
Practical and Scalable Sharing of Encrypted Data
in Cloud Storage with Key Aggregation

Hung Dang, Yun Long Chong, Francois Brun, Ee-Chien Chang
School of Computing, National University of Singapore

{hungdang,cyunlong,francoisb,changec}@comp.nus.edu.sg

Abstract
We study a sensor network setting in which samples are en-
crypted individually using different keys and maintained on
a cloud storage. For large systems, e.g. those that gener-
ate several millions of samples per day, fine-grained sharing
of encrypted samples is challenging. Existing solutions, such
as Attribute-Based Encryption (ABE) and Key Aggregation
Cryptosystem (KAC), can be utilized to address the chal-
lenge, but only to a certain extent. They are often computa-
tionally expensive and thus unlikely to operate at scale. We
propose an algorithmic enhancement and two heuristics to
improve KAC’s key reconstruction cost, while preserving its
provable security. The improvement is particularly signifi-
cant for range and down-sampling queries – accelerating the
reconstruction cost from quadratic to linear running time.
Experimental study shows that for queries of size 215 sam-
ples, the proposed fast reconstruction techniques speed-up
the original KAC by at least 90 times on range and down-
sampling queries, and by eight times on general (arbitrary)
queries. It also shows that at the expense of splitting the
query into 16 sub-queries and correspondingly issuing that
number of different aggregated keys, reconstruction time can
be reduced by 19 times. As such, the proposed techniques
make KAC more applicable in practical scenarios such as
sensor networks or the Internet of Things.

1. INTRODUCTION
Incorporating cloud resources into wide-area sensor net-

work [16] has been of growing interest. In such solutions,
the sensors continuously sense and stream samples to the
cloud, wherein various users can retrieve and process the
data. Nevertheless, storing sensitive data in public cloud
storage faces a high risk of information leakage as demon-
strated by many well-known incidents [26]. A common wis-
dom is to protect the sensitive data from potentially curious
servers using strong cryptographic means. This, in turn,
poses various technical challenges in fine-grained sharing of
the encrypted data with multiple users. Although generic

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

IH&MMSec 2016, June 20-23, 2016, Vigo, Spain
c© 2016 ACM. ISBN 978-1-4503-4290-2/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2909827.2930795

techniques such as Attributed-Based-Encryption (ABE) and
Key Aggregation Cryptosystem (KAC) can facilitate fine-
grained access control over encrypted data, adopting these
techniques in large-scale systems remains challenging.

To illustrate the challenge, let us consider the following
scenario. A data owner has a collection of sensors deployed
along a city road network. The sensors continuously cap-
ture and encrypt the samples individually using different
encryption keys before streaming the encrypted content to
the storage servers. The sample size and sampling rates are
application specific (e.g hundreds of Kbytes per frame and
24 frames per second for video or only a few bytes per each
sample and only one per second for temperature reading). In
addition, each sample consists of multiple components; for
example, scalable coding includes different resolution lay-
ers. The data owner wants to share selected samples with
other users. The sharing policy may be quite complicated,
e.g. sharing low resolution images captured by 100 cameras
along a particular road segment, during every weekday from
6 am to 10 am at a reduced rate of one frame per second. The
users can be third party cloud-service providers engaged by
the data owner to perform certain processing, or personnels
authorised to access certain sensors, etc. To handle multiple
users while ensuring the principle of least privilege, a fine-
grained sharing mechanism is necessary. Furthermore, due
to privacy concerns, it is desired that the samples remain
encrypted at rest in the storage servers, with the encrypted
keys kept secret from all the untrusted parties.

In a straightforward download-and-share method, the
data owner simply retrieves the encrypted samples, decrypts
and sends them to the users in real-time. Clearly, such solu-
tion does not scale for it consumes significant computation
and networking resources. Another method is to send all de-
cryption keys corresponding to those samples to the users.
The user can then use those keys to decrypt encrypted sam-
ples downloaded from the storage servers. However, for each
sample is individually encrypted using different keys, the
number of keys in consideration can be very large, equiva-
lent to the number of samples to be shared. In our example
of sharing images extracted from 100 cameras for four hours
at the sampling rate of one frame per second, the number
of keys required per day is more than 1.4 × 106. Known
techniques that “aggregate” all the keys into a single key of
small size [10, 14, 9, 29, 3] can address this issue to a cer-
tain extent. Unfortunately, these techniques are unlikely to
operate at scale, and thus inapplicable in practical systems.
In particular, key-policy Attributed-Based Encryption (KP-
ABE)[14, 9] would lead to large overhead on the ciphertext

Figure 1: CCTV network in the City of Pasadena under the
Real-Time Data Capture and Management Program. Each
icon indicate location of a camera.

size, while Key-Aggregation Cryptosystem (KAC) [10] in-
curs quadratic key reconstruction time with respect to the
number of keys to be reconstructed.

In this work, we place our focus on fine-grained sharing
of encrypted data. The sharing mechanism in consideration
should be not only secure but also practical and scalable.
While the techniques that we propose are quite generic and
applicable in a large body of application domains, hereafter
we shall motivate and describe our approaches in the context
of sensor data. Many interesting sensor data are inherently
time-series in nature, such as CCTV’s images or environ-
mental readings. Moreover, the sensors are typically spa-
tially arranged. For example, the US Department of Trans-
portations deployed a few hundreds cameras along roadway
network in the City of Pasadena, California (Figure 1)1. Be-
cause of this spatial-temporal arrangement, the sensor data
are often indexed by the their timestamps and sensors’ loca-
tions. We treat the spatial, temporal and other meta infor-
mation as non-sensitive, whereas the confidentiality of the
actual sensed samples is to be protected. Such assumption
is reasonable, since after all, the storage server is probably
able to derive the source and timing of the sensed data from
the received network packets.

Our solution adopts Key-Aggregation Cryptosystem
(KAC) [10] as the underlying cryptographic scheme and thus
inherits its security. KAC enables aggregation of decryption
keys for an arbitrary number of samples, say m, into a con-
stant size key. Nevertheless, it incurs high cost in reconstruc-
tion, requiring O(m2) group multiplications to reconstruct
all m samples. We make an observation that, for a large
class of queries, the reconstruction time can be reduced by
eliminating redundant or overlapping computations. In par-
ticular, we present a fast reconstruction technique attaining
optimal linear running time; i.e. O(m) reconstruction time
for combinations of multidimensional range (e.g. asking for
samples from cameras along a specific road segment during
a specific time period) and down-sampling (e.g. asking for
one sample per second instead of the original 24 samples per
second) queries (of size m samples). In addition, we propose
two heuristics to speed-up reconstruction time for queries of

1http://catalog.data.gov/dataset/

arbitrary form (general queries). The idea is to first approx-
imate the optimal computation plan, and then perform the
reconstruction following that computation plan. The com-
putation plan describes a specific order in which a sequence
of computations should be carried out so that redundant
or overlapping computations can be avoided. In the other
words, such computation plan would minimize the compu-
tation cost incurred in reconstructing the samples, resulting
in a better performance as opposed to naively reconstruct-
ing each sample independently. Moreover, we also discuss a
clustering-based method to trade-off the number of aggre-
gated keys being issued for the reconstruction time. We re-
mark that our proposed techniques address computational
aspects of KAC reconstruction algorithm while preserving
other characteristics of the scheme, including semantic se-
curity and collusion resistance. Therefore, our solutions are
provably secure.

Experimental studies show that the proposed methods are
efficient, outperforming relevant alternatives by significant
factors. For queries of size 215 samples, our fast reconstruc-
tion techniques attain at least 90 times speed-up over the
original KAC on down-sampling and range queries, and eight
times speed-up on queries of arbitrary form. The speed-up
is increased to 19 times at the expense of splitting the query
into 16 sub-queries, each of which is associated with one
separate aggregated key.

