitive when all of the input data are

non-sensitive, given that an adversary in the public cloud

can compute the output anyway. This gives the following

condition for tagged-map μ̂ and tagged-reduce ρ̂:

CONDITION 1 (NON-UPGRADING MAP AND REDUCE)

Consider map μ̂(t), if input tuple t is non-sensitive then
all tuples output from μ̂ will be non-sensitive. Similarly
for reduce ρ̂(k, {t1, . . . , tn}), if all input tuples ti’s are
non-sensitive, all tuples output from ρ̂ will be non-sensitive.

Violation of this condition during processing does not

compromise confidentiality of tuples previously tagged as

sensitive, and thus may not be harmful in terms of security.

Nevertheless, it tags data already known to the public

cloud as sensitive, and hence imposes unnecessary constrains

which in turn lowers the effectiveness of the scheduler.

2) Downgrading policy: However, there are situations

where the sensitivity may be “downgraded” to non-sensitive,

even if the input is sensitive. The downgrading can occur in

either a map or reduce. For example, consider a tagged-

map that takes in a surveillance video (tagged as sensitive),

analyzes the video, and outputs a set of short video clips.

Video clips with a low-level of activity are to be tagged

as non-sensitive, whereas video clips with a high-level of

activity are to be tagged as sensitive. Here, the final sensi-

tivity is derived from both the key and value of the input,

allowing certain video clips to be downgraded from sensitive

to non-sensitive. Another application is data anonymization

where a tagged-reduce takes as input a list of sensitive

values and outputs an aggregated value. The output value is

considered “anonymized” and thus tagged as non-sensitive.

In general, downgrading allows to further push computation

to the public cloud and is useful for applications where the

input data are sensitive but only few of them turn out to

be important after simple pre-processing. Explicit tagging

makes such downgrading possible.

IV. SCHEDULING MODES

After being tagged, input data are selectively distributed

and replicated to the public and private clouds based on their

sensitivity status with sensitive data placed in private nodes.

Upon the data placement, a set of tagged-map tasks are then

created, across the private and public clouds, to operate on

the sensitive and non-sensitive data accordingly. After all

tagged-map tasks have completed, a key can appear in tuples

that are produced by both the public and private clouds with

different sensitivities in different tuples. As a tagged-reduce

task may receive both sensitive and non-sensitive tuples, it

cannot be directly executed on the public cloud.

To prevent data leakage, a conservative scheduler might

push all intermediate results produced in both clouds to

the private cloud for reducing. This scheduling strategy is

illustrated in Fig. 3(a) which we call the single-phase (SP)
mode. However, SP mode may overload the private servers

(i.e., public servers are not enrolled in the reduce phase) and

also lead to high volumes of data flowing from the public

to the private cloud during MR shuffling. Inter-cloud data

34

m1

Public

Private

m2

m3

m4

r1

(a) Single-Phase Mode (SP)

Public

Private

m1

m3

m4

m2

r1

r2 r3

(b) Two-Phase Crossing Mode (TPC)

Public

Private

m1

m2

m3

m4

r1

r2

r3

r4

r5

r6 r7

(c) Two-Phase Non-Crossing Mode (TPNC)

Public

Private

m4

m3

m2

m1

r1

r2

(d) Hand-Off Mode (HO)

Figure 3. Scheduling modes in tagged-MR. mi’s are map tasks, ri’s are
reduce tasks. Shaded blocks are sensitive tuples and shaded circles are tasks
running on the private cloud.

traffic can be significant as inter-cloud bandwidth may be

much smaller than the intra-cloud one (internally, within

each cloud). Inter-cloud traffic may also be charged by the

cloud provider.5 What is desired is to outsource more reduce

computation to the public cloud when needed while reducing

the total amount of inter-cloud data movement.

To this end, we investigate certain properties of the map

and reduce functions whereby if a function meets, the reduce

computation can be rearranged in the two clouds for more

effective load-balancing and inter-cloud bandwidth usage

while maintaining MR correctness. More specifically, we

consider two properties: partitionable reduce and unique
tag with three scheduling modes: two-phase crossing (TPC),

two-phase non-crossing (TPNC) and hand-off (HO) modes.

The properties met can be coded in tagged-MR programs

(we add new APIs) to set the scheduling mode used for task

assignment.

