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Abstract—We consider a hybrid cloud model for video sur-
veillance systems with mixed-sensitivity video streams. The hy-
brid cloud naturally addresses the issues on security by keeping
sensitive data in the private cloud, and relieves seasonal work-
load by pushing computation to the elastic public cloud. Nev-
ertheless, to enhance usability and reduce cost, it is desired to
have a middleware that seamlessly integrates the two clouds and
schedules the tasks effectively. We first present a stream process-
ing model that is specifically designed for this hybrid cloud set-
ting. Based on this model, we formalize the scheduling issue as
an optimization problem that minimizes overall monetary cost
to be incurred on the public cloud, with resource, security and
Quality-of-Service (QoS) constraints. Qur proposed scheduler
exploits special properties of hybrid clouds for more effective
solutions. Experiments through both large-scale simulations and
prototype runs on Amazon EC2 show that the proposed ap-
proach is effective in outsourcing computational workload with
overheads lower than other alternatives.

Keywords-Video surveillance; hybrid clouds; scheduling; se-

curity and privacy
I. INTRODUCTION

Video surveillance systems are inherently data-intensive,
and often compute-intensive with various operations like tra-
nscoding, indexing and video analysis. Such computational
workload could be seasonal, for example, heavier workload
in the morning of workdays while lighter workload during
weekend nights, as observed in typical video streaming sys-
tems [1]. An organization’s in-house private datacenter may
be overloaded during peak hours due to its limited computing
capability. While with cloud computing, it is possible to of-
fload all the video streams and computation to a public cloud
like Amazon AWS, such strategy can incur high monetary
cost [2]. More importantly, video surveillance streams may
contain sensitive information that cannot be directly handled
on the public cloud due to potential data leakages [3]. Al-
though it is possible to protect the sensitive streams by pro-
cessing them in the encrypted domain using homomorphic
encryptions [4], such techniques are still too expensive for
large-scale video data.

A recent trend in cloud computing is that of the hybrid
cloud, whereby an organization’s private datacenter is seam-
lessly integrated with the elastic public cloud. A hybrid cloud
allows an organization to strategically push certain compu-
tation to the public cloud, potentially addressing both of the
aforementioned issues on seasonal workload and security.
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This hybrid cloud model has gained adoptions and is still
undergoing rapid development [5].

However, the scheduling decisions of how much and which
part of the computation to outsource is generally hard to pre-
dict due to frequent changes of system status. Also, from
application developers’ point of view, it is preferred that they
only need to specify how computations are to be carried out,
without caring about where they are executed and how data
are moved during execution. Such transparency makes it eas-
ier for developers with no experience in parallel/distributed
systems to write programs working on large clusters. There-
fore, it is desired to have a middleware that unifies the two
clouds and effectively schedules the processing of mixed-
sensitivity video streams on the hybrid cloud.

Many stream processing systems have been developed in
the past few decades [6]-[9]. Alongside with these systems,
there are also a large number of scheduling models proposed
[10]-[16]. Although our problem can be treated as a special
case of some known general scheduling models, its special-
ized settings can be exploited for more effective solutions,
making it scalable to larger instances. Observed that in our
setting, servers within each cloud are typically connected by
a high-bandwidth, low-latency network (e.g., Gigabit LAN),
whereas connections across the two clouds have to go through
a wide area network or the Internet, having relatively smaller
bandwidth and higher latency. Also, according to today’s typ-
ical cloud pricing models [17], data transmission within each
single cloud is free-of-charge while data traffic across the two
clouds incurs high monetary cost, e.g. $0.12/GB. Hence, we
can group and treat the servers in our setting as two servers:
one private server with a fixed amount of computing power
and one public server with elastic resources, and connections
between these two servers are costly. In addition, in many
scenarios the effect of public cloud’s computation cost is
much lower than the inter-cloud communication cost [17].
Therefore, we can stress less on the public servers’ compu-
tation cost in the cost model. The security requirement places
another hard constraint on where certain streams can be pro-
cessed. These specialized settings in turn allow us to focus on
the processing of larger number of streams (e.g., hundreds)
with reasonable length of tasks, e.g., around 10 operations per
task.