The rest of this paper is organized as follows. We briefly
review the KAC scheme in Section 2 and follow by stating
our problem definition in Section 3. A few alternative con-
structions and their limitations are discussed in Section 4,
before our fast reconstruction techniques are presented in
Section 5. We report our experimental evaluation of the
proposed techniques in Section 6. After that, we discuss two
system designs in Section 7 and related works in Section 8
before finally concluding our work in Section 9.

2. BACKGROUND ON KEY-AGGREGATE
ENCRYPTION

Key-Aggregate Encryption (KAC) [10] is a public key
cryptosystem that can aggregate any set of decryption keys
to derive a constant size decryption key. With a public key,
given a plaintext x and an index i ∈ [1, n], one can encrypt
x to get a ciphertext associated to the index i. Hence, if the
plaintexts are a sequence 〈x1, x2, . . . , xn〉, the ciphertexts
〈c1, c2, . . . , cn〉 form the corresponding sequence.

KAC supports key aggregation. For any set of indices
S ⊆ {1, 2, . . . , n}, the secret key holder can generate a small
aggregated key KS for another user. With the aggregated
key KS , the user can decrypt any ci as long as i ∈ S. How-
ever, she is unable to obtain any information on cj for any
j 6∈ S. KAC’s security relies on decisional Bilinear Diffie-
Hellman Exponent (BDHE)[5].

This cryptosystem comprises of five basic functions, Setup,
KeyGen, Encrypt, Aggregate2 and Decrypt.

• param ←Setup(1λ, n): Given security parameter λ
and n, randomly pick a bilinear group G of prime order
p where 2λ ≤ p ≤ 2λ+1, a generator g ∈ G and a
random number α ∈R Zp, then compute param =

〈g, g1, g2, · · · , gn, gn+2, · · · , g2n〉 where gi = gα
i

.

2The function Aggregate is also known as Extract in the lit-
erature [10].

• (PK,SK) ←KeyGen(): Pick a value γ ∈R Zp, out-
put the public and master-secret key pair: (PK = v =
gγ , SK = γ).

• ζ ←Encrypt(PK, i, x): Given a public key PK, an
index i ∈ {1, 2, ..., n} and a message x ∈ GT, randomly
pick t ∈R Zp and output ζ = 〈gt, (vgi)t, x · e(g1, gn)t〉.

• KS ←Aggregate(SK,S): Given a set S of indices
j’s, output the aggregated decryption key KS =∏
j∈S

gγn+1−j .

• {x,⊥} ←Decrypt(KS , S, i, ζ = 〈c1, c2, c3〉): If i /∈ S,
output ⊥, else output x = c3 · e(KS · ρ, c1)/e(ρ̂, c2)
where ρ =

∏
j∈S,j 6=i

gn+1+i−j and ρ̂ =
∏
j∈S

gn+1−j

The aggregated key KS consists of one single group ele-
ment and thus its size is O(λ) where λ is the security param-
eter. However, decrypting cost for each ciphertext increases
proportionally to the size of the set S. Specifically, given
the aggregated key KS corresponding to a set of ciphertext
C whose indices are in S, it takes O(|S|) group operations
to decrypt a single ciphertext in C, and thus O(|S|2) group
operations to fully reconstruct the ciphertext set. The high
reconstruction cost renders the scheme impractical for our
application.

While KAC has inspired various follow-ups [12, 28], to the
best of our knowledge, we are the first to propose algorithmic
enhancement for its key reconstruction, thus making it more
applicable in practical systems.

3. PROBLEM DEFINITION

3.1 Sensor Data
We adopt the convention that [a, b] represents an inter-

val of integers from a to b, inclusively. We call L∆ =
[1, T1] × [1, T2] × . . . × [1, Td] a d-dimensional lattice with
the bounds T1, T2, . . . , Td. A hyper-rectangle R in L∆ is the
subset R1 × . . . × Rd of L∆ where each Ri is an interval in
the i-th dimension.

A sensor continuously senses and generates a sequence of
samples. A sample is represented by a tuple (i, x) where i
and x are its index and value respectively. The sample value
is the data captured by the sensor at a particular instance.
Its size can be varied (e.g hundreds of Kbytes for images or
only a few bytes for temperature reading). The index i is a
multidimensional point, representing the sample’s temporal,
spatial and other meta information such as resolution level.
We assume that some normalisations have been applied such
that the indices are mapped to points in L∆. Note that the
temporal information is not restricted to be one-dimension.
For example, temporal information can be represented as
a multidimensional point with day, month, year, etc as its
dimensions. The indices are considered non-sensitive. As
such, they can be stored in plaintext in the storage server
to facilitate efficient searching.

3.2 System Model
Figure 2 illustrates our system model. To protect the

confidentiality of sensor data, samples are individually en-
crypted using different keys before being streamed to the
cloud. When a user wants to gain access to a set of en-
crypted sensor data C, which are indexed by a set S, she

Owner

User

Sensor

c1, c2, c3
· · · , cn

S = {1, 2, 3, 101, 102, 103}

Parameter Setup

KSqS
encrypted
sensor data

C={c1, c2, c3,
c101, c102, c103}

Figure 2: System model supporting fine-grained sharing of
encrypted sensor data

sends a query qS to the owner. Upon approval, the owner
issues an aggregated key KS and an optional computation
plan for reconstruction to the user. She can then download
the set of requested encrypted samples C from the storage
server and follow the computation plan to reconstruct (de-
crypt) them using KS

3. However, it is impossible for her to
use such KS to decrypt any sample which does not belong to
C. An additional layer of protection can also be implemented
to guarantee that only authorized users can download the
relevant encrypted samples. We defer the detailed discussion
on system designs to Section 7.

3.2.1 Security requirements
For security analysis, we consider a worst case scenario

in which the storage server is completely under the user’s
control; i.e. she has full access to all encrypted samples
maintained on the cloud storage. Nevertheless, she should
not be able to learn the content of the encrypted samples
without a permission granted by the data owner.

The key aggregation must be collusion resistance. A collu-
sion attack is carried out by combining multiple aggregated
keys, with the goal of deriving more information than each
aggregated key can individually derive. For example, if an
user has the aggregated key to decrypt images of road seg-
ment A on Jan 1st, and another aggregated key for road
segment B on Feb 2nd, then he must not be able to obtain
other images, including images captured on A during Feb
2nd. We follow the model by Boneh et al. [6] on collusion
resistance.

We assume that sensors are trusted. Nevertheless, in case
a sensor is compromised and the secrets it holds are revealed
to an adversary, confidentiality of data generated by other
sensors must not be compromised.

3.2.2 Efficiency requirements
As the sensors and the users can be operating on low-

powered devices, it is crucial to keep computation load low.
Furthermore, although cloud storage is relatively low in cost,
the communication and storage overheads incurred by the
security mechanisms have to be sufficiently reasonable so as
to keep the cloud solution economically attractive. In view
of the above considerations, we focus on the following three
measures of performance:

3To be accurate, the user first reconstruct the decryption
keys (using KS) which are then used to decrypt the en-
crypted samples. However, for brevity, we slightly abuse
the language and simply say that the user reconstructs the
encrypted samples using KS .

Reconstruction time. Clearly, computation load of re-
constructing the keys from the aggregated key KS has to be
low4. In some applications (e.g. viewing of video stream),
the reconstruction time has to meet the real-time require-
ment. As mentioned in the introduction, the known KAC
scheme requires quadratic reconstruction time and thus is
unacceptable for practical use.

Size of aggregated key. To reduce the communication
between the owner and users, the size of the aggregated key
KS has to be small.

Overhead of ciphertext size. The overhead of cipher-
text size directly increases the storage and communication
cost of the storage server. Since the number of ciphertexts
is large, the actual multiplicative overhead on the ciphertext
size is a practical concern.