A. Two-Phase Crossing Mode (Partitionable Reduce)

If a reduce function can be carried out in a “divide-and-

conquer” manner, one could first enroll public workers to

aggregate the non-sensitive tuples, and then combine them

with the sensitive data. Let us first define the following form

of distributive property on the reduce function which holds

for many regular MR programs:6

PROPERTY 1 (PARTITIONABLE REDUCE) We say that a
tagged-reduce ρ̂ is partitionable if for all k, L1 and L2

ρ̂(k, L1 ∪ L2) = ρ̂(k, ρ̂(k, L1) ∪ ρ̂(k, L2)) (1)

If ρ̂ is partitionable, then it can be performed in two phases:

1) (Phase 1) For each key k, a worker pk (can be private

or public) is selected and assigned to perform a reduce

5Amazon EC2 does not charge for data transfers in the same Availability
Zone but charges for data transferred out to other regions or the Internet.

6This is the commutative and associative property that the Combiner
function satisfies in MR.

task on all non-sensitive tuples with k. A private wor-

ker qk (possibly different) is selected and assigned to

perform a reduce task on all sensitive-tuples with k.

2) (Phase 2) A private worker is selected and assigned to

perform a reduce task on the output of pk and qk for

each key k.

Fig. 3(b) illustrates the above process. Since sensitivity

can be downgraded, map tasks running on the private cloud

may produce many non-sensitive tuples. This mode allows

such tuples to be passed to the public cloud for partial redu-

cing. In general, this mode leads to higher utilization of

public servers but may incur increased dataflow from the

private to the public cloud during shuffling.

B. Two-Phase Non-Crossing Mode

This mode is a potential improvement of the above two-

phase crossing mode, whereby the reduce function is first ap-

plied on each map-task’s output locally (like the Combiner
in MR). This local-reduce phase typically can reduce the size

of the intermediate results, thus, speeding up the internal

shuffling and sorting phase. After the local-reduce phase,

the produced intermediate results are first aggregated on the

public and the private cloud separately, and then combined

on the private cloud, as illustrated in Fig. 3(c). In particular,

data downgraded in the local-reduce phase still remains

in the private cloud for subsequent processing to prevent

unintentional information leakage.

Compared to the two-phase crossing mode, under this

mode, the utilization of public servers is expected to be low-

er, but the volume of inter-cloud data traffic may decrease.

C. Hand-Off Mode (Unique Tag)

In both of the above TPC and TPNC modes, an additional

phase (i.e., phase 2) is required to combine the partial re-

duce outputs produced in the two clouds as a key may be

associated with both sensitive and non-sensitive tuples. Now

we consider a property of the map function whereby this

additional combining phase is not required.

PROPERTY 2 (UNIQUE TAG) Given a multiset of tagged-
tuples U , we say that the keys in U have unique tag if there
does not exist a key k such that both 〈k, v; sensitive〉 and
〈k, v′; non-sensitive〉 are in U for some v and v′.

We say that a map function meets the unique tag property
if, on any input and any execution, completion of the map
phase gives a set of tagged output tuples with unique tag.

An example of the unique tag property is a map function

that outputs 〈k, v; t〉 where t is a deterministic function of

k. When a map function meets the unique tag property, after

the map phase, a key appears either in the sensitive tuples

or in the non-sensitive tuples, but never in both. Then, there

is an easy way to schedule the reduce tasks – simply assign

keys tagged as sensitive to private workers, and keys tagged

as non-sensitive to either a public or a private worker. Since

35

no combination or morphing of tasks is required, we call

this mode the hand-off mode. Fig. 3(d) illustrates this mode.

V. SECURITY ANALYSIS

We consider public servers to be honest-but-curious, that

is, they will carry out the assigned computation honestly

but may retain knowledge derived from the computation for

malicious purposes. We assume that the adversary may have

control over all the public servers, thus we allow public

servers to collude. In addition, we assume that the identities

of all private servers, the scheduling algorithms and the map

and reduce operations are public information.

As different scheduling algorithms can lead to different

dataflows during execution, the actual data sent to the public

cloud can differ. Hence, from the curious public cloud’s

viewpoint, the amount and types of information leaked by

different schedulers can be different. To illustrate, let us

consider the following two examples.