In this paper, we model stream processing as a set of
task templates whereby each template can be independently
instantiated to multiple video streams. Each task template



is represented as a loop-free, directed graph of operations,
with the code provided by application developers. In addition,
the developers can specify multiple connection points [6] in
a task graph whereby clients can dynamically tap into the
stream data during execution. The locations of the connection
points provide useful information to the scheduler, so that
dynamic changes to the task graphs do not necessarily trigger
rescheduling. However, as sensitivity of video streams can
change during run-time, rescheduling might be required occa-
sionally. In particular, if the sensitivity of a stream in the pub-
lic cloud changes from non-sensitive to sensitive, the stream
must be rescheduled to the private cloud to prevent potential
data leakages. This can be done by buffering or dropping data
frames before the rescheduling is completed.

We formalize the scheduling problem as an optimization
problem that minimizes the overall monetary cost to be in-
curred on the public cloud, with the resource, security and
Quality-of-Service (QoS) constraints. We propose an algo-
rithm that exploits the aforementioned specialized properties
of hybrid clouds for more efficient solutions. Essentially, for
each task template of the input, we search for the set of “mini-
mal configurations” and then employ integer programming to
select the desired configurations. For templates that are rea-
sonably short (~10 operations), the set of minimal configura-
tions is typically sufficiently small for state-of-the-art solvers
[18]. In cases where the number of minimal configurations is
large, we provide a heuristic that selects only a few represen-
tatives to further improve the performance. The challenge in
our scheduling problem is more on determining how a large
number of relatively short tasks are to be scheduled on the
two servers, instead of scheduling a single large task among
multiple servers considered by many existing works.

The proposed stream processing model and scheduling
mechanism can be built on top of existing stream processing
systems like Borealis [7] and Storm [19]. To facilitate exper-
iments and testing, instead of using existing platforms, we
implemented a proof-of-concept system with basic function-
ality of video streaming and several operations like transcod-
ing, face detection, etc. We conducted extensive experiments,
through both large-scale simulations and actual runs with our
proof-of-concept system on Amazon EC2. The result shows
that it is feasible to process video streams in a hybrid cloud,
preserving data-privacy and reducing monetary cost as com-
pared to a pure public cloud deployment. The overheads of
our scheduler are also much lower than other alternatives.

II. HYBRID CLOUD VIDEO SURVEILLANCE MODEL
A. System Model

We consider a hybrid cloud model as shown in Fig. 1. In
this model, the private cloud has a fixed number of servers,
each of which has limited computing power. In contrast, the
public cloud has elastic computing resources that can be allo-
cated and de-allocated on-demand. Servers within each cloud
are connected to each other by a high-bandwidth, low-latency
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Figure 1. System model for hybrid cloud video surveillance.

network (e.g., Gigabit LAN) whereas connections between
servers across the two clouds have to go through a WAN or
the Internet. Hence, the inter-cloud connections have rela-
tively smaller bandwidth and larger delay. In addition, under
current typical cloud pricing models, data transmission within
each single cloud is free-of-charge while data traffic to the In-
ternet (i.e., inter-cloud data traffic) incurs high monetary cost,
e.g., $0.12/GB [17]. Based on these observations, we group
and treat the servers in our system as two servers: a private
server with a limited aggregated computing power, denoted as
C, and a public server with elastic computing capacity. These
two servers are connected by a long-distance link with an
estimated bandwidth B and link delay L, while data transfer
within each server incurs no cost.

The system contains a large number of surveillance cam-
eras distributed over a wide area. Each camera generates a
video stream that is to be sent to some servers in the two
clouds. The stream is processed in the hybrid cloud, in a
way specified by application developers, and then streamed
to multiple clients. Besides, input/output streams can also be
originated from/written to storage servers. Note that both the
cameras and clients can be within or outside the local area
network of the private cloud.

