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Motivation

> The ubiquity of time series/multimedia data.
> Privacy concerns.
> The needs of sharings and/or collaboration.




Application Scenario*

Sensor Cloud:

~ Sensors are spatially arranged.
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*Our techniques is also applicable to other applications involve multidimensional data.
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*Our techniques is also applicable to other applications involve multidimensional data.



Application Scenario*

Sensor Cloud:

~ Sensors are spatially arranged.

- Sensors continuously sense, = .
encrypt and stream samples to

the cloud.

- Samples are indexed
temporal and spatial
iInformation.
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*Our techniques is also applicable to other applications involve multidimensional data.
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Information.

- Sharings is done in query-and- ¢ ¢ ¢
response fashion: a query = -G
specifies a desired set of Si Tsetup
samples, a response grants
access to the desired set. ;’User N ?(S » Owner

*Our techniques is also applicable to other applications involve multidimensional data.



System model
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> Q1 - d-dimensional range query

- Samples' indices form a d-dimensional.
e.g.: all samples on street A on date X.
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Query Types

> Q1 - d-dimensional range query
- Samples' indices form a d-dimensional.
e.g.: all samples on street A on date X.
> Q2 - Down-sampling query
- Samples' incides form a down-sampled lattice.

e.g.. Y samples per each hours on street A on
date X.

> Q3 - General query

- 0000000

- Samples' indices may or may not have any @ ® ® @ ® ® 0 ¢
structure. 000000
000000

e.g.: random set of samples capturedondate X. | ® ® ® @ ® ® @ ¢




Problem Definition

- Security Requirements:

» Confidentiality of the samples. ° 8 gi% 8 % 881
> Collusion resistance. 00000000
ini - .. 000 00 0006

~  combining multiple aggregated keys could not derive = ===t eeeenenns

more information than each aggregated key can
individually derive

~ Sensors are trusted and independent.



- Security Requirements:

>

>

~ Sensors are trusted and independent.
- Efficiency Requirements:

>

>

>

>

Problem Definition

Confidentiality of the samples.

Collusion resistance.

combining multiple aggregated keys could not derive
more information than each aggregated key can

individually derive

Low computation load.
Low communication overhead.
Low storage overhead.
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Our Solution

- Each sample is encrypted individually using unique key to
avoid collusion attack.



Our Solution

- Each sample is encrypted individually using unique key to
avoid collusion attack.

- Leverage on KAC to ensure:

~ Aggregating any set of keys into one constant size key,
attaining low communication overhead.

~ Low storage overhead by constant size ciphertexts.



Our Solution

- Each sample is encrypted individually using unique key to
avoid collusion attack.

- Leverage on KAC to ensure:

~ Aggregating any set of keys into one constant size key,
attaining low communication overhead.

~ Low storage overhead by constant size ciphertexts.

- Propose fast reconstruction technigues to reduce the
computation load.

> Achieving orders of magnitude speed-up over original
KAC.



KAC Reconstruction Review

> Reconstructing a ciphertext with index i e S
using an aggregated key k. requires:

where all 9 can be drawn from public
parametters and n IS system capacity.

> This incurs O(|S|?) group multiplications to
reconstruct all samples in S.
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Fast Reconstruction for Q1

For Q1 with S =[1,m]:

> i = Gn+1+i, I = Hsgi—j Py = Q;lRi
j€

- A special recurrence relation:

Rit1 = (Gi—m) ' - Ri- s
l.e. obtaining R, from R; with two multiplications.