1) Example I: Consider a simple reduce function that

on input a list of values with the same key k, outputs

〈k, (s,m)〉 where s is the sum of the values, and m is the

total number of input tuples. The output is tagged as non-
sensitive iff m is greater than a threshold, say 50. Note that

this reduce function is partitionable. An ambitious scheduler

might divide the sensitive input tuples into groups of 50 and

assign the reduce task on each group to a private worker.

Next, the aggregated non-sensitive output from each group

is sent to a public worker for further aggregation. Now, let us

consider a conservative scheduler which assigns all reduce

tasks to private workers. Compared to this conservative

scheduler, the ambitious scheduler will reveal the sum of

each group to the public cloud. One may argue that the

sum of any sufficiently large group is deemed to be non-

sensitive by the programmer and thus it is acceptable to

reveal the sums of many subgroups. However, that may not

be the intention of the programmer and hence we need a

clear security model to establish a baseline.

2) Example II: Here is a more subtle example. Consider

another ambitious scheduler that dynamically tracks the in-

termediate tuples generated by the map tasks. If a particular

key k has only non-sensitive intermediate tuples, then the

scheduler will assign the reduce task on k to a public worker.

Since no sensitive tuple is sent to the public cloud, it seems

that this scheduler does not leak sensitive information. Now,

compared to the conservative scheduler described before,

the action of this scheduler reveals an additional piece of

information on k: the fact of whether there exists a sensitive

intermediate tuple with the key k. Although this piece of

information seems to be insignificant, it could be a crucial

leakage in certain scenarios. Hence, we need a security

model that clearly accepts or disallows such leakage.

The above two examples bring out the subtlety and chal-

lenge in formulating the security model. What should be the

“baseline” of leakage that is acceptable, and how to compare

the leakages incurred by different schedulers? We handle this

issue by treating the conservative scheduler described above

as the baseline, and propose a security model to compare a

scheduler with this conservative scheduler. Essentially, we

say that a scheduler S1 does not leak more than another S2

iff we can simulate S1 and generate the information revealed

by S1 based on the information revealed by S2. Schedulers

that do not leak more than the baseline are considered secure.

Due to the space constraints, we only describe the essentials

of the model without a full formal treatment.

A. Public-View of an Execution
Given an input D, let us consider what information the

public cloud can gather during an execution on D. We

assume that servers in the public cloud can collude, thus,

we treat them as a single entity. During the execution, the

public cloud can see the content of each tuple it handles,

including the identities of the private workers who send

and receive those tuples, and the internal state of all public

workers. Let us call the information revealed the public-view
of an execution on D. Note that on a same instance D, the

execution could be different since the scheduler and the job

could be non-deterministic. Hence, we are interested in the

distribution of the public-views.

B. Baseline - the Conservative Scheduler

Now consider a conservative scheduler. This scheduler

assigns map tasks operating on sensitive and non-sensitive

tuples to randomly chosen private and public workers re-

spectively, and assigns all reduce tasks to randomly chosen

private workers.7 In addition, all intermediate non-sensitive

tuples will be sent to some public workers for temporary

storage (i.e., all intermediate non-sensitive tuples are public

information). Hence, the public-view of an execution un-

der this conservative scheduler includes the content of all

non-sensitive tuples and the identities of the workers who

generate and read the non-sensitive tuples. This scheduler

is “conservative” since it does not attempt to re-arrange the

tasks for better performance.8

While there may be still some information leakage by

virtue of data going to the public cloud, one assumes by

definition that non-sensitive tuples can be disclosed. Since

the goal is outsourcing of “some” computations to the public

cloud, such leakage is considered to be acceptable. In this

sense, the conservative scheduler is reasonable for analyzing

the security of scheduling algorithms. Hence, we choose

this simple execution model as the baseline and call it the

baseline scheduler.

7The selection of a private worker depends on a few criteria, including
the servers’ configuration and workload. We assume that such information
does not leak useful information to the adversary. Hence, in our security
analysis, we consider a selection that randomly picks a private worker from
the pool of all private workers.

8This conservative scheduler is similar to the SP mode in behavior but
exposes all non-sensitive tuples to the public cloud.