3.3 Query Types
We classify queries for sensor data into three types:

Q1 - d-dimensional range query.
This query asks for all samples whose indices form a d-

dimensional hyper-rectangle. For example, a request for im-
ages from cameras along a road segment during a certain
period corresponds to a two-dimensional range query.

In some cases, it is possible to merge multiple range
queries into one single range query. We can represent var-
ious constraints in one query by re-arranging and “lifting”
one-dimensional component to multi-dimensions, e.g. de-
composing the single time dimension into four dimensions
which are (1) time in a day, (2) day in a week, (3) week
number and (4) year.

Q2 - Down-sampling query.
This query asks for a down-sampled lattice. In one-

dimension, if one sample is extracted for every p samples,
we say that the down-sampling rate is 1/p. In higher di-
mension, a t-dimensional down-sampled lattice is the subset
L = {

∑t
i=1 aivi|ai ∈ Z} ∩ L∆ where each of the vi is a

d-dimensional vector and the basis {v1, v2, .., vt} is indepen-
dent. This basis can also be used to represent the down-
sampling query.

A query can also be an intersection of range and down-
sampling queries. For example, the query for a few images
per each hour captured along a road segment on a certain
day is a down-sampling range query.

Q3 - General query.
A general query is not necessary a combination of range

and down-sampling queries but rather asks for an arbitrary
set of samples. The query may be constructed by listing
down all the indices of the required samples. Alternatively,
it can also be a combination of an arbitrary set in some
dimensions, with range and down-sampling in the other di-
mensions. For example, a Q3 query may asks for samples
from an arbitrary set of sensors during all weekend’s morn-
ing.

In this paper, we assume a simple distribution model for
Q3 query: the set S (containing indices of all requested sam-
ples) contains rβ elements that are randomly selected from
the interval [1, β] where r < 1.

4We stress that the cost of deriving the computation plan is
not part of the reconstruction time.

Remark.
Although we discuss the applications related to sensor net-

works and sensor data throughout the paper, our techniques
can be straightforwardly applied to a wide range of appli-
cations which involve multidimensional data such as those
that are related to the Internet of Things for example.

4. ALTERNATIVE CONSTRUCTIONS
In this section, we briefly discuss a few alternative cryp-

tographic solutions and address their limitations.

4.1 Top-down Hash-tree
One possible approach is to use a binary tree to main-

tain symmetric encryption keys (Figure 3) for sensor data.
The root contains the master key, while the intermediate
sub-keys are generated in a top-down manner. The actual
keys for encryption/decryption are located at the leaves.
Each sample is associated with one external leaf, and is en-
crypted by the corresponding key. In this construction, keys
for m samples in a range can be reconstructed using only
O(log(m)) aggregated keys. These aggregated keys are es-
sentially intermediate sub-keys whose descendants are the m
encryption keys under consideration. For instance, in Fig-
ure 3, sub-keys 19,5 and 24 are aggregated keys from which
encryption keys in {4, 5, 6, 7, 8, 9} can be “reconstructed”.

However, it is not straightforward to extend this method
to support d-dimensions, where d > 1. A trivial method of
using multiple trees, one for each dimension, to generate d
keys for each sample is not secure against collusion attack
[23]. Furthermore, this method fails to aggregate keys for
down-sampling and general queries, such as ones asking for
encryption keys {1, 3, 5, 7, 9} or {1, 4, 5, 7, 10}.

Figure 3: Tree based construction for one-dimensional data.

4.2 ABE-based construction
There are a few ways to employ Attribute-Based Encryp-

tion (ABE) to aggregate decryption keys for multidimen-
sional range query. The most intuitive approach is to adopt
Key-Policy ABE (KP-ABE)[19] in the following way: An
index is represented by a set of attributes, each of which
corresponds to the location of a 1 in the index’s binary rep-
resentation. For instance, the index 9 = 10012 is repre-
sented by two attributes A0 and A3. In delegating decryp-
tion ability of ciphertexts in a range of S, the data owner
first determines the “policy”A, which is a logical expression
on the attributes for indices in S. The aggregated key is
then determined from the policy. The size of the aggregated
key is often proportional to the number of logical operations
in the logical expression, and thus incurs a log(n) factor

overhead in specifying a range, where n is the system’s ca-
pacity (i.e. total number of samples encrypted under the
same security setting.). For example, if n = 210 and an
index set in question is S = [1019, 1023], then the policy
A = {A9 ∧A8 ∧A7 ∧A6 ∧A5 ∧A4 ∧A3}. Furthermore, the
ciphertext size of each index is proportional to the number
of attributes associated to it, which implies a multiplicative
log(n) factor overhead. Experimental studies also show that
the reconstruction time of this approach is slower than our
proposed method, probably due to the larger number bi-
linear map operations required. Finally, while it is easy to
express down-sampling of rate 1/p using short expression,
where p is a power of 2, it is not clear how to efficiently
express other down-sampling rates. Hence, it is not trivial
to obtain short aggregated key for other rates.

4.3 Multi-dimensional Range Query over En-
crypted Data

Shi et al. address Multi-dimensional Range Query over
Encrypted Data (MRQED) problem [23]. The work is an
enhancement of the ABE-based construction, aiming to pro-
tect confidentiality of both query and the indices. Specifi-
cally, if an index of a sample under consideration is outside
the queried range, one would learn no information beyond
the fact that an aggregated key fails to decrypt its encrypted
content. Note that in our application, the indices are not
considered secret but rather made publicly available. Thus,
we do not enforce this security requirement. Similar to the
ABE-based construction, MRQED admits an overhead of at
least log(n) multiplicative factor in ciphertext size and ag-
gregated key size, failing to meet our efficiency requirements.

5. PROPOSED FAST RECONSTRUCTION
Owing to the fact that KAC satisfies our security and two

efficiency requirements (i.e. size of aggregated key and over-
head in ciphertext size) put forth in Section 3.2, we adopt
its encryption and key aggregation algorithms in our sys-
tem. As such, our system inherits KAC’s provable security.
Interested readers are referred to [11] for further details on
the security of the scheme.

However, as briefly discussed in Section 2, KAC recon-
struction cost is expensive. In particular, reconstructing a
single ciphertext with index i using an aggregated key KS

(i ∈ S) requires the following two values (Section 2):

ρi =
∏

j∈S,j 6=i

gn+1+i−j (1)

ρ̂ =
∏
j∈S

gn+1−j (2)

ρ̂ is independent of i and can be computed only once for
all ciphertexts in S. The computations of ρis (i ∈ S) are
of more interest. A naive approach which computes each ρi
independently — not exploiting their relationship — would
incur O(|S|2) group multiplications to compute all necessary
ρi (i.e. for all i in S). We observe that exploiting their
relationship leads to a better computation cost.

In this section, we first introduce an algorithmic enhance-
ment for KAC reconstruction specifically targeting Q1 and
Q2 queries (Section 5.1). This enhancement reduces the
reconstruction time from quadratic to linear. We later gen-
eralize the technique — using dynamic programming — to
enable fast reconstruction for Q3 queries (Sections 5.2, 5.3).

5.1 Fast reconstruction for range and down-
sampling queries

5.1.1 A special recurrence relation
For Q1 and Q2 queries (or their combination), the in-

dices of the requested samples follow specific patterns which
straightforwardly permit fast computations. Let us first con-
sider a one-dimensional Q1 query with range S = [1,m] for
some m. For clarity in exposition, let us define ĝt = gn+1+t,
and

Ri =
∏
j∈S

ĝi−j

For each i ∈ S, ρi = ĝ−1
i Ri, and thus it can be easily com-

puted from Ri. Now, we explore how to compute all Ris
efficiently. Under the straightforward method, computing
each Ri requires |S| − 1 multiplications, hence |S|(|S| − 1)
multiplications are required to compute all Ris. However,
by exploiting the recurrence relation

Ri+1 = (ĝi−m)−1 ·Ri · ĝi

we can obtain Ri+1 from Ri using only two extra multi-
plications. This leads to a fast linear time algorithm that
computes all Ris recursively, offering a significant speed-up
over quadratic time as in the straightforward method.