=> In general, reconstructing samples in d-dimensional
range query requires only O(d|S|) multiplications;

l.e. linear time. e00000 0O
000000

—— — e e —— e e e — —




Fast Reconstruction for Q1

For e.g., with S [1..5], system capacity n = 20:

____________________

_____________________



Fast Reconstruction for Q1

For e.g., with S [1..5], system capacity n = 20:
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Fast Reconstruction for Q1

For e.g., with S [1..5], system capacity n = 20:

P1 = g17 X g18 X g19 X g20

P2 = gig X gig X 920 X g22

bs= g1 XiGe K G X

P4 = Igzo X g22 X 923' X g24

_____________________
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Fast Reconstruction for Q1

For e.g., with S [1..5], system capacity n = 20:

P1 = gdi7 X g18 X g19 X g20

p2 = gis X gi1g X ga20 X g22

P3 = gi9 X g20 X g22 X g23

P4 = g20 X 9'25_%_9_2_3'_*_9_221\

P5 = ngzz X g23 X g24' X g25

_____________________



Fast Reconstruction for Q2

Transform and Conquer strategy:

~ Transform the coordinate system such that indices
of the required samples correspond to Integer
coordinates.

- Apply the special recurrence relation as in Q1.

=> Also requires only O(d|S|) multiplications;
l.e. linear time.




Fast Reconstruction for Q3

> Samples' indices In Q3 may not have an special
structure, to which the special recurrence could

not apply.
> Problem transformation:

- Let P, be a multi-set comprising of all g, required to

compute p; , T the target collection comprising of all
P..

~ A computation plan to evaluate all p; Is equivalent to

that of constructing T.

000000 O
000000 0
0000000
0000000
00000000




Fast Reconstruction for Q3

Minimum Spanning Tree based Strategy:

- Define dist(i, J) = |P,\P| + |P,\P; |

> A computation plan is determined by solving for the
MST on a graph G = (V,E):
- G Is complete.

~ V comprises of |T|+1 vertices: Vertex v, represent a multiset
P., and special vertex v represents empty multiset.

- An edge e; connecting v, and v; has weigh of dist(i,}). All
edges orignating from v have weight of |T| - 2.



Fast Reconstruction for Q3

Fore.g. S=1[2,4,5,7,9], n = 20:
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P9 = g23 X g25 X g26 X §28
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Fore.g. S=1[2,4,5,7,9], n = 20:
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Fast Reconstruction for Q3

Fore.g. S=[2,4,5,7,9], n=20:
P2 = 14 X 16 X g18 X 19
P4 = gi6 X gi18 X g20 X 923; dist (P ,P) =8
P5 = gi7 X g19 X g22 X g24 e
P71 = 919 X g23 X g24 X 26
P9 = 923 X g25 X g26 X g28 R

3 3 /
T={P,P,P.P P} v 8
o &

*Some edges in the above graph are ignored for visual clarity.



Fast Reconstruction for Q3

Even better computation plan can be achieved by:

- Finding a minimum-weight Steiner tree on G

>

Introduce intermediate vertices: i.e. intermediate values.

- Trade-off between number of aggregated keys and
reconstruction time:

>

>

>

Split S into several subqueries, issuing one key for each query.
The splitting is done using single-linkage clustering method.

The distance betwee two “clusters” S, and S, are total number

of multiplications required to reconstruct samples in the union
cluster S_US,.



Experiments
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Figure 1. Reconstruction time for Q1 & Q2.
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Experiments
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Figure 2: Reconstruction time for Q3. MST(0) indicates the computation plan constructed
with o intermediate values. m is the size of query result.
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Figure 3: Trade-off between number of aggregated keys and reconstruction time for Q3.
k is number of sub-queries, m is the size of query result.



Experiments
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Related Works

Key sharing with hierarchical structures (e.g. trees) (Tzeng '02,
Benaloh '09, Atallah '09)

Not applicable for multi-dimensional data not following hierarchical
structure.

Key Policy — Attribute based Encryption (Chase '06, Hohenberger
'08, Lewko '09)

Prohibitive performance overhead.
Complex queries over encrypted data (Boneh '07, Shi'07)
Irrelevant security requirement (e.g. secrecy of all attributes).
KAC follow-ups (Tong '13, Deng '14)
Did not address the fast reconstruction techniques.



Conclusions

~ Fast reconstruction techniques for KAC enables
scalable sharings of sensitive data.

> Our observation Is also applicable to other
cryptographic  primitives Involving  group
multiplications such as broadcast encryption
and redactable signatures.
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Hung Dang
hungdang@comp.nus.edu.sg
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