36

C. Security Model

Given a particular scheduler S, we want to analyze

and determine whether it leaks “more” than the baseline

scheduler. For a particular job and input D, let us consider

an oracle OD that, on request, generates a public-view of the

baseline scheduler on D. Note that this is just one sample

from the distribution of public-views. Now, let us consider

a simulator who has access to the oracle once. Based on the

public-view generated by the oracle, this simulator attempts

to generate a sample of the public-view of the scheduler S in

question. We say that a scheduler S does not leak additional

information on a particular job if the following holds:

There exists a simulator that, for any D, its output
is statistically close to the public-view of S on the
input D.

Note that in the above definition, the simulator can be

different for different jobs. A scheduler that does not leak

additional information on any job is considered to be secure.

Using this security model, we are able to show that the

two scheduling examples given at the beginning of this

section, while potentially improving efficiency, indeed leak

more information than the baseline scheduler while our

proposed scheduling modes do not.

D. Side-Channel Information

During execution, adversaries in the public cloud could

measure the size and timing of packets received from

each private server. Analysis of such network traffic might

provide information on the workload of individual private

servers. The workload may depend on the actual content of

sensitive tuples, which although unlikely, could potentially

leak information of the content. Since the network traffic

is heavily influenced by other factors like overall network

conditions and time of the day, and these information may

still present even if encrypted computation (e.g., homomor-

phic encryption) is used, we consider these as “side-channel”

information and do not capture them in our security model.

Nevertheless, there are mechanisms to reduce such leakage

such as hiding the identities of the private servers by routing

the traffic to a proxy and “translating” the identities (which

is similar to NAT (Network Address Translation)), inserting

random delays to the traffic, adding noise in the scheduling,

etc. The issue of side-channels is orthogonal to this paper.

An interesting future work is to study how these mechanisms

can be combined to reduce such side-channel leakage.

VI. IMPLEMENTATION AND EVALUATION

We implement a prototype of tagged-MapReduce based

on Hadoop 1.0.1. Essentially, two components of Hadoop

are updated: the Distributed File System (HDFS) and the

MR execution framework. For the HDFS, the INodeFile
class is extended with a tag giving the sensitivity of the

corresponding file. The NameNode recognizes the tags and

distributes the files in a privacy-aware manner: files tagged

as sensitive are always replicated to the private servers while

there is no constraint for non-sensitive files. For the MR

execution framework, we add to each task (map and reduce)

a sensitivity label whose value is to be determined from

the sensitivity of the data to be processed, and modify the

JobTracker to assign the tasks based on their security

labels. We also modify the default HashPartitioner
and have special treatment for the TPC and TPNC modes

where there are two reduce phases.

We experiment with our prototype on Amazon EC2 to

evaluate the practicality of the system and the effectiveness

of the proposed scheduling strategies in terms of: (i) inter-

cloud communication cost; (ii) total job running time; and

(iii) computation outsourcing ratio. The experiments are run

using both simple (single) and complex (chained) jobs.

A. Experimental Setting

1) Computing jobs and datasets: Many analytical tasks

and applications such as target marketing, spam detection

and medical processing need to deal with both public and

confidential data simultaneously [7]. In this experiment, we

run two basic MR jobs where it is natural to have data with

mixed sensitivity: word count (WC) and face detection (FD).

The word count job, which is an extension to the classic MR

example [10], counts the occurrences of each word in a set of

sensitive and non-sensitive text files. For the map function,

only words from the sensitive input files and not in the set

of stop words are tagged as sensitive (see Fig. 2). For the

reduce function, the aggregated count of a word is tagged

as sensitive iff at least one of its inputs is sensitive. The

input is a dataset of English Wikipedia articles [4] which is

partitioned into 10 separate files about the same size. During

experiments, we will vary the ratio of sensitive data over the

whole input dataset. The sensitivity of each of the 10 input

files are randomly assigned to match a required ratio.

The face detection job detects faces from a database of

80,000 images crawled from the web via Google Images.

In the experiment, to obtain a particular ratio of sensitive

data over the whole image dataset, an appropriate number of

randomly selected images are tagged as sensitive. The output

of the job are extracted images of successfully detected faces

where a face is tagged as sensitive if it is in a sensitive image

which contains no more than 3 faces.

The above two basic jobs, WC and FD, can be each car-

ried out in a single MR job. We also experiment on variations

of these two jobs with chained MR: wordcount+sort and

face anonymization as summarized in Table I.