We next show how to extend this observation on the re-
currence relation to enable fast reconstruction for Q1 and
Q2 queries. Interestingly, this can also be extended to im-
prove computation cost of other cryptographic primitives
whose constructions involve group multiplications, such as
broadcast encryption [13] and redactable signatures [8]. This
would be an interesting further extension.

5.1.2 Fast reconstruction for Q1 queries
Let us first consider two-dimensional lattice. Let S =

[1,m]× [1,m] be a rectangular range in the two-dimensional
lattice with bound n in both dimensions. As such, the in-
dices are two-dimensional vectors. Let σ(x1, x2) = x1(n −
1) + x2 be the mapping function that maps the two-
dimensional lattice to the one-dimensional lattice. It can
be seen that decrypting a ciphertext with the index (i1, i2)
requires the following value:

ρ(i1,i2) =
∏

(j1,j2)∈S,(j1,j2)6=(i1,i2)

gn2+1+σ(i1,i2)−σ(j1,j2)

Similar to the simple one-dimensional example above, the
term n2 + 1 in the subscript is simply a fixed offset.
Hence, the formula can be simplified by defining ĝ(i1,i2) =
gn2+1+σ(i1,i2) and R(i1,i2) by:

R(i1,i2) =
∏

(x,y)∈S

ĝ(i1,i2)−(x,y) =

m∏
x=1

m∏
y=1

ĝ(i1,i2)−(x,y)

It should be clear that obtaining the required ρ(ii,i2) from
the corresponding R(i1,i2) is trivial. Exploiting the observa-
tion on the special recurrence relation that we make earlier,
we can derive the following equation:

R(i1+1,i2) = R(i1,i2)

m∏
y=1

ĝ−1
(i1,i2)−(i1−m,y)

m∏
ỹ=1

ĝ(i1,i2)−(i1,ỹ)

(3)

Let us dub the product of the first sequence T(i1,i2) and the

second T̃(i1,i2), Equation 3 becomes:

R(i1+1,i2) = R(i1,i2)T(i1,i2)T̃(i1,i2)

Now, observe that both T(i1,i2) and T̃(i1,i2) in turn can also
be expressed by recurrence relations, allowing the compu-
tations to be done in linear time. Consequently, evaluating
all R(i1,i2)s incurs only linear time, as opposed to quadratic
time if the computation is to be done naively.

In general, for a d-dimensional range, the number of group
multiplications required for computing all necessary ρi is
in O(d|S|). Since the number of dimensions (d) is deemed
as a constant, we have derived a linear time approach to
reconstruct Q1 queries.

5.1.3 Fast reconstruction for Q2 queries
Let us consider a Q2 query in two-dimension lattice (ex-

tending this to support higher dimension should be straight-
forward). Given a Q2 query represented by an independent
basis, say {(3, 0), (0, 2)} for example, one can first transform
the coordinate system (e.g. transform (x, y) to (x/3, y/2))
such that indices of the required samples correspond to inte-
ger coordinates, and then apply the linear time reconstruc-
tion approach similar to that of Q1 queries on the trans-
formed coordinate system and indices. We refer reader to
[17] for further details on the transformation which could be
applied on the coordinates.

In general, for a Q2 query that asks for samples in a d-
dimensional range, the number of group multiplications re-
quired is also in O(d|S|). Though additional computations
are required to transform the coordinate, they are signifi-
cantly less expensive than group multiplications. Therefore,
we have derived a fast reconstruction method – running in
linear time – for Q2 queries.

5.2 Fast reconstruction for Q3 queries
The techniques we discuss above reuses common terms

and recurrence relations among different ρis to save compu-
tations. They are apparent in Q1 and Q2 queries, but not
so for Q3 queries. An interesting question to consider is how
to find a computation plan that evaluates all ρis with the
minimum computation cost (i.e., the least number of multi-
plications) for an arbitrary query. For the ease of exposition,
we assume that some normalization (similar to the map-
ping function σ mentioned in Section 5.1.2) has been applied
such that indices of queried samples are mapped to a one-
dimensional set S. We shall use the set S = {1, 2, 3, 6, 9, 10}
and system capacity (maximum number of ciphertexts that
the system can support) n = 20 as the running example
(depicted in Table 1).

Let us denote by B a set of singletons whose elements are
indices of g in the public parameter param, and represent
each ρi by a multi-set Pi comprising of indices of g in a se-
quence that computes ρi following Equation 1. Let P – the
target collection – be a set of all such Pis. In the running
example (Table 1), B = {{1}, {2}, . . . , {40}}, ρ1 is repre-
sented by P1 = {20, 19, 16, 13, 12} and the target collection
P = {P1, P2, P3, P6, P9, P10}

The problem of computing all necessary ρi is now re-
ducible to the problem of constructing P from the collec-
tion of singletons B. Each multiplication is represented by a
“computation step” performing either a union or a subtrac-
tion on two multi-sets.

Table 1: An exemplar Q3 query asking for a six samples
whose indices are S = {1, 2, 3, 6, 9, 10}. The system capacity
is n = 20. To reconstruct these samples, six corresponding
ρi (i ∈ S) have to be computed. The target collection is
P = {P1, P2, P3, P6, P9, P10}.

ρ1 = g20 · g19 · g16 · g13 · g12 P1 = {20, 19, 16, 13, 12}
ρ2 = g22 · g20 · g17 · g14 · g13 P2 = {22, 20, 17, 14, 13}
ρ3 = g23 · g22 · g18 · g15 · g14 P3 = {23, 22, 18, 15, 14}
ρ6 = g26 · g25 · g24 · g18 · g17 P6 = {26, 25, 24, 18, 17}
ρ9 = g29 · g28 · g27 · g24 · g20 P9 = {29, 28, 27, 24, 20}
ρ10 = g30 · g29 · g28 · g25 · g22 P10 = {30, 29, 28, 25, 22}

With these notions, we are ready to define the computa-
tion plan.

Definition 1 (Computation Plan). Given B and
the target collection P, the computation plan is a sequence
of computation stepsM = {m1,m2, . . . ,mz} that constructs
a set of multi-sets A such that P ⊂ A.

The set of multi-sets A is initiated to B. Each computa-
tion step picks, with replacement, two multi-sets in A, either
unions or subtracts them from one another, and inserts the
resulting multi-set to A. The computation plan is optimal
if it has the minimum number of computation steps.

In Section 5.1, we have seen that introducing T(i1,i2) sig-
nificantly reduces the number of multiplications required in
computing R(i1,i2), suggesting that introducing appropriate
intermediate values serves as a good heuristic in evaluating
the optimal computation plan5. Unfortunately, the space of
possible intermediate values are exponentially large, making
the choice of appropriate intermediate values difficult. In-
deed, though we do not attempt to give a formal proof, we
believe that computing the optimal computation plan may
very well be NP-complete. We provide below heuristics to
approximate the optimal computation plan.

5.2.1 Minimum Spanning Tree based Strategy
For any two Pi, Pj , let us define their distance as:

dist(i, j) = |Pi \ Pj |+ |Pj \ Pi|

If Pj is already constructed, one can derive Pi from Pj with
at most dist(Pi, Pj) computation steps. In the best case
where the two multi-sets (Pi \Pj) and (Pj \Pi) have already
been inserted to A, Pi can be derived from Pj with only two
computation steps. Based on this notion of dist(i, j), we
can evaluate the computation plan by solving the following
minimum spanning tree (MST) problem.