B. Stream Processing Model

A task template consists of a sequence of operations that
can be applied to multiple input streams. We model a task
template T" as a directed, acyclic and labeled graph G(V, E)
where V' = V.. UV, U Viing. The set Vi, is the set of
stream sources which could be cameras or recorded videos
retrieved from storage systems; Vy;, is the set of streaming
sinks which could be display devices or storage systems as
well. V,, contains the set of operations such as transcoding,
background extraction, object detection etc. Application de-
velopers can provide the code for each operation or select it
from a library. The edges in E define the data flows between
the vertexes in V. Fig.2 gives an example of task template.
Recall that a single template can be independently instanti-
ated to multiple input streams. In an instantiated task, each
source and sink node is associated with a location, e.g., IP
address, indicating in which cloud, private or public, the node
resides, while operations in Vj,, have not been assigned. In
contrast, in an assigned task, not only the source and sink
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Figure 2. Illustration of a stream processing task.

nodes are instantiated, each operation in V,,, is also assigned
a label, private or public, indicating in which cloud the oper-
ation is to be executed.

Similar to Aurora* [6], an application developer can spec-
ify multiple connection points in a task graph where data
streams will be cached in some storage for a certain amount
of time. Such connection points are useful in supporting ad-
hoc queries and dynamically joined clients. For example, one
might be interested in finding out whether a particular person
appeared in a building yesterday evening between 6-12pm.
Such a query can be similarly defined and attached to the con-
nection points of existing running tasks that have the required
data, without rescheduling the whole set of tasks.

C. Security Model

We consider servers on the public cloud to be honest-but-
curious, that is, they will follow the protocol and carry out the
required computation honestly, but may retain information
collected from the computation for malicious purposes. In
contrast, the private servers are fully trusted.

Every stream in a task is tagged with an attribute, sensitive
or non-sensitive. Sensitive streams must not leave the private
cloud in order to prevent data leakages while there is no con-
straint for non-sensitive streams. Unless otherwise specified,
all streams in a task are tagged.

Not all possible ways of tagging streams are valid. If all
the input streams of an operation are non-sensitive, the output
stream has to be non-sensitive as well. We refer it to as the
non-upgrading policy. The non-upgrading policy imposes a
constraint which excludes certain undesired scenarios, e.g.,
excluding cases where non-sensitive streams that have been
pushed to the public cloud are later tagged to be sensitive. On
the other hand, it is possible that on sensitive input, the output
is non-sensitive. For example, an operation that takes in a sen-
sitive video stream may output a lower resolution stream that
is deemed as non-sensitive. We refer it to as the downgrading
policy. This policy allows pushing more computation to the
public cloud which is useful in many scenarios.

Note that the sensitivity of a stream can change during
runtime, from sensitive to non-sensitive or vice versa, and a
rescheduling may be required due to such realtime changes.
In particular, if a stream assigned to the public cloud suddenly
becomes sensitive, it must be rescheduled to the private cloud
so as to meet the security requirement. Data frames have to
be properly “buffered” or dropped before the rescheduling
is fully carried out. This will introduce certain performance
overhead, either in terms of extra delays or data losses. Fortu-
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Figure 3. Architecture of hybrid cloud video surveillance system.

nately, there are existing techniques supporting fast operation
migration during runtime [6], [13].

D. Cost Model

Each operation in the task graph implements a video pro-
cessing function, requiring a certain amount of computing
power, denoted as c, to generate the output in realtime. In this
paper, we measure computing cost in terms of the number of
ECUs (Amazon EC2 Compute Unit).! We assign the cost of
1 ECU to an operation if the operation can be carried out in
realtime by a machine with 1 ECU capacity. The computing
cost can be estimated based on the input streams’ frame size
and data rate, combined with pre-conducted resource profil-
ing baselines for the operations. Each connection in the graph
represents a data flow from one operation to another, which
requires a certain amount of bandwidth, denoted as b, to trans-
fer the data in realtime. The bandwidth cost is measured in
MB/s, which can be similarly estimated from the user-desired
stream rate and frame size.