2) Hybrid cloud setting: We build a hybrid cloud on

Amazon EC2. The private cloud consists of 3 instances

located at Singapore and the public cloud has 3 instances

at US West (N. California). All instances (m1.large) run

Ubuntu 12.04, and each provides 2 virtual cores with 4

Amazon ECUs, 7.5 GB memory and 850 GB storage. The

bandwidth between these instances is not specified. An

37

Table I
SUMMARY OF THE COMPUTING JOBS AND DATASETS

Application Jobs Description of Jobs Dataset Description of Dataset

Wordcount+Sort
Wordcount (WC) Count the occurrence of each word in text files

Wikipedia dataset
English Wikipedia articles

Sorting (ST) Sort the words by the number of occurrence up to July 2012 (36.8GB)

Face Anonymization
Face detection (FD) Detect human faces from each image

Image dataset
Images of human faces

Averaging (AG) Replace each face by the average of 5 neighboring faces crawled via Google
Sorting (ST) Sort the anonymized faces by image name Images (17.2GB)

20 40 60 80
10

2

10
3

10
4

10
5

Sensitive data ratio (%)

I
n
t
e
r
−
c
l
o
u
d

c
o
m
m
.

(
M
B
s
)

Word Count

SP
TPC
TPNC
HO
Hadoop

20 40 60 80
0

1000

2000

3000

4000

5000

6000

7000

8000

Sensitive data ratio (%)

I
n
t
e
r
−
c
l
o
u
d

c
o
m
m
.

(
M
B
s
)

Face Detection

SP

TPC

TPNC

HO

Hadoop

Figure 4. Inter-cloud communication.

informal test of file transfer using scp gives 35–40 MB/s

within the same region (e.g., from Singapore to Singapore),

and 3–8 MB/s across different regions (e.g., from Singapore

to California). Though our cluster is small, our dataset size

is quite modest and hence matches the cluster.

B. Experiments on Scheduling Modes

The two basic jobs WC and FD are run under the four

scheduling modes presented in Sect. IV and also on original

Hadoop over the whole hybrid cloud (6 nodes). The original

Hadoop run is meant for performance comparisons although

it does not meet the security requirement of keeping sensitive

information in the private cloud. For each mode, we vary the

ratio of sensitive data over the whole input between 20%

to 80%. The total job running time (job elapsed time), the

execution time of each task (individual CPU time) and the

data transferred across the public and private cloud (inter-

cloud communication) can be derived from the Hadoop log

files.

The hand-off mode requires the unique tag property which

is not met by the word count job as a same word can

occur in a sensitive and a non-sensitive file. Fortunately, we

can use the following observation. Given a map μ̂ which

produces 〈k, v1, s〉 and 〈k, v2, n〉 where s and n denote

sensitive and non-sensitive, a simple transformation to meet

the unique tag property is to instead output 〈1.k, v1, s〉 and

〈0.k, v2, n〉 where the operator . denotes bit concatenation.

Face detection uses the image name as the key which is

either sensitive or not, thus fits the unique tag property.

1) Inter-cloud communication: This measures how much

data is transferred across the two clouds during execution,

which could be a potential performance bottleneck due to

the limited inter-cloud bandwidth. Fig. 4 shows the result.

The result of the word count job shows the effectiveness

of our proposed modes in reducing the inter-cloud commu-

nication. Note that the y-axis is in logarithmic scale. The

20 40 60 80
1500

2000

2500

3000

3500

4000

4500

5000

5500

Sensitive data ratio (%)

J
o
b

e
l
a
p
s
e
d

t
i
m
e

(
s
e
c
o
n
d
s
)

Word Count

SP

TPC

TPNC

HO

Hadoop

20 40 60 80
4500

5000

5500

6000

6500

7000

7500

8000

8500

Sensitive data ratio (%)

J
o
b

e
l
a
p
s
e
d

t
i
m
e

(
s
e
c
o
n
d
s
)

Face Detection

SP

TPC

TPNC

HO

Hadoop

Figure 5. Job elapsed time.

TPC, TPNC and HO modes can reduce the total amount of

inter-cloud data transfers by orders of magnitude compared

to the original Hadoop or the SP mode. In this job, the TPNC

mode incurs the least inter-cloud communication overhead

as the reduce output is much smaller in size than the map

output, hence the data (i.e., partial reduce output) transferred

from the public to the private cloud is smallest.