Let G = (V,E) be a complete graph in which V and E
denote the set of vertices and the set of edges, respectively.
The set V comprises of |P|+ 1 vertices, representing multi-
sets in P and an additional empty set P̄ . Each Pi maps
to a vertex vi, and P̄ maps to a special vertex v̄. The set
E contains |V |(|V | − 1)/2 edges. Let us denote by eij an

5The computation plan need not be evaluated in real-time.
Since queries are likely to be repeated, the computation
plans can be computed in offline sessions, probably by the
data owner or on the server with presumable powerful re-
source. On another note, parallelizing the reconstruction
computation is possible so long as the users’ computation
resource allows so. In such situation, values that should be
evaluated independently can also be inferred from the com-
putation plan.

1A 2 3 4 5 6 7 8

2B 3 4 5 6 7 8 9

1Â 2 3 4 5 6 7 8 −

−B̂ 2 3 4 5 6 7 8 9

Figure 4: An example of sequence alignment. A dotted
link denotes zero penalty cost while a solid link represents
penalty cost of one. By inserting “gaps” at the beginning of
A and at the end of B, we obtain Â and B̂ which yield the
optimal alignment with total penalty of only two.

edge connecting vertex vi to vertex vj . For each edge eij ,
we set its weight to dist(i, j). For edges originating from the
special vertex v̄, we set their weights to |P| − 2.

With the reduction described above, we can use any mini-
mum spanning tree algorithm, such as Chu−Liu/Edmonds
algorithm running in O(|V |2) time [27], to approximate the
optimal computation plan.

5.2.2 Introducing intermediate values
As discussed earlier, the computation cost can be further

reduced if common intermediate values are introduced prop-
erly. In particular, let us denote the set of those intermedi-
ate values as I. We can approximate an even better com-
putation plan by introducing these intermediate values to
P, obtaining P ′ = P ∪ I, and then apply the MST-based
strategy described earlier to find the MST of the complete
graph G′ = (V ′, E′) in which V ′ represents the set of multi-
sets P ′ and one additional empty set P̄ . Since the space
of all possible intermediate values are exponentially large, it
is not clear how to efficiently choose the most appropriate
intermediate values. We provide here an intuitive heuristic
to determine those common intermediate values.

Should one interpret each Pi as a sequence of elements,
and intermediate values as shorter sequences, the problem of
finding the common intermediate values is reducible to the
local sequence alignment problem [25] — which is tasked to
determine “similar regions” between sequences.

Sequence alignment is considered a textbook example
for dynamic program. In the most basic version, the se-
quence alignment problem takes as input two sequences
A = a1 . . . ay and B = b1 . . . bz over an alphabet Σ, together
with penalty metrics αgap ≥ 0 for inserting a “gap” and αab
for matching an element a of one sequence against an ele-
ment b of the other sequence (presumably αab = 0 if a = b)
and outputs an optimal “alignment” which minimizes the
total penalty. In this work, we utilize the Smith-Waterman
algorithm [20], to solve the sequence alignment problem.

Let us consider an example in Figure 4. The two input
sequences are A = 12345678 and B = 23456789, αgap = 1,
αab = 1 if a 6= b or αab = 0 otherwise. Simply matching A
and B as-is (without inserting any gap) incurs the penalty
cost of eight. The optimal alignment is formed by inserting
a gap to the end of A and another gap to the beginning of B,
resulting in Â and B̂ whose alignment incurs the minimum
penalty cost of two.

The intermediate values are the similar regions found in
the solution to the sequence alignment problem. For ex-
ample, if we are to construct Pi = {1, 2, 3, 4, 5, 6, 7, 8} and

Pj = {2, 3, 4, 5, 6, 7, 8, 9}, we can represent Pi and Pj by the
sequences A and B in the above example (Figure 4). Since
the similar region of A and B is R = 2345678, the inter-
mediate multi-set is I = {2, 3, 4, 5, 6, 7, 8}. Effectively, we
can construct both Pi and Pj from I with only two extra
computation steps (one for each of them).

5.3 Trade-off between number of aggregated
keys and reconstruction time

The reconstruction time can be further reduced at the
expense of splitting the query into smaller sub-queries and
issuing one aggregated key for each of them. One may par-
tition the set S into k clusters, each of which corresponds to
one sub-query, and issue one aggregated key for each sub-
query. Accordingly, one needs to issue k aggregated keys
instead of one single key. At the expense of issuing k aggre-
gated keys, the reconstruction time can be reduced.

The partition should be performed such that elements in
each cluster are “close” to each other. In another word, for
two neighbour indices i and j belonging to the same cluster,
it should be the case that ρi can be derived from ρj with
only a small number of group multiplications. Let us in-
formally define the distance between two indices i, j in the
same cluster as follows. Let v be the common intermediate
value of ρi and ρj , their distance is the number of group
multiplications it takes to compute both values ρi and ρj
from the common intermediate value v.

We now define the distance function between two cluster
Sa and Sb. Let W (Sa) be the number of group multiplica-
tions required to compute all ρi where i ∈ Sa. This value
can be determined via the computation plan discussed pre-
viously in Section 5.2. For two clusters Sa and Sb, their
distance is simply W (Sa ∪Sb). Note that W (Sa ∪Sb) is not
necessarily equal to the sum of W (Sa) and W (Sb2).

We employ the single-linkage clustering method [15] (im-
plemented using SLINK algorithm [24]) to perform the clus-
tering. In particular, each element in S is initially a cluster
by itself. Each step would choose two clusters with the short-
est distance (using the distance function defined above) and
merge them together. The clusters are sequentially merged
until only k clusters are left.

In the literature, the single-linkage clustering method is
criticised to produce long thin clusters in which elements at
opposite ends of a cluster are of far distance, which may
lead to difficulties in defining classes subdividing the data.
However, its other characteristic which is to have a distance
of nearby elements residing in the same cluster small is of
greater interest. Indeed, this feature will allows a ρi value
to be computed efficiently from its nearby elements.

6. PERFORMANCE EVALUATION
In this section, we compare performance of our proposed

fast reconstruction techniques with KP-ABE [19] and the
original KAC [10].

6.1 Performance Analysis
Table 2 summarises the numbers of group operations,

i.e. multiplication, exponential and pairing, required by the
three procedures: (a) encryption of the samples, (b) aggre-
gation of the keys, and (c) reconstruction of the keys. It also
reports the size of the ciphertext with respect to the num-
ber of group elements. Observe that KP-ABE consistently

23 26 29 212 215 218
10−1

100

101

102

103

104

105

Number of samples

E
n
cr
y
p
ti
on

ti
m
e
(s
ec
on

d
s)

KP-ABE

KAC

Figure 5: Encryption time

23 26 29 212 215 218

104

105

106

107

108

109

Number of samples

T
ot
al

ci
p
h
er
te
x
t
si
ze

(b
y
te
s) KP-ABE

KAC

Figure 6: Total ciphertext size

25 27 29 211 213 215

10−2

10−1

100

Size of Query Result (samples)

A
gg
re
ga
ti
on

ti
m
e
(s
ec
on

d
s)

KP-ABE

KAC

Figure 7: Aggregation time

25 27 29 211 213 215

10−1

100

101

102

103

104

Size of Query Result (samples)

R
ec
on

st
ru
ct
io
n
ti
m
e
(s
ec
on

d
s)

KP-ABE

KAC

Fast Reconstruction

Figure 8: Reconstruction time for Q1 & Q2.

Table 2: Costs of encryption, extracting aggregated key and
reconstructing a range query of size m, where n is the sys-
tem’s capacity (i.e. maximum number of samples to be en-
crypted). The ciphertext size is measured by the number of
group elements per sample.