One advantage of our cost model is that, it directly approx-
imates monetary cost, giving system administrators a good
overview of the projected cost.

E. System Architecture

Fig. 3 shows the overall architecture of the proposed hybrid
cloud video surveillance system. The Sensitivity Analyzer,
provided by application developers, takes as input a set of task
templates and the corresponding source and sink locations,
evaluates the sensitivity of the streams, and outputs a set of
instantiated tasks.

The instantiated tasks are then fed into the Scheduler,
together with the information of performance requirement
and system configuration including private cloud’s computing
power, inter-cloud bandwidth and link delay etc. Based on
these inputs, the Scheduler decides how to assign the opera-
tions in each task to the two clouds.

Each cloud, public or private, has an intra-cloud scheduler.
As scheduling within a cluster is not within the scope of this
paper, in our experiment, we use a simple greedy algorithm
that always picks the next available server.

! According to Amazon, each ECU provides the equivalent CPU capacity
of a 1.0-1.2 GHz 2007 Opteron or Xeon processor.



The Event Detector detects changes in the task graphs,
stream sensitivity and other system configurations, and initi-
ates rescheduling when necessary.

III. PROBLEM FORMULATION

Although our scheduling problem can be treated as a spe-
cial case of known general scheduling models, its specialized
“two-server” setting leads to more efficient solutions and thus
allows scaling up to larger instances. This section formal-
izes the scheduling problem, with possible extensions of the
stream processing model.

A. Optimization Problem

Usage of public cloud resources incurs additional monetary
cost, including both the compute and bandwidth cost. Given
a set of tasks each consisting of multiple operations, we want
to assign each operation to either the public or private cloud,
such that the total monetary cost to be incurred on the public
cloud is minimized, subject to the constraints that the private
cloud cannot be overloaded, sensitive streams cannot flow
into the public cloud and the QoS requirements can be met.

1) The Scheduling Problem: The input is a sequence of
task templates 7 = (71, ..., T,,) and a sequence of integers
R = (rq,...,ry) where each template 7; is to be instan-
tiated r; times to different sources and sinks. For ease of
exposition, let us rewrite the input in the equivalent form of
T =(T,...,T,) where each T; is an instantiated task, and
n = Y, r;. Each operation v’ in T; is associated with a
computing cost cj and eachlconnectlon from v] to vk in T}
requires a bandwidth cost b%,. Let the QoS requirement be
the maximum allowed end-to-end delay d; for each Ti. The
scheduling problem is to decide the binary assignment x; for
each operation v} in T} (where value 0 and 1 corresponds to
being assigned to public and private respectively), in such a
way that the total incurred monetary cost on the public cloud
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is minimized, subject to the following constraints: (1) the
private cloud must not be overloaded, i.e., Y-, . cizl < C;
(2) sensitive streams must not leave the private cloud; and (3)
any assigned task must meet the delay requirement. Details on
the determination of delay will be discussed in Sect. III-A3.
Recall that in the input, the source and sink nodes are already
labeled to be in either the public or private cloud and thus
cannot be reassigned.

2) Determining o and B: The first term in the above objec-
tive function (1) represents the computation cost on the public
cloud and the latter represents the bandwidth cost for inter-
cloud data transmission.? Since we are handling stream data,
we measure the cost rate, e.g., dollars per hour. The param-
eters v and S represent the unit-price, whose values could

2While some cloud providers only charge for the data traffic out, in this
paper, we assume that both two-way traffic incur monetary cost.

be determined according to the pricing model of the cloud
provider. Taking Amazon EC2’s pricing model as an exam-
ple, each ECU costs $0.08/hour and inter-cloud bandwidth
usage costs $0.19/GB (for Singapore regions), hence, « and
B can be set as 0.08 and 0.684 accordingly. Due to the large
video data, computation cost is typically much less than com-
munication cost. To illustrate, let us assume that an instance
with 1 ECU is able to handle realtime processing of one high-
definition video stream with 1 MB/s inter-cloud bandwidth
requirement, then the cost would be $0.764 for a 1-hour run
($0.08 for computation + $0.684 for bandwidth), where the
computation cost is around one-eighth of the bandwidth cost.
This suggests that minimizing only the bandwidth could give
good approximations to solutions that minimize the monetary
cost. This is verified in our experiments in Sect. V. Hence, to
speed up the scheduler, one could omit the computation cost
in the cost model.

