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ABSTRACT

Large-scale data sets are sometimes logically and physically
distributed in separate databases. The issues of mining
these data sets are not just their sizes, but also the dis-
tributed nature. The complication is that communicating
all the data to a central database would be too slow. To
reduce communication costs, one could compress the data
during transmission. Another method is random sampling.
We propose an approach for distributed multivariate regres-
sion based on sampling and discuss its relationship with the
compression method. The central idea is motivated by the
observation that, although communication is limited, each
individual site can still scan and process all the data it holds.
Thus it is possible for the site to communicate only influen-
tial samples without seeing data in other sites. We exploit
this observation and derive a method that provides tradeoff
between communication cost and accuracy. Experimental
results show that it is better than the compression method
and random sampling.

Categories and Subject Descriptors

1.5.2 [Pattern Recognition]: Design Methodology—clas-
sifier design and evaluation

Keywords

Distributed data mining, multivariate linear regression, learn-
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1. INTRODUCTION

Recently, Distributed Data Mining (DDM) has emerged
as a popular means of extracting statistical information in a
distributed environment. Several systems have been devel-
oped for DDM. Here are some examples: the JAM system
developed by Stolfo et.al.[11], the Kensington system devel-
oped by Guo et.al.[5], and BODHI developed by Kargupta
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et.al.[7]. The detailed description of these systems can be
found in Bailey et.al.[1].

Multivariate regression is widely used to analyze data in
social and natural sciences. Sometimes, these data are log-
ically and physically distributed. In the model studied in
this paper, the data are vertically distributed in individual
site as shown in Figure 1.
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Figure 1: Distributed Data Model

Although multivariate regression, in particular linear regres-
sion, is well-studied, the additional constraints imposed in
the distributed environment pose a different challenge. One
of the concerns in DDM is the cost of communication[2],
which is the focus of this paper.

In the non-distributed environment, a method to tradeoff
accuracy with computing resources is by reducing the sam-
ples size[8]. Because the sample points are not known until
they are observed, thus, random sampling is the only op-
tion. In DDM, although random sampling can be applied,
it does not exploit the fact that each local site has access
to all its data. In other words, because each site can see
and analyze all the data stored in its site, it is possible for
the sites to selectively transmit data to the central site, so
as to achieve a overall better estimate given the constraint
on communication bandwidth. The above observation mo-
tivates our proposed scheme.

Outline

The rest of this paper is organized as follows. We first dis-
cuss the related work. In section 3 we give an overview of
multivariate regression(MR) and our model. The main ob-
servation is given in Section 4. Section 5 gives the proposed
algorithm. Section 6 gives the communication overhead



analysis. Section 7 presents the experimental results show-
ing comparison of the proposed algorithm with two known
methods. Comparison with compression method is given in
Section 8. Section 9 concludes the paper.

2. RELATED WORK

Existing DDM work may be grouped into five basic cate-
gories, Meta-learning and Stacking, Collective Data Mining,
Distributed Association Rule Learning, Distributed Cluster-
ing[12] and other DDM techniques[6]. However there is not
much work on Distributed Regression.

Our work is most similar to that given by Daryl et. al.
[6], who gave a wavelet compression-based method. They
proposed to compress each vertical data set using wavelet
transform. Specifically, one dimensional wavelet transform
is first applied to the vertical data; next, only the large ab-
solute value coefficients are kept, and the remainings are
set to zero. Our proposed method is very similar to the
above. A main difference is the motivation. Instead of com-
pression, our method is guided by sampling. Based on the
estimation theory, we argue that large absolute value sam-
ple points are “good” sample points and they give better
estimate than random samples. This leads to the improve-
ment which selects the “most influential” sample points in
each vertical data set, and a better overall performance. Be-
cause wavelet transform is linear, our method complements
the compression-based method in the sense that it can be
applied to the compressed data.

3. BACKGROUND AND MODEL

Background on multivariate regression can be found in[9,
10].Here are some definitions on the regression model with
fixed independent variables. Let X represent the indepen-
dent variables and Y the real-valued response variable. Y
is a » x 1 matrix of sample values, X=[Xo, X1,...X/] is a
n X (£+ 1) matrix where each column represents the sample
data for one independent variable and the first column X
consists of the constant ones. Thus, each row contains the
set of observed values of the independent features for one
sample. Using matrix notation,we can express the function
relation between Y and X as,

Y =XB+e, (1)

where B=[fo, B1,...0:]" is a (£ + 1) x 1 column vector of
regression coefficients to be estimated. The € is the error in
the measured values of Y and usually assumed to follow a
multivariate normal distribution,

e~ N(0,0°1). (2)