KP-ABE KAC Ours
Mult. O(logn) 2 2
Exp. O(logn) 3 3Encrypt

Pairing 1 1 1
Mult. O(logn) m m
Exp. O(logn) 1 1Aggregate

Pairing 0 0 0

Mult. O(m logn) O(m2) O(m)
Exp. O(m logn) 0 0Reconstruct

Pairing O(m logn) m+ 1 m+ 1
Ciphertext

O(logn) 3 3
size

suffers from a O(logn) overhead factor in comparison with
KAC, which is inevitable since logn attributes are required
to represent n indices. Since the total number of samples can
be very large (e.g. at 25 samples per second, the system of
100 sensors will generate almost a quarter billion samples ev-
ery day), such large overhead is hardly acceptable, especially
for ciphertext size which affects the storage and communi-
cation cost. Although KAC outperforms KP-ABE in almost
all aspects, its reconstruction cost is quadratic, rendering the
scheme impractical in our application. By adopting KAC
encryption and key aggregation procedures, and introduc-
ing various techniques to improve its reconstruction cost,
our system achieves favourable performance in all aspects.

In particular, the proposed method reduces the number of
multiplications to linear on Q1 and Q2 queries, and achieve
several times speed-up for other queries.

In key aggregation, KAC requires more group multipli-
cations but fewer number of exponentiations compared to
KP-ABE. Because exponentiation is more computational ex-
pensive than group multiplication, the efficiency of the two
schemes depends on the scale at which they operate. In par-
ticular, KAC would perform better than KP-ABE in aggre-
gating a small number of keys, but worse when the number
of keys is large (see Figure 7).

6.2 Experimental Setup
In practice, when the size of a single sample is large, it is

more efficient to encrypt the sample using symmetric encryp-
tion such as AES with a randomly chosen key, then apply
the key aggregation on the symmetric keys. We follow such
fashion in our experiments.

To evaluate the performance of our fast reconstruction for
Q1 and Q2 queries in comparison with KP-ABE and the
original KAC, we fix the total number of encrypted sam-
ples at 218, while varying the query size m = |S| from 25

to 215. The queries that we use in our experiments are
two-dimensional range queries (having the same width along
both dimensions) with down-sampling rate equal to 1/4.

For Q3 queries, we perform two set of experiments. In
the first set, we study the effectiveness of the computation
plan constructed with l intermediate values against KAC’s
reconstruction (Section 5.2). In the second experiment set,
we examine the speed-up in reconstruction time at the ex-
pense of issuing more aggregated keys (Section 5.3). The
queries are generated by selecting m indices randomly from

29 210 211 212 213 214 215

101

102

103

104

Size of Query Result (samples)

R
ec
on

st
ru
ct
io
n
ti
m
e
(s
ec
on

d
s)

KAC MST(0)
MST(

√
m) MST (2

√
m)

(a) Reconstruction time when r = 0.5

29 210 211 212 213 214 215

101

102

103

104

Size of Query Result (samples)

R
ec
on

st
ru
ct
io
n
ti
m
e
(s
ec
on

d
s)

KAC MST(0)
MST(

√
m) MST (2

√
m)

(b) Reconstruction time when r = 0.75

29 210 211 212 213 214 215

101

102

103

104

Size of Query Result (samples)

R
ec
on

st
ru
ct
io
n
ti
m
e
(s
ec
on

d
s)

KAC MST(0)
MST(

√
m) MST (2

√
m)

(c) Reconstruction time when r = 0.9

29 210 211 212 213 214 215

102

103

104

Size of Query Result (samples)

In
te
rm

ed
ia
te

S
to
ra
ge

(b
y
te
s)

MST(0)
MST(

√
m)

MST (2
√
m)

(d) Intermediate storage required in
reconstruction when r = 0.5

29 210 211 212 213 214 215

102

103

104

Size of Query Result (samples)

In
te
rm

ed
ia
te

S
to
ra
ge

(b
y
te
s)

MST(0)
MST(

√
m)

MST (2
√
m)

(e) Intermediate storage required in
reconstruction when r = 0.75

29 210 211 212 213 214 215

102

103

104

Size of Query Result (samples)

In
te
rm

ed
ia
te

S
to
ra
ge

(b
y
te
s)

MST(0)
MST(

√
m)

MST (2
√
m)

(f) Intermediate storage required in
reconstruction when r = 0.9

Figure 9: Fast reconstruction for Q3. MST(l) indicates performance of the computation plan constructed l intermediate
values. Presumably, l = 0 indicates introducing no intermediate values. m is the size of query result.

29 210 211 212 213 214 215
100

101

102

103

104

Size of Query Result (samples)

R
ec
on

st
ru
ct
io
n
ti
m
e
(s
ec
on

d
s)

KAC
k = 1
k = 4
√
m

k = 2 4
√
m

(a) Reconstruction time with r = 0.5

29 210 211 212 213 214 215
100

101

102

103

104

Size of Query Result (samples)

R
ec
on

st
ru
ct
io
n
ti
m
e
(s
ec
on

d
s)

KAC
k = 1
k = 4
√
m

k = 2 4
√
m

(b) Reconstruction time with r = 0.75

29 210 211 212 213 214 215
100

101

102

103

104

Size of Query Result (samples)

R
ec
on

st
ru
ct
io
n
ti
m
e
(s
ec
on

d
s)

KAC
k = 1
k = 4
√
m

k = 2 4
√
m

(c) Reconstruction time with r = 0.9

29 210 211 212 213 214 215

103

104

Size of Query Result (samples)

In
te
rm

ed
ia
te

S
to
ra
ge

(b
y
te
s)

k = 1
k = 4
√
m

k = 2 4
√
m

(d) Intermediate storage required in
reconstruction when r = 0.5

29 210 211 212 213 214 215

103

104

Size of Query Result (samples)

In
te
rm

ed
ia
te

S
to
ra
ge

(b
y
te
s)

k = 1
k = 4
√
m

k = 2 4
√
m

(e) Intermediate storage required in
reconstruction when r = 0.75

29 210 211 212 213 214 215

103

104

Size of Query Result (samples)

In
te
rm

ed
ia
te

S
to
ra
ge

(b
y
te
s)

k = 1
k = 4
√
m

k = 2 4
√
m

(f) Intermediate storage required in
reconstruction when r = 0.9

Figure 10: Trade-off between number of aggregated keys and reconstruction cost for Q3. k is number of sub-queries, each
sub-query is associated with one aggregated key. m is the size of query result.

the range [1, n]. We define query density (r) as the ratio
m/n. Various query sizes (i.e., m) and densities (i.e., r) are
investigated. We do not study KP-ABE’s performance on
general queries, since it requires another algorithm to find

a compact logical expression for an arbitrary query, which
could be a separate topic of interest.

All experiments are performed on a system equipped
with Intel Core-i5-4570u@3.2Ghz processor and 8GB of
RAM. Our implementation employs Charm [1] crypto-

graphic framework and utilizes symmetric pairings over
Type-A (supersingular) curves. The KAC implementation
and our fast reconstruction techniques are configured with
160-bit Solinas prime, offering 1024-bit of discrete-logarithm
security. For consistency, the KP-ABE implementation is
configured to provide 80-bit security. Although there ex-
ists no direct comparison between discrete-logarithm secu-
rity and bit-security, 1024-bit of discrete-logarithm security
is often considered to be equivalent to the 80-bit security.
Each experiment is repeated ten times and average results
— with time measured in seconds while storage and cipher-
text size measured in bytes — are reported.

6.3 Experiment result

6.3.1 Encryption time
Figure 5 compares the encryption time of KP-ABE and

KAC (our system adopt KAC encryption procedure) under
log-log scale, with the total number of samples varied from
24 to 218. The experiment results agree with the analysis
in the previous section. The cost of encryption incurred by
KP-ABE is several times higher than that of KAC. For ex-
ample, to encrypt 218 items, KP-ABE needs 17 hours, while
KAC only requires 1.17 hours (i.e. faster by almost 15×).
Note that the main overhead of KP-ABE’s encryption lies in
carrying out exponent operations, which directly depends on
the total number of samples, and thus the overhead would
be even higher for larger datasets.