3) Estimating end-to-end delay: For an assigned task, the
end-to-end delay is the maximum delay among all its paths.
Along a path, the total delay is the sum of the processing time
and the communication latency. We assume that the process-
ing time of each operation is specified in the input, and the
delay due to inter-cloud communication is a known constant.
Recall that intra-cloud communication is assumed to incur
no delay, however, it can be included in the calculation if
required. From the information provided, we can estimate the
end-to-end delay for each assigned task.

B. Extension of the Stream Processing Model

Our scheduler can also handle the variation where there
are multiple ways to carry out a task. In this variation, an
application developer can specify multiple task graphs that
are considered to be functionally equivalent. For example, a
task of performing face detection and drawing boxes on de-
tected faces on a high-resolution video stream can also be car-
ried out in another way: first, transcodes the high-resolution
video stream to a low-resolution stream; performs face detec-
tion on the low-resolution stream; and then draws boxes on
the original high-resolution stream. Note that face detection
can achieve high accuracy on low-resolution videos [20]. If
the low-resolution stream is tagged as non-sensitive, and the
above two ways are specified as functionally equivalent, when
necessary, the scheduler can push face-detection to the public
cloud to reduce load in the private cloud.

IV. PROPOSED APPROACH

Not surprisingly, the scheduling problem defined in Sect.
II1 is NP-hard.? Nevertheless, by pruning, we are able to han-
dle fairly large instances. Essentially, for each task template,
our algorithm searches for the set of “minimal configura-
tions” and then employs integer programming to select the
desired configurations. For a template with, e.g., 10 opera-
tions, although there are 2'° configurations, typically it can be

3This can be proved by a reduction from the 0-1 knapsack problem.



pruned down to around 20. For larger templates, we provide
a heuristic to further reduce the number of configurations.

A. Transforming to Integer Programming

A task template with ¢ operations gives 2¢ ways of assign-
ing its operations to the two clouds. Let us call each assign-
ment a configuration and denote it as f = (fP"?, fPu?) where
fPriand fPu are the set of operations assigned to the private
and the public cloud respectively. Let us denote F(T) as the
set of all configurations for a task template 7T'.

For each f € JF(T), we can calculate a 2-tuple load-
cost value (a, b) where a is the computing load on the private
cloud and b is the cost. For our choice of objective function,
b is the monetary cost to be incurred on the public cloud.
Similarly, we can estimate the end-to-end latency £(f) for
each f as described in Sect. III-A3. Let F(7) = F(Ty) U
- UF(Tn)-

The scheduling problem described in Sect. III can be easily
transformed to the following integer programming problem:

1) Integer Programming: Given the input T = (T}, T,
...y Tym) and R = (ry,79,...,7,y) Where each task template
T; is to be instantiated to r; streams. We want to find x;, the
number of times a configuration f; in F(7) is to be instanti-
ated, such that the total monetary cost,
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is minimized, subject to: (1) the private cloud resource con-
straint, i.e., Zl a;x; < C; (2) the number of instances con-
straint, i.e., Vi € [Lm], Yy perr,)®i = 755 (3) the
security constraint, i.e., if x; > 0, then the corresponding
configuration f; does not push sensitive streams to the public
cloud; and (4) the QoS constraint, i.e., Vj € [1,m], Vi, if
fi € F(Tj) and £(f;) > dj, x; = 0. This is an integer
programming problem [21] with |F(7")| unknowns and about
3m + 1 constraints.

