
Privacy-Preserving Sensor Cloud

Hung Dang, Yun Long Chong, Francois Brun, Ee-Chien Chang
School of Computing

National University of Singapore

Motivation

➢ The ubiquity of time series/multimedia data.
➢ Privacy concerns.
➢ The needs of sharings and/or collaboration.

Application Scenario*

Sensor Cloud:

➢ Sensors are spatially arranged.

*Our techniques is also applicable to other applications involve multidimensional data.

Application Scenario*

Sensor Cloud:

➢ Sensors are spatially arranged.
➢ Sensors continuously sense,

encrypt and stream samples to
the cloud.

User Owner
q

S

k
S

S

c
1
, c

2
,

…, c
n

Sensor
c

i

setup

*Our techniques is also applicable to other applications involve multidimensional data.

Application Scenario*

Sensor Cloud:

➢ Sensors are spatially arranged.
➢ Sensors continuously sense,

encrypt and stream samples to
the cloud.

➢ Samples are indexed by
temporal and spatial meta-
information.

User Owner
q

S

k
S

S

c
1
, c

2
,

…, c
n

Sensor
c

i

setup

*Our techniques is also applicable to other applications involve multidimensional data.

Application Scenario*

Sensor Cloud:

➢ Sensors are spatially arranged.
➢ Sensors continuously sense,

encrypt and stream samples to
the cloud.

➢ Samples are indexed by
temporal and spatial meta-
information.

➢ Sharings is done in query-and-
response fashion: a query
specifies a desired set of
samples, a response grants
access to the desired set.

User Owner
q

S

k
S

S

c
1
, c

2
,

…, c
n

Sensor
c

i

setup

*Our techniques is also applicable to other applications involve multidimensional data.

System model

User Owner
q

S

k
S

S

c
1
, c

2
,

…, c
n

Sensor
c

i

setup

Query Types

➢ Q1 - d-dimensional range query
➢ Samples' indices form a d-dimensional.

e.g.: all samples on street A on date X.

Q2 - Down-sampling query

Samples' incides form a down-sampled lattice.

e.g.: Y samples per each hours on street A on
date X.

Q3 - General query

Samples' indices may or may not have any
structure.

e.g.: random set of samples captured on date X.

Query Types

➢ Q1 - d-dimensional range query
➢ Samples' indices form a d-dimensional.

e.g.: all samples on street A on date X.

➢ Q2 - Down-sampling query
➢ Samples' incides form a down-sampled lattice.

e.g.: Y samples per each hours on street A on
date X.

Q3 - General query

Samples' indices may or may not have any
structure.

e.g.: random set of samples captured on date X.

Query Types

➢ Q1 - d-dimensional range query
➢ Samples' indices form a d-dimensional.

e.g.: all samples on street A on date X.

➢ Q2 - Down-sampling query
➢ Samples' incides form a down-sampled lattice.

e.g.: Y samples per each hours on street A on
date X.

➢ Q3 - General query
➢ Samples' indices may or may not have any

structure.

e.g.: random set of samples captured on date X.

Problem Definition

➢ Security Requirements:
➢ Confidentiality of the samples.
➢ Collusion resistance.

➢ combining multiple aggregated keys could not derive
more information than each aggregated key can
individually derive

➢ Sensors are trusted and independent.

Efficiency Requirements:

Low computation load.

Low communication overhead.

Low storage overhead.

Problem Definition

➢ Security Requirements:
➢ Confidentiality of the samples.
➢ Collusion resistance.

➢ combining multiple aggregated keys could not derive
more information than each aggregated key can
individually derive

➢ Sensors are trusted and independent.

➢ Efficiency Requirements:
➢ Low computation load.
➢ Low communication overhead.
➢ Low storage overhead. User Owner

q
S

k
S

S

c
1
, c

2
,

…, c
n

Sensor
c

i

setup

Our Solution

➢ Each sample is encrypted individually using unique key to
avoid collusion attack.

Leverage on KAC to ensure:

Aggregating any set of keys into one constant size key,
attaining low communication overhead.

Low storage overhead by constant size ciphertexts.

Propose fast reconstruction techniques to reduce the
computation load.

Achieving orders of magnitude speed-up over original
KAC.

Our Solution

➢ Each sample is encrypted individually using unique key to
avoid collusion attack.

➢ Leverage on KAC to ensure:
➢ Aggregating any set of keys into one constant size key,

attaining low communication overhead.
➢ Low storage overhead by constant size ciphertexts.

Propose fast reconstruction techniques to reduce the
computation load.

Achieving orders of magnitude speed-up over original
KAC.

Our Solution

➢ Each sample is encrypted individually using unique key to
avoid collusion attack.

➢ Leverage on KAC to ensure:
➢ Aggregating any set of keys into one constant size key,

attaining low communication overhead.
➢ Low storage overhead by constant size ciphertexts.

➢ Propose fast reconstruction techniques to reduce the
computation load.
➢ Achieving orders of magnitude speed-up over original

KAC.

KAC Reconstruction Review

➢ Reconstructing a ciphertext with index i ϵ S
using an aggregated key kS requires:

where all can be drawn from public
parametters and is system capacity.

➢ This incurs O(|S|2) group multiplications to
reconstruct all samples in S.

A Key Observation

The recurrence relation

➢ How many multiplications to evaluate X?

where

A Key Observation

The recurrence relation

➢ How many multiplications to evaluate X?

It is O(m), not O(m2)
➢

where

A Key Observation

The recurrence relation

➢ How many multiplications to evaluate X?