The standard approach to estimate B is accomplished using
the least square estimator. If the matrix X7 X is invertible
then the least square estimator of the regression coefficients
is

B=x"x)"'x"y. (3)
The property of B that we are interested in is as follow:
e The covariance matrix for B is given by o?(X7X) ™!
Distribution Model

We assume that there are ¢ + 1 local sites Lo, L1,..., L,
storing the distributed data sets and one central site C

computing the estimator B. The local site Lg stores the
response variable Y. Each other local site stores the inde-
pendent variable, specifically, L; stores the column vector
X; for : = 1,2,...,£. The estimator is to be computed in
the central site C. Thus, information on X and Y has to
be sent to C. We want to find a method that gives a good
estimate of B, while using some fixed amount of communi-
cation cost. The performance of the estimator is measured
by its variance (that is, the expected ||B — B||3). Details
on the accounting of communication cost will be given in
Section 6.

4. INFERENCE ON ESTIMATOR B

In this section, we describe the main observation that mo-
tivates our algorithm: the influential samples occur at the
two extreme ends of the data set. In the previous section,
we have cov(B) = 0?(XTX)~". Thus the configuration of
XTX is important in the estimation of the 3}s. The slope

coefficient ﬂ} (j # 0) has sampling variance
R 1
v =

=) Cmees o) I

where X;; is the ith sample value in Xj, R]z is the multiple
correlation from the regression of X; on all the other X's|3].
Typically, hypotheses about Bo are of less interest than those
of the slope coefficient §;(j # 0), since our first priority is
to determine whether there is a linear relationship between
Y and X.

Now we investigate Eq.(4) and identify terms that can
be improved by using local sites. The first factor in Eq.(4)
is called the variance-inflation factor. It is small when Xj
is not strongly correlated with other X's. Note that its
value depends on the sample values of all the other indepen-
dent variables. However the second factor depends solely on
the sample values in X;. According to the second factor, a
large variance of X; gives a smaller variance in estimation
of 3;(j #0).

In the non-distributed environment, information on X and
Y is obtained only after they are observed. Thus, the only
way to reduce the number of samples is by random selection.
However in the distributed environment, each local site L;
can see all the values of Xj;, for all i. Thus it is possible to
reduce the second factor.

Now we ask the following question: given a set of real
values K={z1, z2,...xz,}, which subset K' of k values has

’
maximum “variance” V(K ),

VIK)= Y (z—K'). (5)

zeK'

First, note that among all random real-valued variables
having range [a,b], the one with the maximum variance is
the random variable that equals a with probability 1/2 and
equals b with probability 1/2 [9].

In our model, the sample values X's are fixed. We need to
choose influential subsets from the samples to achieve mini-
mum variance of the 3;s when the size of the subset is given.
Observations whose inclusion or exclusion results in substan-
tial changes in the fitted model (coefficients, fitted values)
are usually said to be influential. Here, we call the set of
samples that gives lower variance of B, influential. Based
on the following theorem, we can purposively choose a given



size of influential samples and achieve better regression per-
formance than random sampling method.

Theorem 1

For an ascending-ordered set K = {x1,x2,...,x¢} with £ real
values in the range [a,b].Let K; j ={Z1, ..., Ti, To—ktit1, -y L0}
be a set of size k where 1 <1< /¥, and 0 < k < /¢

Among all possible subsets of K with a given size k, the
subset K which gives the largest V(KI) is K;r for some
i. Furthermore, for any fized k, the function V(K ) with
respect to © is convez.

The above theorem states that the influential samples oc-
cur at the two extreme ends. Because the function V(K 1)
with respect to i is convex, we can find the influential sam-
ples K; i efficiently using binary search.

5. PROPOSED ALGORITHM

In this section, we present the algorithm to distributed
multivariate linear regression based on influential samples.
Besides that, we also describe two other methods, random
sampling and compression-based method, which are used for
performance comparison.

Algorithm 1

1. Each local site L;, where i = 1,2,...,{ performs:

(a) Determine the k influential samples in X; using
Theorem 1. Let Z; be the indices of these k sam-
ples.

(b) Send Z; to the central site C.
2. After receiving all the Z;’s, the central site C' performs:

(a) DetermineZ =Z1 UZy...UZy.
(b) Send Z to Lo.
Send (Z —Z;) to L; for t =1,2,...,L.

