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Abstract. Bob promises to keep a large file x for Alice. The irresponsi-
ble Bob may throw away portion of x or ask another unreliable party to
keep it. To prevent that, periodically, Alice wants to remotely check that
Bob indeed has x readily available for reading. If Alice has the original
x, this can be easily checked by querying Bob. We consider the more
challenging case where Alice does not has the original. This problem in-
cludes a component on lossy compression that is not present in typical
requirement of integrity. We propose a formulation capturing the notion
of an irresponsible Bob who is able to compress x with respect to the
verification. We also propose two schemes and analyze their security.
Keywords: Remote Integrity Check, Private Information Retrieval, Re-
mote File System, Memory Integrity Verification.

1 Introduction

Alice (the owner) has a large file x which she does not want to keep in her local
storage. Alice may or may not need this file in the future. However, whenever
she needs it, she wants it readily available. Bob (the server), who is connected
to Alice through a low bandwidth network, promises to keep the file for Alice.
However, the irresponsible Bob may discard portion of x as he is taking the risk
that Alice may not need it. The irresponsible Bob may also temporarily move the
file to a slower storage device. Let us call such an irresponsible entity a cheater.
To prevent cheating, periodically, Alice wants to remotely check that Bob indeed
has x readily available for reading. If Alice has the original x, this can be easily
checked by querying Bob, for example, by asking Bob to compute a keyed hash.
However, Alice does not has the original and thus can not verify Bob’s reply. In
addition, since the checks are done frequently, after logging sufficient number of
queries, Bob may be able to discard the file and yet able to answer future queries
by using the logged data. These technical challenges leads to the problem studied
in this paper: how to remotely check the integrity and presence of a file, without
any information of the original in the local storage. Protocols that solve the
problems could be useful in remote file system [9, 10, 3], peer-to-peer file backup
[4] and memory integrity verification [13].

Beside the security requirement, there are a few efficiency considerations.
(1) Communication bits required for the verification should be low. (2) As we
shall see later, some secure schemes use large number of keys. Although tech-
nically, such keys do not contains any information of the original file and thus
fit into the requirement of not keeping the original, in practice, the total key



size should be significantly smaller than the file. (3) Since the file is large, the
verification algorithm has to be fast, for example quadratic algorithm is not ac-
ceptable. Preferably, the verification can be done without reading the whole file.
(4) Additional storage at the server, beside the original file, should also be small.

An unsatisfactory scheme. To illustrate the problem, let us look at an unsatis-
factory scheme. Both Alice and Bob agree on a keyed hash function. Alice keeps
some secret keys, s1, s2, . . ., and the hashed values, h1, h2, . . ., of the respectively
secret keys on the file x. During each checking, Alice reveals a secret key and
Bob must send the corresponding hashed value to Alice. Alice verifies whether
Bob is a cheater by matching the value she received with hi’s. This method is
unsatisfactory because a secret key is revealed during each check. When Bob
thinks that he has seen and remembered sufficient keys, he can discard x and
just keeps those si’s and hi’s that have appeared. Furthermore, for certain known
keyed hash, Bob is able to extract small number of bits from x that are sufficient
to carry out the computations. For example, many popular keyed hash functions
follow the hash-and-sign framework where the data are first hashed (without
using the key), and then signed with the key. For these schemes, a cheater can
simply keep the hashed value and discard x.

Three approaches. Here are a few possible approaches to check against cheaters.
The first approach can be viewed as a form of secure mobile code[1, 12] or au-
thentication of out-sourced data[5]. Each bit xi of the file x is tagged with an
additional value ti that are to be stored by Bob. During verification, Alice sends
a random key s to Bob and Bob must reply with the hs(x) and a proof computed
from the tags. Although Alice does not know the actual hashed value, she can
use the proof to verified that the computations are carried out correctly.