The result of the face detection job is different. Surpris-

ingly, the TPC mode incurs larger inter-cloud data traffic

than the SP mode or original Hadoop. We observed that

this is due to the behavior of the reduce function in the

face detection job, which simply converts detected faces

to images and outputs them. This means that the output

from reduce is similar in size to the map output. The

TPC mode moves all the intermediate results produced on

the public cloud, together with those downgraded from the

private cloud, back to the private cloud for final reduce,

and hence incurs the largest inter-cloud data movement.

In contrast, the SP and TPNC modes only involve one

step of data movement, giving less inter-cloud data traffic.

The HO mode has the least inter-cloud communication cost

indicating that very few sensitive images are downgraded to

be non-sensitive.

2) Job elapsed time: This measures how long it takes

to compute a MR job. The result is illustrated in Fig. 5. It

is not surprising that most of our modes require a longer

time to compute a same MR job than original Hadoop

mainly due to the security requirements. When the sensitive

data ratio is lower than 50%, there are roughly equal data

processed on the public and private cloud, hence the time

is low. As the ratio increases, the private nodes bear the

burden of increased data so the time increases. Our modes

can outperform the basic SP mode in the word count job.

However, in the face detection job, both the TPC and TPNC

modes incur longer time than SP. Again this is due to the

reduce behavior of the face detection job, which does not

38

20 40 60 80
20

30

40

50

60

Sensitive data ratio (%)

C
o
m
p
u
t
e

o
u
t
s
o
u
r
c
e

r
a
t
i
o

(
%
)

Word Count

SP
TPC
TPNC
HO
Hadoop

20 40 60 80
10

20

30

40

50

60

70

Sensitive data ratio (%)

C
o
m
p
u
t
e

o
u
t
s
o
u
r
c
e

r
a
t
i
o

(
%
)

Face Detection

SP
TPC
TPNC
HO
Hadoop

Figure 6. Computation outsourcing ratio.

Table II
MODE ASSIGNMENT

Application Job Mode

Wordcount+Sort
Wordcount Two-Phase Non-Crossing

Sorting Single-Phase

Face Anonymization
Face detection Hand-off

Averaging Hand-off
Sorting Single-Phase

decrease the data size but incurs computational overhead.

The HO mode in both jobs can approach the performance

of Hadoop at a ratio of around 50% due to the optimized

inter-cloud data traffic. The TPNC mode in word count even

outperforms Hadoop. This indicates that inter-cloud data

movement is indeed a significant performance bottleneck.

3) Computation outsourcing ratio: The computation out-

sourcing ratio gives the percentage of total CPU time used

in the public cloud over the total CPU time. It measures

how much compute is outsourced to the public cloud. The

result is given in Fig. 6. The Hadoop baseline is around 50%
which is expected as it randomly assigns tasks to all the

nodes. The SP mode assigns all reduce tasks to the private

cloud and thus serves as a lower bound of the other modes.

The HO mode achieves the best outsourcing as it saves

the final reduce phase in the private cloud. The TPC and

TPNC modes are close to each other. Further, as the sensitive

data ratio increases, naturally the outsourcing ratio decreases

since less work is available to be outsourced.

In summary, the above results demonstrate that, our pro-

posed scheduling modes (i.e., TPC, TPNC and HO) in a

hybrid cloud setting can effectively reduce the inter-cloud

communication and job execution time while being able

to outsource more computation to the public cloud, as

compared to the general SP mode. The time overheads are

also reasonable as compared to original Hadoop runs on the

same hybrid cluster.

C. Experiments with Chained MapReduce

Next, we experiment on more complex MR jobs that in-

volve chained MR: wordcount+sort and face anonymization.

We choose the most appropriate mode, as summarized in

Table II, for each individual job in the chain according to

the properties of the computation. The ratio of sensitive data

over the whole input is around 50% in both jobs. The result

is compared with two columns, running with the (default)

SP mode and original Hadoop.