It is O(m), not O(m2)
➢

where

A Key Observation

The recurrence relation

➢ How many multiplications to evaluate X?

It is O(m), not O(m2)
➢

where

A Key Observation

The recurrence relation

➢ How many multiplications to evaluate X?

It is O(m), not O(m2)
➢

where

A Key Observation

The recurrence relation

➢ How many multiplications to evaluate X?

It is O(m), not O(m2)
➢

where

A Key Observation

The recurrence relation

➢ How many multiplications to evaluate X?

It is O(m), not O(m2)
➢

where

A Key Observation

The recurrence relation

➢ How many multiplications to evaluate X?

It is O(m), not O(m2)
➢

where

A Key Observation

The recurrence relation

➢ How many multiplications to evaluate X?

It is O(m), not O(m2)
➢

where

A Key Observation

The recurrence relation

➢ How many multiplications to evaluate X?

It is O(m), not O(m2)
➢

where

Fast Reconstruction for Q1

For Q1 with S = [1,m]:
➢

➢ A special recurrence relation:

i.e. obtaining from with two multiplications.

=> In general, reconstructing samples in d-dimensional
range query requires only O(d|S|) multiplications;
i.e. linear time.

Fast Reconstruction for Q1

For e.g., with S [1..5], system capacity n = 20:

Fast Reconstruction for Q1

For e.g., with S [1..5], system capacity n = 20:

Fast Reconstruction for Q1

For e.g., with S [1..5], system capacity n = 20:

Fast Reconstruction for Q1

For e.g., with S [1..5], system capacity n = 20:

Fast Reconstruction for Q2

Transform and Conquer strategy:
➢ Transform the coordinate system such that indices

of the required samples correspond to integer
coordinates.

➢ Apply the special recurrence relation as in Q1.

=> Also requires only O(d|S|) multiplications;
 i.e. linear time.

Fast Reconstruction for Q3

➢ Samples' indices in Q3 may not have an special
structure, to which the special recurrence could
not apply.

➢ Problem transformation:
➢ Let Pi be a multi-set comprising of all required to

compute , T the target collection comprising of all
Pi.

➢ A computation plan to evaluate all is equivalent to
that of constructing T.

Fast Reconstruction for Q3

Minimum Spanning Tree based Strategy:
➢ Define dist(i, j) = |Pi \Pj| + |Pj \Pi |

➢ A computation plan is determined by solving for the
MST on a graph G = (V,E):

➢ G is complete.
➢ V comprises of |T|+1 vertices: Vertex vi represent a multiset

Pi, and special vertex v represents empty multiset.

➢ An edge eij connecting vi and vj has weigh of dist(i,j). All
edges orignating from v have weight of |T| - 2.

Fast Reconstruction for Q3

For e.g. S = [2,4,5,7,9], n = 20:

Fast Reconstruction for Q3

For e.g. S = [2,4,5,7,9], n = 20:

dist (P
4
,P

5
) = 8

dist (P
7
,P

9
) = 4

Fast Reconstruction for Q3

For e.g. S = [2,4,5,7,9], n = 20:

dist (P
4
,P

5
) = 8

dist (P
7
,P

9
) = 4

v
2

v
7 v

9

v

4

T = {P
2
,P

4
,P

5
,P

7
,P

9
}

3 3

v
4

v
5

3

3
3

6 8

6 8

*Some edges in the above graph are ignored for visual clarity.

Fast Reconstruction for Q3

Even better computation plan can be achieved by:
➢ Finding a minimum-weight Steiner tree on G

➢ Introduce intermediate vertices; i.e. intermediate values.
➢ Trade-off between number of aggregated keys and

reconstruction time:
➢ Split S into several subqueries, issuing one key for each query.
➢ The splitting is done using single-linkage clustering method.
➢ The distance betwee two “clusters” Sa and Sb are total number

of multiplications required to reconstruct samples in the union
cluster Sa S∪ b.

Experiments

Figure 1: Reconstruction time for Q1 & Q2.

Experiments

Figure 1: Reconstruction time for Q1 & Q2.

90x speedups

Experiments

Figure 2: Reconstruction time for Q3. MST(o) indicates the computation plan constructed
with o intermediate values. m is the size of query result.

Experiments

Figure 2: Reconstruction time for Q3. MST(o) indicates the computation plan constructed
with o intermediate values. m is the size of query result.

8x speedups

Experiments

Figure 3: Trade-off between number of aggregated keys and reconstruction time for Q3.
k is number of sub-queries, m is the size of query result.

Experiments

Figure 3: Trade-off between number of aggregated keys and reconstruction time for Q3.
k is number of sub-queries, m is the size of query result.

19x speedups
by splitting
into 16 sub-
queries.

Related Works

➢ Key sharing with hierarchical structures (e.g. trees) (Tzeng '02,
Benaloh '09, Atallah '09)

➢ Not applicable for multi-dimensional data not following hierarchical
structure.

➢ Key Policy – Attribute based Encryption (Chase '06, Hohenberger
'08, Lewko '09)

➢ Prohibitive performance overhead.

➢ Complex queries over encrypted data (Boneh '07, Shi '07)
➢ Irrelevant security requirement (e.g. secrecy of all attributes).

➢ KAC follow-ups (Tong '13, Deng '14)
➢ Did not address the fast reconstruction techniques.

Conclusions

➢ Fast reconstruction techniques for KAC enables
scalable sharings of sensitive data.

➢ Our observation is also applicable to other
cryptographic primitives involving group
multiplications such as broadcast encryption
and redactable signatures.

Q & A
Hung Dang

hungdang@comp.nus.edu.sg

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