Perhaps a more interesting approach employs a trap-door compression. With
the private key d, Alice is able to compress the file x to obtain a compressed data
compd(x). Alice has an algorithm H that operates in the compressed domain and
able to compute the keyed hash from compd(x). That is,

H(s, compd(x)) = hs(x), for all s

On the other hand, without the private key, Bob is unable to compress x with
respect to the keyed hash hs(x) and thus forced to keep the whole file. Note that
Alice is required to remember compd(x). In order not to store any information in
the local storage, Alice can choose another key, encrypt compd(x), and send it to
Bob. During verification, Bob is supposed to send back the ciphertext. Since data
size of compd(x) is small, bandwidth required is not significant. In this approach,
Bob only need to provide small amount of additional storage compared to the
first approach.

Another approach, which we do not explore in this paper, is to employ a gen-
eralized form of Private Information Retrieval (PIR)[2, 8]. Alice keeps a secret
key s and the corresponding hashed hs(x). During verification, PIR is carried
out where the query is asked for the value of the keyed hashed. After completion



of the protocol, Alice obtains the hashed value and can verify whether Bob’s
reply is valid. Yet, by the properties of PIR, Bob still does not know s. We do
not explore this approach since it is not clear how to extend PIR to support
computation of hash, and typically the computing cost in PIR is high.

The security requirement of our problem has a “compressibility” component
that is not present in the usual application on integrity. A naive cheater, based on
a lossy-compressed file, may try to guess the most likely original and then carries
out the verification protocol. However, it is not necessary to have the original
in order to pass the verification. So, alternatively, the cheater may also exploit
the weakness in the verification protocol. Since we can not prevent the cheater
to guess the original from the compressed file, we should focus on the design
of the verification protocol. Thus, we formulate a measure that quantifies the
advantage the cheater has in evading the verification check, over what the best
possible algorithm (without restriction on its running time) can do in guessing
the original.

Outlines and Contributions. In this paper, we give a formulation of a security
requirement (Section 2) that captures the notion of a cheater who has an advan-
tage in suppressing the ambiguity introduced by compression. For illustration,
we analyze two unsatisfactory simple schemes by giving cheaters with signifi-
cant advantage (Section 3). We next propose two more schemes (Scheme 3 & 4).
Scheme 3 follows the first approach mentioned above. We prove that Scheme 3 is
vigilant to any cheater (Section 4) assuming an underlying hash function satisfies
a property and factorization is difficult. This scheme requires small number of
communication bits, but large number of keys to be stored in the local storage.
Probably the size of the keys can be reduced by using a secure random number
sequence. However further analysis is required. It is possible to modify Scheme
3 to achieve speedup by using only a fraction of the file during verification.
Another drawback of the scheme is that it requires linear (with respect to the
file size) additional storage at the server. Scheme 4 follows the second approach
mentioned above (Section 5). This scheme is very simple and efficient. It require
small amount of additional storage and communication bits during verification.
However, we are only able to give a partial proof of its security.

2 Problem Formulation

2.1 Overview

Essentially, a cheater has a many-to-one compression that maps a few files to a
same object. The cheater may has access to auxiliary information, for example
previous communications and public key of the owner, to help him compressing
the file. After a file is compressed, the cheater does not know the original and
thus unable to carry out the verification process. The cheater can try to predict
what is the most likely original from the compressed file, and then carries out
the protocol accordingly. However, it is not necessary to have the original in



order to evade detection. For instance, the verification protocol may only ask
for a hashed value of the original. Hence, a cheater may also exploit properties
of the verification protocol. As we can not prevent the cheater to guess the
original, we focus on the protocol. If the cheater, when given only the compressed
data, is able to pass the verification with a probability that is better than the
probability that he can successfully predict the original, we say that this cheater
has an advantage. Our security goal is to design an owner so that no cheater
has a constant advantage (vigilant) or no cheater has non-negligible advantage
(strongly vigilant), over its verification protocol.

2.2 Definitions & Notations

The two entities involved are the owner (Alice) and the server (Bob). When the
server intends to cheat, we call him a cheater. As mentioned in the introduction,
the owner has a file x = x1x2 . . . xm where xi is the i-th bit and thus the size
of x is m. Let X be the collections of all files, and Xm be the collection of files
with size m.

