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Motivation

➢ The ubiquity of time series/multimedia data.
➢ Privacy concerns.
➢ The needs of sharings and/or collaboration.



Application Scenario*

Sensor Cloud:

➢ Sensors are spatially arranged.

*Our techniques is also applicable to other applications involve multidimensional data.
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Application Scenario*

Sensor Cloud:

➢ Sensors are spatially arranged.
➢ Sensors continuously sense, 

encrypt and stream samples to 
the cloud.

➢ Samples are indexed by 
temporal and spatial meta-
information.

➢ Sharings is done in query-and-
response fashion: a query 
specifies a desired set of 
samples, a response grants 
access to the desired set.
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System model
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Query Types

➢ Q1 - d-dimensional range query
➢ Samples' indices form a d-dimensional.

e.g.: all samples on street A on date X.

Q2 - Down-sampling query

Samples' incides form a down-sampled lattice.

e.g.: Y samples per each hours on street A on 
date X.

Q3 - General query

Samples' indices may or may not have any 
structure.

e.g.: random set of samples captured on date X.
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Problem Definition

➢ Security Requirements:
➢ Confidentiality of the samples.
➢ Collusion resistance.

➢ combining multiple aggregated keys could not derive 
more information than each aggregated key can 
individually derive

➢ Sensors are trusted and independent.

Efficiency Requirements:

Low computation load.

Low communication overhead.

Low storage overhead.
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Our Solution

➢ Each sample is encrypted individually using unique key to 
avoid collusion attack.

Leverage on KAC to ensure:

Aggregating any set of keys into one constant size key, 
attaining low communication overhead.

Low storage overhead by constant size ciphertexts.

Propose fast reconstruction techniques to reduce the 
computation load.

Achieving orders of magnitude speed-up over original 
KAC.
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KAC Reconstruction Review

➢ Reconstructing a ciphertext with index i ϵ S  
using an aggregated key kS requires:

where all    can be drawn from public 
parametters and    is system capacity.

➢ This incurs O(|S|2) group multiplications to 
reconstruct all samples in S. 
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Fast Reconstruction for Q1

For Q1 with S = [1,m]:
➢

➢ A special recurrence relation:

i.e. obtaining         from      with  two multiplications.

=> In general, reconstructing samples in d-dimensional 
range query requires only O(d|S|) multiplications; 
i.e. linear time.
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Fast Reconstruction for Q2

Transform and Conquer strategy:
➢ Transform the coordinate system such that indices 

of the required samples correspond to integer 
coordinates.

➢ Apply the special recurrence relation as in Q1.

=> Also requires only O(d|S|) multiplications;
 i.e. linear time.



Fast Reconstruction for Q3

➢ Samples' indices in Q3 may not have an special 
structure, to which the special recurrence could 
not apply.

➢ Problem transformation:
➢ Let Pi be a multi-set comprising of all      required to 

compute    , T the target collection comprising of all 
Pi.

➢ A computation plan to evaluate all     is equivalent to 
that of constructing T.



Fast Reconstruction for Q3

Minimum Spanning Tree based Strategy:
➢ Define dist(i, j) = |Pi \Pj| + |Pj \Pi |

➢ A computation plan is determined by solving for the 
MST on a graph G = (V,E):

➢ G is complete.
➢ V comprises of |T|+1 vertices: Vertex vi represent a multiset 

Pi, and special vertex v represents empty multiset.

➢ An edge eij connecting vi and vj has weigh of dist(i,j). All 
edges orignating from v have weight of |T| - 2.
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For e.g. S = [2,4,5,7,9], n = 20:



Fast Reconstruction for Q3

For e.g. S = [2,4,5,7,9], n = 20:

dist (P
4
,P

5
) = 8 

dist (P
7
,P

9
) = 4 



Fast Reconstruction for Q3

For e.g. S = [2,4,5,7,9], n = 20:

dist (P
4
,P

5
) = 8 

dist (P
7
,P

9
) = 4 

v
2

v
7 v

9

v

4

T = {P
2
,P

4
,P

5
,P

7
,P

9
}

3 3

v
4

v
5

3

3
3

6 8

6 8

*Some edges in the above graph are ignored for visual clarity.



Fast Reconstruction for Q3

Even better computation plan can be achieved by:
➢ Finding a minimum-weight Steiner tree on G

➢ Introduce intermediate vertices; i.e. intermediate values.
➢ Trade-off between number of aggregated keys and 

reconstruction time:
➢ Split S into several subqueries, issuing one key for each query.
➢ The splitting is done using single-linkage clustering method. 
➢ The distance betwee two “clusters” Sa and Sb are total number 

of multiplications required to reconstruct samples in the union 
cluster Sa S∪ b. 



Experiments

Figure 1: Reconstruction time for Q1 & Q2.
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90x speedups 



Experiments

Figure 2: Reconstruction time for Q3. MST(o) indicates the computation plan constructed 
with o intermediate values. m is the size of query result.
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Figure 2: Reconstruction time for Q3. MST(o) indicates the computation plan constructed 
with o intermediate values. m is the size of query result.

8x speedups



Experiments

Figure 3: Trade-off between number of aggregated keys and reconstruction time for Q3. 
k is number of sub-queries, m is the size of query result.



Experiments

Figure 3: Trade-off between number of aggregated keys and reconstruction time for Q3. 
k is number of sub-queries, m is the size of query result.

19x speedups 
by splitting 
into 16 sub-
queries.



Related Works

➢ Key sharing with hierarchical structures (e.g. trees) (Tzeng '02, 
Benaloh '09, Atallah '09) 

➢ Not applicable for multi-dimensional data not following hierarchical 
structure.

➢ Key Policy – Attribute based Encryption (Chase '06, Hohenberger 
'08, Lewko '09)

➢ Prohibitive performance overhead.

➢ Complex queries over encrypted data (Boneh '07,  Shi '07)
➢ Irrelevant security requirement (e.g. secrecy of all attributes).

➢ KAC follow-ups (Tong '13, Deng '14)
➢ Did not address the fast reconstruction techniques. 



Conclusions

➢ Fast reconstruction techniques for KAC enables 
scalable sharings of sensitive data.

➢ Our observation is also applicable to other 
cryptographic primitives involving group 
multiplications such as broadcast encryption 
and redactable signatures.
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