6.3.2 Ciphertext Size
A main disadvantage of KP-ABE lies in its ciphertext size.

Figure 6 reports total ciphertext size for various n - the total
number of samples to be encrypted. When n = 218, KP-
ABE produces ciphertext of size approximately 10× larger
than KAC. This is so because KAC’s ciphertext comprises
of only three group elements, whereas KP-ABE’s ciphertext
contains (3A + 2) group elements, where A is the number
of attributes associated with a ciphertext. The value of A
varies for different ciphertext, but its expected value is at
least 1

2
logn. Similar to the encryption time, the larger the

dataset is, the more superior KAC is to KP-ABE in term of
ciphertext size.

6.3.3 Aggregation time
As shown in Table 2, KP-ABE’s key aggregation time only

depends on n - the total number of samples. KAC, on the
other hands, aggregates keys in O(m) time. It turns out
that, when m is less than 215, KP-ABE needs longer time
compared to KAC (Figuer 7).

6.3.4 Reconstruction time
Figure 8 shows the reconstruction time for Q1 and Q2

queries. For small m, reconstruction time incurred by ABE
is higher than KAC, which is due to the expensive pairing
operations. However, for larger m, KAC starts to perform
worse than KP-ABE because of the quadratic growth the
number of required multiplications. Our proposed method,
on the other hand, achieves linear reconstructing time.
When m = 215, it can reconstruct all the keys within 126
seconds, whereas KAC needs three hours (i.e. a speed-up of
almost 90×).

For Q3 queries, we observe that the higher the query den-
sity is, the more effective our fast reconstruction techniques

are. Though the gain is negligible when r < 0.5, it becomes
more evident for larger r – achieving from 2.6× to 8× speed-
up over original KAC reconstruction cost. We also witness a
better reconstruction time – upto 3× improvement as com-
pared to fast reconstruction using computation plan strictly
without any intermediate values – when intermediate values
are pre-computed and reused (Figures 9a, 9b, 9c).

Figures 9d, 9e, 9f depict temporary storage required for
maintaining all intermediate values computed during the re-
construction. This temporary storage is at most a few KB
(e.g. 12.5KB for reconstructing 215 keys when r = 0.5). As
can be seen from the figures, the higher the density is, the
less temporary storage is required.

We also evaluate the trade-off between number of aggre-
gated keys and reconstruction time (Figures 10a, 10b, 10c).
For a Q3 query asking for m samples, with 4

√
m aggregated

keys, reconstruction time can be speeded-up by upto 13×.
With a cost of 2 4

√
m keys, upto 19× improvement can be

achieved. Nevertheless, we note that for small queries, it
is not worth issuing more aggregated keys, because the in-
crease in the number of pairing operations may lengthen the
reconstruction time.

In another note, the more aggregated keys are issued, the
more intermediate values need to be stored. With k = 4

√
m,

as high as 15 KB of temporary storage is required, while that
value is increased to 19 KB when k = 2 4

√
m are issued. In all

of our experiments, the requirement on temporary storage
is only a few KB, which is quite reasonable even for resource
constrained devices.

7. SYSTEM DESIGNS
In this section, we give two possible designs that incor-

porate key aggregation. We consider two types of sensors;
one with Public-key Cryptosystem (PKC) capability, and
the other that is only capable of performing standard sym-
metric key cryptosystem such as AES and SHA-1. We refer
to the first category as PKC-enabled sensors and the later
as low-powered sensors.

7.1 System with PKC-enabled sensors
(1) During system setup, the owner distributes the public

key PK to all entities, and an unique identity ID to each
sensor (Figure 11). The identity ID ’s are not secrets and are
made public. (2) For each sample (i, x), the sensor encrypts
the sample value x with the index i using KAC’s encrypt
algorithm to obtain a ciphertext c. It then streams the c
together with the index i to the storage server. In situa-
tion where sensor samples are of large size, (e.g. images),
they are encrypted using AES with a randomly generated
key k, whereas the key k is being encrypted by KAC under
an index i of the sensor sample (similar to sensor sample
of small size). The two ciphertexts (encrypted sample and
encrypted symmetric key) and the corresponding index are
then streamed to the server.

(3) When a user asks for access to a subset C, whose
indices fall in S, he sends the query qS to the owner. (4)
The owner issues an aggregated key KS to the user, together
with an authentication ticket t. (5) The user presents the
ticket t to the storage server as a proof that he is authorised
to access C. (6) Upon verification, the server sends the
requested ciphertexts to the user, which are later decrypted
using the aggregated key KS . In case of large samples, she
also needs to download corresponding encrypted symmetric

Owner

User

PKC-enabled
Sensor

Cloud Storage

(1)PK

(4)t,KS(3)qS
(2) KAC-
encrypted
sensor data

(6)C

(5)t

Figure 11: System model for PKC-enabled sensors

keys. The encrypted keys are first reconstructed, and then
used to decrypt the encrypted samples.

The incorporation of the authentication ticket can be
based on standard protocol such as Kerberos [21, 22]. Al-
though this cannot prevent the collusion between the users
and the server, it forms another layer of defence to prevent
unauthorised downloading of the ciphertexts.

7.2 System with low-powered sensors
Figure 12 shows the system design for low-powered sen-

sors, which are only capable of conducting non-expensive
cryptographic operations such as AES or SHA-1. To ad-
dress the resource constraints of these low-powered sensors,
we introduce a trusted encryption proxy. This proxy also
helps to relieve the owner’s computation load.

(1) During the system setup phase, the owner broadcasts
the public key PK to all entities except the low-powered sen-
sors. The owner also distributes an unique identity ID and
a shared secret seed KID to each sensor. (2) For each sensed
sample (i, x), the sensor generates a symmetric encryption
key ki,ID using a cryptographic pseudorandom function us-
ing the secret seed KID and the index i. The sensor then
encrypts the sample value x with encryption key ki,ID, ob-
taining c, and streams (i, c) to the storage server.

All secret KID are also shared with the encryption proxy.
Because the proxy (which actually represents the data
owner) has knowledge of locations and frequencies at which
sensor data are collected, it can infer the set of indices asso-
ciated with the samples. With the knowledge of the indices
and all sensors’ secret keys, (3) it can replicate a symmetric
key ki,ID. Each of these AES keys is encrypted with KAC
under the corresponding sample index, giving ci,ID.

The ciphertexts together with their indices, i.e.
(i, ci,ID)’s, are then sent to the storage server. Note that
this process need not be performed in realtime. Rather, the
proxy can replicate, encrypt and send the encrypted AES
keys to the cloud storage in batches well before the actual
sensing. In addition, although the encryption proxy has the
secret KID, it cannot derive the owner’s secret key. The
remaining steps (step (4) to (7) in Figure 12) are similar to
the previous setting.

Compare to the PKC-enabled sensor, if a low-powered
sensor ID is compromised, the secret KID could be re-
vealed. With KID, the adversary can decrypt all previously
encrypted sensor samples generated by that sensor.

Owner

User

Low-powered
Sensor

Cloud Storage

Proxy

(1)KID

(5)
t,KS

(4)qS
(2) AES-
encrypted
sensor data

(1)PK, KID

(3) AES keys
encrypted
by KAC

(6)t

(7)C

Figure 12: System model for low-powered sensors

8. RELATED WORK
Several cryptographic key assignment schemes exploit hi-

erarchical structures (e.g. trees) to maintain keys for various
sets of objects [29, 3]. A key for an internal node is used to
derive keys for its descendant nodes. These approaches ef-
ficiently support aggregating key for simple access policies.
Other schemes can support more complicated access poli-
cies, such as those that are described by cyclic or acyclic
graphs [2]. Benaloh et al. introduced an encryption scheme
supporting delegating decryption capability with flexible hi-
erarchy [4]. However, it is not clear how to extend the
schemes to maintain encryption keys for multidimensional
objects whose access policies do not follow any hierarchical
structure.