Table III
EXPERIMENTAL RESULTS OF CHAINED MAPREDUCE

App. Job
Hadoop SP Mode Assigned Modes

Time Traffic Time Traffic Time Traffic
(sec) (MBs) (sec) (MBs) (sec) (MBs)

Wordcount WC 3020 36551 4082 32150 2275 685
+ ST 278 505 307 621 307 621

Sort Total 3298 37056 4389 32771 2582 1305
FD 5220 4109 5776 4521 5093 847

Face AG 2158 1020 2534 1453 2064 0
Anony- ST 483 1007 528 1407 528 1407
mization Total 7861 6136 8838 7381 7685 2254

Table III gives the overall job execution time and inter-

cloud data traffic for each complex job. The result shows

that the total amount of inter-cloud data traffic can be sig-

nificantly reduced with the appropriate modes. For example,

knowing that the first two jobs of face anonymization meet

the unique tag property, we can assign to them the HO

mode, where data are separately processed in the public and

the private cloud in parallel. The sensitivity information is

then naturally handed over to the next job, so there is no

need to transfer the output of each job back to the private

cloud. Such avoidance of unnecessary data movement leads

to further optimization in inter-cloud communication across

multiple MR jobs. Overall, we can reduce the inter-cloud

data traffic by more than 90% for the wordcount+sort job

and around 70% for the face anonymization job as compared

to the SP mode or original Hadoop.

The total elapsed time also has significant improvements

with correctly chosen modes compared to the SP mode. The

times are also comparable to the original Hadoop runs. We

remark that choosing the mode can be done automatically by

the system if the properties of the MR job are specified. In

summary, the total overheads for the hybrid framework are

reasonable for realistic complex MR jobs in the hybrid cloud

setting with data confidentiality constraints. We believe that

in many cases, the conditions for the non-single phase modes

can be met which lead to further optimizations.

VII. RELATED WORK

1) Comparison with Sedic: Sedic [21] is closely related

to our work but with fundamental differences. It takes a

different sanitization approach whereby data are duplicated

to both clouds, but with sensitive portions sanitized in the

public cloud. However, Sedic is less flexible for complex MR

computation with chained or iterative MR. We address this

problem by explicitly tagging. With tagging, data directly

carry sensitivity information which can be fed to the next

job, and thus multiple MR computation can be carried out

naturally. This flexibility also allows legacy MR code to

be easily supported. Besides flexibility issues, the saniti-

zation approach also reveals relative locations and length

of sensitive data, which potentially could leak important

information [14]. In contrast, data in our framework are

segregated according to their sensitivity and distributed to

the two clouds separately. Since the segregation of data

does not explicitly reveal the locations of sensitive data, the

39

proposed approach is arguably more secure. Furthermore,

tagged-MR is also more expressive. Sedic can be expressed

as a special case of our model (with a single-phase mode

and default tagging policy) but tagged-MR programs with

expressive security policies and sensitivity downgrading are

not catered to in Sedic. In addition, Sedic does not consider

the problem of a general security framework for analyzing

of data leakage on a hybrid cloud which we do.

2) Data security in hybrid clouds: The idea of partitioni-

ng data and computation to preserve data-privacy has been

discussed in various settings [5], [8], [22]. With the emer-

gence of cloud computing, there are growing research inter-

ests of applying the idea on hybrid clouds. Ko et al. [13]

propose HybrEx which partitions MR data and computations

over a hybrid cloud according to some data labels similar to

tagging. An outline of HybrEx is proposed but without any

details or implementation. Bugiel et al. [6] propose using the

private cloud to encrypt and verify the intensive computation

performed in the untrusted public cloud. On the issues of

secure query processing, Curino et al. [9] and Oktay et al.

[15] similarly investigate partitioning of relational databases

between the public and private clouds, taking into account

of both the security requirements and efficiency. Other work

includes distributing human genomic computation to hybrid

clouds so as to protect sensitive DNA information [7], [19].

3) Differential privacy: Differential privacy [11] provides

strong assurance in protecting individuals’ privacy. The Aira-

vat platform [18] incorporates differential privacy mecha-

nisms into the MR execution framework by automatically

adding noise to the output data. In comparison, we focus on

the hybrid cloud setting and protect data-privacy by dataflow

control. Since no noise is added to the output, computation

accuracy is maintained.