B. Minimal Configurations

For a template T, the set of all configurations in F(T)
could be large. Fortunately, only a small number of them need
to be considered. Let us consider two different configurations
J and f with respective load-cost value of (a,b) and (a, b)
satisfying a < a and b < b. Note that f will not appear in an
optimal solution (otherwise, we can replace it by f, yielding a
solution with smaller cost). Hence, consider the partial order
< on F(T) where f; =< f;iff a; < a; and b; < b,
the optimal solution must be in the minimal configurations.
Fig. 4 gives an example of minimal configurations, marked
as solid red diamonds. Let MF(T') be the set of minimal
configurations for each 7.

Study on the size of MF(T'). We use 5 different task templa-
tes created in Sect. V-A where the number of operations varies
from 8 to 12. For each template, we assign a random comput-
ing cost within (0,2] ECUs to each operation and a random

Monetary cost ($/h)

Computation load on private cloud (# of ECUs)

Figure 4. Illustration of configurations in the 2D load-cost graph. Those
marked as solid red points are the minimal configurations.
Table I
STUDY ON THE SIZE OF MINIMAL CONFIGURATIONS MF(T)).
MF(T
Task Template |7 (1) min | max l avg( l 95th percentile
Te 28 3 25 9.658 15
7 29 4 25 11.4 17
Ty 210 5 26 13.31 19
Ty Pl 5 32 13.567 21
Tho 212 5 36 14.257 22

bandwidth cost within (0, 1] MB/s to each connection. The
values of o and /3 are set to be 0.08 and 0.684 respectively.
The process is repeated 1,000,000 times for each template.

The result is shown in Table I. Interestingly, for more than
95% of the instances, the size of MJF(T') grows linearly
rather than exponentially. The maximal value of |[MF (T
observed in all the runs is only 36.

C. Heuristic Selecting Method

However, there could be cases where |[MJF(T)| is large,
e.g., when T is large. For such cases, we provide a heuristic
to select a constant number € (e.g., ¢ = 20) of representatives
among the minimal configurations. Different from using all
the minimal configurations, the heuristic may not lead to op-
timal solutions.

As illustrated in Fig. 5(a), let us consider three consecutive
configurations f;_1, fi, fi+1 in MJF(T), which form a con-
cave curve. If both f;_; and f; ;1 contribute to a solution, then
the aggregated load-cost value may fall on the dotted line I
as shown in Fig. 5(a), leading to a configuration that is greater
than f; under <. In this sense, there is a good chance that
both f;_; and f;y; are not in the optimal solution, and can
be represented by f;.

Let us define the ratio of Iy over [; as the “likelihood” that
fi—1 and f;1 can be excluded. Our heuristic repeatedly picks
the largest “likelihood” among consecutive minimal configu-
rations, until € configurations are selected. Fig. 5(b) illustrates
the selection result of 5 representatives, marked as red circles.

Effectiveness of the heuristic. To investigate the effectiveness
of the heuristic, we use one task template created in Sect. V-A
with 7 = 100 and C ranging from 400 to 800. We compare
the optimal cost derived from all the minimal configurations,
and the optimal cost derived from the selected configurations.
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Figure 5. Illustration of the heuristic.

Table II
EFFECTIVENESS OF THE HEURISTIC.
Private cloud computing Max Avg
Template Conf. Set power (# of ECUs) Diff. Diff.
400 600 800
Minimal 94.920 65.829 36.739
Ts Selected 94.922 65.833 36.744 0.10% 0.06%
Minimal 128.234 93.930 60.075 o
To Selected 128.440 93.981 60.075 0.16% 0.07%
Minimal 142.152 106.684 | 71.171
Tio Selected | 142166 | 106.761 | 71270 | O 14% | 0.073%

The result is shown in Table II. The same test is also repeated
on other 2 task templates.

The empirical result shows that our heuristic is effective,
giving solutions that are within 0.1% of the optimal ones.

V. EVALUATION

We conduct experiments through both simulations and ac-
tual runs with our proof-of-concept system on Amazon EC2.
The simulations can be repeatedly conducted on large in-
stances, whereas the actual runs involve more accurate run-
ning environment but on relatively smaller instances.