3. Each local site L;, where : = 0,1, ..., ¢, sends the sam-
ples whose indices are in Z to the central site C.

4. The central site C' computes the estimator B.

The communication cost will be described in Section 6.
The computational cost in step 1(a) is linear with respect
to the number of samples n. If the samples are already
sorted, then, using binary search, the influential samples
can be found in O(log k) time, and in O(k) if we include the
reporting time. If the samples are not sorted, we can use
the selection algorithm to list out the 2k largest absolute
values. This can be done in linear O(n) time. With the
2k largest absolute values, the influential samples can be
similarly found using binary search.

We compare our method with the following two methods.

1. Compression-based. This is the method proposed

in [6]. Each local site first performs 1-d wavelet-packet
decomposition on the samples it holds. Next, it sends
a predefined number of coefficients with the largest
absolute values to the central site. For example, L;
performs 1-d wavelet on X;, and sends the k coeffi-
cients with the largest absolute value to C, where k is

a predefined constant. After receiving the large coeffi-
cients from all local sites, the central site C' computes
the estimator. Coefficients that C' does not receive are
set to zero.

2. Random sampling. This simple method randomly
chooses a few samples from each site and sends them
to the central site for processing. In other words, first,
a few rows from X are randomly chosen. The chosen
rows, together with the respective samples in Y are
then used to compute the estimator.

6. COMMUNICATION OVERHEAD

In this section, we analyze the communication require-
ments. Let the size of one sample be J§, and the communi-
cation cost to transmit a sample be §. Thus, the size of Y is
nd and the size of X is nfd. Although X is an x (£+1) ma-
trix, the column X consists of the fixed constant one’s and
is not required to be explicitly stored. Therefore, if all the
samples are used for the regression, then the communication
cost is n(£+1)d. Besides the actual samples, in some meth-
ods, their locations may be required to be explicitly stored.
Each sample set, i.e. each row of the X can be identified by
an index or the row number. Let v be the size required to
represent the indices. For example, if n = 2%, then v = 8
bits.

To reduce the number of samples, additional communica-
tion is required to synchronize all the sites so that all use
the same set of samples. We call the size of the data, other
than the samples, that are transmitted for synchronization
the overhead cost. We ignore the constant overhead re-
quired during hand shaking and communication housekeep-
ing, which are required by all methods.

1. Random sampling. This method incurs the lowest
overhead. The local sites and the central site first agree
on a random seed. Based on this seed, a random se-
quence of indices is generated in each site. Because the
seed is the same, so are the generated sequences in all
the sites. Next, each local site sends the corresponding
samples to the central site. Only constant overhead is
incurred.

2. Compression-based. Suppose that each local site sends
the k largest absolute value coefficients to the central
site. Besides the value of the sample points, the indices
of these coefficients are required to be sent. Thus, the
communication cost is k(¢+1)(6++), and the overhead
is k(£ +1)7y.

3. The proposed method. There are three rounds of com-
munication. (1) Each local site sends the indices of the
influential samples to the central cite; (2) The central
site sends to each local site the indices of additional
samples it requires from the local site; (3) Each local
site sends the samples to the central site. Suppose the
number of all influential samples is k (i.e. the total
number of elements in Z in Algorithm 1, not to be
confused with the k in step 1), then the total number
of indices sent to and from the central site is (£ + 1)k.
The number of samples sent in round 3 is also (£+1)k.
Thus, the communication cost is k(£+1)(§ +7), which
is same as that of compression-based method, and the

overhead is k(£ + 1)y.



Depending on the data type, the ratio of § and =y varies.
The size « is arguably small. For example, the samples
value might be a 32-bit single precision floating point, and
the number of samples is 2'®, which gives ¥ = 16 bits. In
the experimental results, we take § = 1 and v = 0. For
non-zeros value of v, the performance can be easily inferred
from the graphs.

7. EXPERIMENTAL RESULTS

We use both synthetic and benchmark data sets to com-
pare the resulting model statistics with random sampling
and compression-based method.

7.1 Synthetic data

The synthetic data are generated according to following
procedure:

1. Randomly generate data X which follows a multivari-
ate normal distribution. Recall that X, consists of the
constant one’s.