VIII. CONCLUSION

The hybrid cloud is a practical approach for scaling com-

putation and data processing needs. However, the seamless

inter-cloud dataflow also increases the risk of information

leakage if sensitive data can flow freely to the public cloud

without proper protection. We present tagged-MapReduce,

a secure and practical solution for computing in the hybrid

cloud by extending MR with sensitivity tags. Our goal is

to give a simple conceptual framework for programmers

who are already familiar with MR and want to have data

privacy awareness in the hybrid cloud setting. It also allows

complex MR programs which can have expressive security

policies and multiple chained MR jobs. We also pair this

with a general security framework which is suitable for

analyzing what kind of information a scheduler can leak

through execution in the hybrid cloud against a baseline

scheduler. Our experiments demonstrate the effectiveness of

the scheduling modes in outsourcing computation and re-

ducing the inter-cloud bandwidth usage. Tagged-MapReduce

in the hybrid cloud only incurs small overheads compared

to a Hadoop run which ignores the data confidentiality

and security constraints, and thus is fairly practical. The

framework can also handle legacy MR code.

REFERENCES

[1] Forecast for 2010: The Rise of Hybrid Clouds. http://gigaom.
com/2010/01/01/on-the-rise-of-hybrid-clouds/, 2010.

[2] 2012 Cloud Computing Survey. Online at http://northbridge.
com/2012-cloud-computing-survey, 2012.

[3] Dropbox: Yes, we were hacked. Online at http://gigaom.com/
2012/08/01/dropbox-yes-we-were-hacked/, 2012.

[4] English wikipedia dumps. Online at http://dumps.wikimedia.
org/enwiki/, 2012.

[5] G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-molina,
K. Kenthapadi, R. Motwani, U. Srivastava, D. Thomas, and
Y. Xu. Two can keep a secret: A distributed architecture for
secure database services. In CIDR, 2005.

[6] S. Bugiel, S. Nürnberger, A. Sadeghi, and T. Schneider.
Twin clouds: An architecture for secure cloud computing. In
Workshop on Cryptography and Security in Clouds, 2011.

[7] Y. Chen, B. Peng, X. Wang, and H. Tang. Large-scale privacy-
preserving mapping of human genomic sequences on hybrid
clouds. In NDSS, 2012.

[8] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng,
and X. Zheng. Secure web applications via automatic parti-
tioning. In ACM SIGOPS Operating Systems Review, 2007.

[9] C. Curino, E. Jones, R. A. Popa, N. Malviya, E. Wu,
S. Madden, H. Balakrishnan, and N. Zeldovich. Relational
cloud: A database service for the cloud. In CIDR, 2011.

[10] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. In OSDI, 2004.

[11] C. Dwork. Differential privacy. In ICALP, 2006.
[12] C. Gentry. Fully homomorphic encryption using ideal lattices.

In STOC, 2009.
[13] S. Y. Ko, K. Jeon, and R. Morales. The HybrEx model for

confidentiality and privacy in cloud computing. In USENIX
HotCloud, 2011.

[14] D. Lopresti and A. L. Spitz. Quantifying information leakage
in document redaction. In ACM Workshop on Hardcopy
Document Processing, 2004.

[15] K. Y. Oktay, V. Khadilkar, B. Hore, M. Kantarcioglu,
M. Mehrotra, and B. Thuraisingham. Risk-aware workload
distribution in hybrid clouds. In CLOUD, 2012.

[16] K. Ren, Y. Kwon, M. Balazinska, and B. Howe. Hadoop’s
adolescence: An analysis of Hadoop usage in scientific work-
loads. In VLDB, 2013.

[17] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey,
you, get off of my cloud: Exploring information leakage in
third-party compute clouds. In CCS, 2009.

[18] I. Roy, S. T. Setty, A. Kilzer, V. Shmatikov, and E. Witchel.
Airavat: Security and privacy for MapReduce. In NSDI, 2010.

[19] R. Wang, X. Wang, Z. Li, H. Tang, M. K. Reiter, and
Z. Dong. Privacy-preserving genomic computation through
program specialization. In CCS, 2009.

[20] C. Zhang, E. C. Chang, and R. H. C. Yap. Towards a
general framework for secure MapReduce computation on
hybrid clouds. In SOCC, 2013.

[21] K. Zhang, X. Zhou, Y. Chen, X. Wang, and Y. Ruan. Sedic:
Privacy-aware data intensive computing on hybrid clouds. In
CCS, 2011.

[22] L. Zheng, S. Chong, A. C. Myers, and S. Zdancewic. Using
replication and partitioning to build secure distributed sys-
tems. In S&P, 2003.

40