A. Simulations

The simulations are conducted under two different settings:
with and without security constraint. To this end, 10 different
task templates are created using the method described in [11],
where the number of operations in each template ranges from
3 to 12 (with a step of 1). Each operation is assigned a random
computing cost within (0,2] ECUs and each connection has a
random bandwidth cost within (0,1] MB/s. Each template is
to be instantiated to 10 video streams, hence there are a total
of 100 video streams. The source and sink nodes are in the
private cloud. We apply a few schedulers (described below)
and vary the computing power of private cloud from 200 to
600 ECUs with step size 100. The values of « and 3 are set to
be 0.08 and 0.684. The bandwidth and delay of the inter-cloud
connection are set to be 20 MB/s and 250ms respectively. The
end-to-end delay constraint for each template 7" is set to be
P + 1s where P is the total processing time along the longest
path in 7. Hence, the delay incurred by the communication is
constrained to be at most 1 second.

We compare among the following 5 scheduling algorithms:
1) Task-Level Water-filling (TLW): assign all operations in a
task to private if one of the streams is tagged as sensitive, oth-
erwise assign all operations to the public cloud; 2) Task-Level

Table III
TIME TO SOLVE THE INTEGER PROBLEMS.

F(T) MF(T)
# of Configurations 8184 157
Corresponding Solving Time 2.794s 0.078s

Random (TLR): same as TLW for tasks with at least one sensi-
tive stream. For tasks tagged with only non-sensitive streams,
the whole task is randomly assigned to the public or private
cloud; 3) Greedy: consider each task one-by-one iteratively.
In each round, choose the optimal assignment (minimizing
the cost) w.r.t. the updated resource requirements. 4) Pro-
posedC: our proposed approach with objective to minimize
the monetary cost; and 5) ProposedB: our proposed approach
with objective to minimize the inter-cloud bandwidth usage.

1) Simulation result without security constraint: In this si-
mulation, all the 100 streams are non-sensitive. Fig. 6 shows
the result under this setting. Observed that both TLR and
TLW underutilize the private cloud resources (Fig. 6(c)). Both
of our proposed schedulers outperform the others in all the
three measures. The differences between ProposedC and Pro-
posedB are indistinguishable as bandwidth cost dominates the
total cost.

Table Il shows the average time taken by the proposed
scheduler. We can reduce the 8184 unknowns down to 157,
which in turn reduces the computing time to be less than 0.1s.

2) Simulation result with security constraint: We then ran-
domly tag the 100 streams and repeat the above simulation.
The result, averaged over 3 random runs, is shown in Fig. 7.
TLW, TLR and Greedy cannot schedule all the tasks when
the private cloud has low computing power (i.e., C' = 200),
partly due to the short-sightedness in using the private cloud
resources. In contrast, the proposed schedulers exploit global
knowledge on all the tasks and hence can schedule all of
them. Our schedulers again outperform the other alternatives.

Observed that with 200 ECUs in the private cloud, and as-
suming at the peak overall workload of about 650 ECUs, the
number of ECUs employed in the public cloud is about 450
(Fig. 6(c)), incurring about 13 MB/s inter-cloud bandwidth
(Fig. 6(b)). This amounts to monetary cost of approximately
36 + 8.9 = $44.9/h during peak. Considering an “offload all”
strategy that pushes all video streams and computation to
the public cloud, the overall cost would be around $63.1/h.
Hence, we have a reduction in cost of about 29%. With more
private resources, the monetary cost can be further reduced,
as indicated in Fig. 6 and 7.

B. Prototype Evaluation

We also implemented a proof-of-concept system for hy-
brid cloud video surveillance, with basic functionality of
video streaming and operations including transcoding, back-
ground extraction, face detection etc. We remark that the pro-
posed scheduling mechanism can be incorporated into exist-
ing stream processing systems like Apache Storm.