2. Randomly generate B = [, 81, ..., B1]".

3. Randomly generate error e which follows a multivariate
normal distribution.

4. Compute Y asY = XB +e.

The experimental results are presented in Figure 2 and
Figure 3. The size of the data is n = 512 and the number
of variables is £ = 7. We repeat the experiment 40 times.
Each time we generate different X, B, e and Y, i.e. 40 sets of
data are generated. From these 40 sets of data, we compute
the average to estimate the variance of estimator. Figure 2
shows the log-scaled variance of estimator as the communi-
cation cost increases. Recall that the variance of estimator
is the expected ||B — B||3. The communication cost is com-
puted using the size of a sample 6 = 1 and ignoring the size
of index ¥ = 0. The figure shows that proposed method
performs better than compression-based method and ran-
dom sampling. Figure 3 shows the log-scaled residual sum
of squares(]|Y — Y||3) as the communication cost increases.
The proposed method performs the best.
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Figure 2: Performance comparison for synthetic
data using variance of estimator.
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Figure 3: Performance comparison for synthetic
data using residual sum of squares.

Y Xy Xo
100.08 | 48.83 | 63.42
89.97 | 41.09 | 60.11
113.22 | 51.83 | 70.12
101.09 | 34.82 | 55.38
82.22 | 22.54 | 52.36
105.13 | 40.58 | 60.37
105.81 | 41.02 | 57.56
91.32 | 34.04 | 50.86
97.38 | 48.65 | 63.20
97.38 | 47.80 | 56.35

Table 1: Energy expenditure data. The data con-
sists of 104 samples. This table shows part of the
data.

7.2 Benchmark data

In order to test the validity of our method, we apply it to
benchmark data set that has been analyzed using standard
MR techniques. For real life data, the true B is unknown, we
use the value estimated from all the samples as the ground
truth.

The data are from an investigation[4] concerning the en-
ergy expenditure for human subjects at a given physical ac-
tivity and for a given time period. We choose the largest set
of the data from the investigation, consisting of 104 women.
The variables measured for the i-th subject were total en-
ergy expenditure at rest for a 24 hour period Y, mass of fat
tissue X; and mass of fat-free tissue X>. Table 1 shows a
subset of the data. The experimental results are presented
in Figure 4 and Figure 5. Figure 4 shows the log-scaled
variance of estimator as the communication cost increases.
Figure 5 shows the log-scaled residual sum of squares as the
communication cost increases. The proposed method per-
forms the best.

8. COMPARISON WITH COMPRESSION
METHOD

The main difference between compression-based method
and the proposed method is the motivation: the proposed
method is guided by sampling. Yet, in a certain way, both
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Figure 4: Performance comparison for energy ex-
penditure data using variance of estimator.
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Figure 5: Performance comparison for energy ex-
penditure data using residual sum of squares.

methods are similar. Because wavelet transform is linear,
Algorithm 1 can be applied in the transformed domain. This
is simply done by treating the wavelet coefficients as samples
and applying Algorithm 1 on them. If the distribution of the
wavelet coefficients follows a zero mean normal distribution,
then very likely, most of the influential samples (or coeffi-
cients) are the coefficients of k largest absolute value, where
k is the number of samples to be used. In other words, the
influential samples are likely to be the same samples picked
by the compression-based method.

Note, however, that Algorithm 1 and the compression-
based method are not equivalent even if the k influential
samples are the k largest absolute values. Under the
compression-based method, samples with small absolute value
are set to zeros. For example, consider arow (1, z1,z2,...,x¢)
in X. Suppose only |z2| is large, then the values used in the
estimation are (1,0,22,0,...0). On the other hand, under
Algorithm 1, if x» is the only influential sample, all other
values in the same row are requested by the central site and
are used in the estimation.

The compression-based method exploits the compressibil-
ity of each feature, i.e. the column vector X;. As such, it
performs poorly if there are not coherence within each col-
umn X;. For example, in the synthetic data (Figure 2), the

samples are independently generated, and thus the perfor-
mance of the compression-based method is relatively poor.
In some real-life data, there might be coherence among the
samples. For example, in Figure 4, the performance of the
compression-based method improves significantly. In this
case, our method is complementary in the sense that it can
also make use of the coherence.

9. CONCLUSIONSAND REMARKS

In this paper we present a method for distributed multi-
variate regression using influential samples. With the intu-
ition that, although communication is limited, each individ-
ual site can still scan and process all the data it holds, we
propose a technique for the site to communicate only influ-
ential samples without seeing data in other sites. Based on
the estimation theory, we argue that large and small sam-
ple points are influential sample points and they give better
estimate than random samples. We also discuss its rela-
tionship with the compression method in[6]. Experimental
results show that our method performs better.

There are many possible extensions of this work. Cur-
rently, our method attempts to minimize the second factor
in (4). It may be possible to minimize the first factor us-
ing information gathered in a few rounds of communication.
Another possible extension is to adapt the method to clus-
tered samples. In is also interesting to study whether in-
corporating quantization of the sample values will further
reduce communication cost.
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