KP-ABE enables various ciphertexts to be decrypted by
one single key. This technique associates a set of attributes
to a ciphertext and a policy to a decryption key. Such
key can decrypt all ciphertexts whose attributes conform
to its policy [9, 19]. ABE attains collusion-resistance at a
cost of either increasing the secret keys size or ciphertext’s
size [18]. These approaches requires many bilinear-mapping
operations in their executions, rendering their performance
prohibitive and thus impractical.

Supporting complex queries over encrypted data is also
of interest. Boneh et al. presented a primitive named Hid-
den Vector Encryption (HVE) to enable range and subset
queries [7]. This scheme results in O(dt) encryption time,
ciphertext size and O(d) decryption key size and decryption
cost, where d is the number of dimensions and t the number
of points. Shi et al. proposed a construction adopting a spe-
cialized data structure for range query evaluation [23]. Its
encryption cost, ciphertext size and decryption key size are
all O(d log(t)) while decryption cost is O((log(t))d). Because
these schemes consider some security requirements which
are not relevant in our application, such as secrecy of all
attributes, they suffer from a poor performance and not ap-
plicable in our context.

While KAC has inspired various follow-ups [12, 28], those
works have not yet focused on improving KAC’s key recon-
struction cost. To our knowledge, the techniques proposed in
this paper are the first algorithmic enhancement to reduce
the key reconstruction cost of KAC. This not only makes
KAC more applicable in practical systems, but also benefits
those follow-up works that employs KAC as the underlying
cryptographic primitive.

9. CONCLUSION
In this work, we focus on sensor data, especially time-

series data that are continuously sensed, encrypted and
streamed to the cloud. The temporal and spatial arrange-
ments of these time-series data lead to queries in the form
of multidimensional range and down-sampling that can be
exploited for efficiency. We introduce algorithmic enhance-
ment for the known KAC. The enhancement is significant
for Q1 and Q2 queries, achieving 90 times speed-up in re-
constructing 215 keys. To deal with more general appli-
cations, we generalize the technique and provide heuristics
for handling arbitrary queries. These heuristics attain upto
eight times speed-up over the original KAC. Finally, our
clustering-based method for trading off between number of
aggregated keys to be issued and reconstruction time is also
proven to be efficient, evidenced by the 19 times speed-up.

Our proposed fast reconstruction techniques resolve the
scalability issue in adopting key aggregation in practical ap-
plication with large datasets. This makes the KAC more
applicable in various scenario and system settings includ-
ing the Internet of Things. More interestingly, the impli-
cation of our work is much more. Our observation on the
recurrence relations, and the techniques we propose to ex-
ploit such relations for better computation cost can also be
applied on other cryptographic primitives whose construc-
tions involve group multiplications, such as broadcast en-
cryption [13], redactable signatures [8].

Acknowledgements
This research is supported by the National Research Founda-
tion, Prime Minister’s Office, Singapore under its National
Cybersecurity R&D Program (Award No. NRF2015-NCR-
NCR002-001) and administered by the National Cybersecu-
rity R&D Directorate. All opinions expressed in this work
are solely those of the authors.

10. REFERENCES
[1] J. A. Akinyele, M. D. Green, and A. D. Rubin. Charm:

A framework for rapidly prototyping cryptosystems.
Cryptology ePrint Archive, Report 2011/617.

[2] M. J. Atallah, M. Blanton, N. Fazio, and K. B.
Frikken. Dynamic and efficient key management for
access hierarchies. ACM Trans. Inf. Syst. Secur., 2009.

[3] G. Ateniese, A. D. Santis, A. L. Ferrara, and
B. Masucci. Provably-secure time-bound hierarchical
key assignment schemes. Cryptology ePrint Archive,
Report 2006/225.

[4] J. Benaloh, M. Chase, E. Horvitz, and K. Lauter.
Patient controlled encryption: Ensuring privacy of
electronic medical records. In CCSW, 2009.

[5] D. Boneh, C. Gentry, and B. Waters. Collusion
resistant broadcast encryption with short ciphertexts
and private keys. In CRYPTO, 2005.

[6] D. Boneh, C. Gentry, and B. Waters. Collusion
resistant broadcast encryption with short ciphertexts
and private keys. In CRYPTO, 2005.

[7] D. Boneh and B. Waters. Conjunctive, subset, and
range queries on encrypted data. In Theory of
cryptography. 2007.

[8] E.-C. Chang, C. L. Lim, and J. Xu. Short redactable
signatures using random trees. In CT-RSA. 2009.

[9] M. Chase and S. S. Chow. Improving privacy and
security in multi-authority attribute-based encryption.
In CCS, 2006.

[10] C.-K. Chu, S. S. M. Chow, W.-G. Tzeng, J. Zhou, and
R. H. Deng. Key-aggregate cryptosystem for scalable
data sharing in cloud storage. IEEE TPDS, 2014.

[11] C.-K. Chu, S. S. M. Chow, W.-G. Tzeng, J. Zhou, and
R. H. Deng. Supplementary material for key-aggregate
cryptosystem for scalable data sharing in cloud
storage, 2014.

[12] H. Deng, Q. Wu, B. Qin, S. S. Chow,
J. Domingo-Ferrer, and W. Shi. Tracing and revoking
leaked credentials: accountability in leaking sensitive
outsourced data. In ASIACCS, 2014.

[13] A. Fiat and M. Naor. Broadcast encryption. In
CRYPTO, 1994.

[14] V. Goyal, O. Pandey, A. Sahai, and B. Waters.
Attribute-based encryption for fine-grained access
control of encrypted data. In CCS, 2006.

[15] J. A. Hartigan. Clustering algorithms. 1975.

[16] M. M. Hassan, B. Song, and E.-N. Huh. A framework
of sensor-cloud integration opportunities and
challenges. In ICUIMC, 2009.

[17] M. H. Hayes. The reconstruction of a multidimensional
sequence from the phase or magnitude of its fourier
transform. IEEE Trans Sig. Process, 1982.

[18] S. Hohenberger and B. Waters. Attribute-based
encryption with fast decryption. In PKC. 2013.

[19] A. Lewko, A. Sahai, and B. Waters. Revocation
systems with very small private keys. In IEEE S & P,
2010.

[20] S. A. Manavski and G. Valle. Cuda compatible gpu
cards as efficient hardware accelerators for
smith-waterman sequence alignment. BMC
bioinformatics, 2008.

[21] C. Neuman, T. Yu, S. Hartman, and K. Raeburn. The
kerberos network authentication service (v5). RFC
4120, 2005.

[22] A. A. Pirzada and C. McDonald. Kerberos assisted
authentication in mobile ad-hoc networks. In ACSC,
2004.

[23] E. Shi, J. Bethencourt, T.-H. H. Chan, D. Song, and
A. Perrig. Multi-dimensional range query over
encrypted data. In IEEE S & P, 2007.

[24] R. Sibson. Slink: an optimally efficient algorithm for
the single-link cluster method. The Computer Journal,
16(1):30–34, 1973.

[25] T. F. Smith and M. S. Waterman. Identification of
common molecular subsequences. Journal of molecular
biology, 1981.

[26] H. Takabi, J. Joshi, and G.-J. Ahn. Security and
privacy challenges in cloud computing environments.
IEEE S & P, 2010.

[27] R. E. Tarjan. Finding optimum branchings. Networks,
1977.

[28] Y. Tong, J. Sun, S. S. Chow, and P. Li. Towards
auditable cloud-assisted access of encrypted health
data. In CNS, 2013.

[29] W. G. Tzeng. A time-bound cryptographic key
assignment scheme for access control in a hierarchy.
TKDE, 2002.