1) Hybrid Cloud Setting: We build a hybrid cloud on Ama-
zon EC2 across Singapore and US West. The private cloud
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Figure 8. Task template for prototype evaluation which has two alternatives.

has 4 standard large instances located at Singapore. Each in-
stance provides 2 virtual cores with 4 ECUs, 7.5GB memory
and 840GB storage. Hence, the private cloud in our setting
has a total computing power of 16 ECUs. The public cloud,
located at N. California, has 10 large instances that can be
allocated and released on-demand. All instances run Ubuntu
12.04. The available bandwidth between these instances is
not specified by Amazon. An informal test of file transfer
using scp indicates ~40 MB/s within the same region (e.g.,
from Singapore to Singapore), and 5-8 MB/s across different
regions (e.g., from Singapore to California). The network de-
lay is less than 1 millisecond for intra-cloud connections and
around 250 milliseconds for inter-cloud connections.

2) Experimental Setting: We experiment on one task tem-
plate, which performs face recognition and behavior analysis
that can be carried out in two different ways as illustrated
in Fig. 8, with the cost estimated from a few test runs. We
gradually increase the number of streams from 4 to 12, with
randomly half of them being tagged as sensitive. The max-
imum allowed end-to-end delay is set to be 5s. We record
the actual amount of data transfer across the two clouds, the
average end-to-end delay, and calculate the monetary cost
spent on the public cloud for a 1-hour run.

3) Result and Analysis: The result is shown in Fig. 9. Both
TLW and TLR fail to schedule all the tasks when the num-

ber of streams is greater than 9. Greedy can handle more
tasks by pushing some non-sensitive operations to the public
cloud, but also fails when the number of streams reaches 12.
The proposed schedulers give the smallest cost, bandwidth
usage and average end-to-end delay. Since bandwidth cost
dominates the total cost, in the experiment, ProposedC and
ProposedB always choose the same configurations. Hence,
they are rendered as one line (Proposed) in Fig. 9.

VI. RELATED WORK

Many stream processing systems have been developed in
the past few decades, from centralized settings like Aurora [6]
to distributed settings like Borealis [7], Nephele [9], S4 [8]
and Storm [19]. Together with these systems, there are also a
large number of works focusing on scheduling among multi-
ple servers, with various goals such as to minimize the end-to-
end application latency [10], [11], maximize the aggregated
throughput [14], [15], optimize a combination of latency and
throughput referred to as network-usage [12], [13], balance
the workload and resource usage among all servers [16], [22],
or maximize the reuse among multiple queries [23], [24]. Our
work differs from the previous works in its two-server setting,
which can be exploited for more efficient solutions and hence
enables scheduling of multiple tasks on a large number of
video streams.

With the recent advances in hybrid cloud computing, there
are increasing research interests in workload scheduling on
hybrid clouds. Zhang et al. [1] propose a hybrid cloud com-
puting model for Internet-based applications with highly dy-
namic workload, and augment this model with a workload
factoring service. De et al. [25] and Mattess et al. [26] sim-
ilarly evaluate the cost-benefits of different strategies for
scheduling workloads between a local cluster and a public
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cloud. Zhang et al. [27] present a generic framework for se-
cure MapReduce computation on mixed-sensitivity data, with
various scheduling modes proposed to improve the efficiency
and reduce cost. In addition, Neal et al. [2] investigate the
possibility of moving video surveillance systems to the cloud
and conclude that it is more expensive and requires additional
reviews for legal implications as well as security threats.
We remark that with the hybrid cloud model and effective
scheduling, the above issues could be significantly mitigated.

VII. CONCLUSIONS

The hybrid of a trusted private cloud and an elastic public
cloud naturally addresses the issues on security and seasonal
workload in large video surveillance systems. Nevertheless,
to fully utilise the potential of the hybrid setting, it is de-
sired to have an effective scheduler, so as to reduce cost and
enhance usability. We proposed a scheduler that exploits the
two-server setting, and gave empirical result to show that,
with an effective scheduler, it is feasible to process large-
scale mixed-sensitivity video streams in the cloud. The costs
are much lower than a pure public cloud deployment, with
overheads smaller than other alternatives. For future work, it
would be interesting to employ existing techniques of fast op-
eration migration [6], [13] to facilitate realtime rescheduling.
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