There are two phases in the remote integrity check. During the setup phase,
the owner chooses a sequence of secrets, s = (s1, . . .). Let k be the total size
of the secrets, which is the security parameter in our main result, and let Uk

be the random variable of the secret which is uniformly distributed among all
bits strings of size k. During the verification phase, the owner interacts with the
server and decides whether the server is a cheater.

Compression. The goal of a cheater is to “compress” the file x. We view a
compression:

comp : X × Y → C

as a deterministic function, where Y is the collection of auxiliary data, and C is
the compressed domain, and we call an element in C the compressed data.

The auxiliary data can be the additional data sent by the owner, or history
of previous interactions. Although there may be a few algorithms involved in
producing the data, eventually, the auxiliary data are extracted from the file x
and the secret s by a probability algorithm. Thus, we write the auxiliary data
as

f(x, s; b)

where f is a polynomial-time probabilistic function and b is the random bits
utilized by the probabilistic algorithm. The actual range of f is of no interest in
our analysis as long as the size of each compressed file is in poly(k), where k is
the size of the secret s.

Given a compressed data, it could be the case that any algorithm is unable
to confidently predict which is the original file among a set of candidates.

Definition 1 The predictability of a finite set F ⊂ X given the compres-
sion comp, the auxiliary function f and an integer k, is the average maximum



likelihood,

ε = Ex←X,s←Uk,b←R

{
max
x0∈F

Pr[X = x0 | comp(x, f(x, s; b))]
}

where the expectation is taken over Uk, X which is uniformly distributed among
elements in F , and the random choices R made by f .

The logarithm of the predictability (− log ε) is also known as the average min-
entropy [6]. The predictability can be viewed as the probability of success of the
minimum-error probability decoding [7] in the studies of error correcting code.
Given a received sequence transmitted over a noisy channel, the decoder guesses
the original message while minimizing the probability of error. In our setting, it
maximizes the probability of correct prediction.

Owner and Cheater. The owner (V, tag, q(·)) is associated with two proba-
bilistic algorithms V , tag and a size function q : Z → Z which is bounded by
a polynomial. Given a security parameter k ∈ Z, the owner chooses the k-bits
secret s (recall that we write Uk as the random variable of the secret). The key
is applicable for files of size not more than q(k). For a file x, the owner computes
the tag t = tag(x, s). The file x and the tag t are sent to the server during setup
phase, whereas the secret s is kept in the local storage.

A cheater (comp, L, L̃) is a server who intends to discard partial information
of x but pretends keeping the whole file. It is associated with three probabilistic
polynomial-time algorithms: a compression comp that compresses the file x, an
algorithm L that interacts with the verifier V during verification, and a probe L̃
who tries to extract secrets from the server via interactions. If the cheater does
not has a probe, we write it as (comp, L, ·) and say that it is memoryless.

Let us write:
〈 L(c), V (s) 〉

to be the output of V after the interaction with L, where c and s are the respec-
tive inputs.

We are more concerned about cheaters with probes. For clarity, we first give
the definition for memoryless cheaters.

Definition 2 A polynomial-time cheater (L, comp, ·) has a δ advantage over the
owner (V, tag, q(·)) if for infinitely many k,

Pr [ 〈 L (comp(X, tag(X, Uk))) , V (Uk) 〉 = accept ] > ε + δ

where X is uniformly distributed among files in Xq(k) and ε is the predictability
of the set Xq(k) with respect to comp, tag(·, ·) and k. The probability is taken over
X, Uk, and random choices made by V and L, comp, tag.

We can substitute δ in Definition 2 by a function of k. Thus, we can say that
a cheater has 1/q(·) advantage. For owners, we define:



Definition 3 An owner is γ-vigilant over memoryless cheaters if, there is no
cheater that has an advantage more than γ over the owner.

We say that an owner (V, tag, q1(·)) is strongly vigilant over memoryless
cheaters if, for any positive polynomial q2(·), there is no cheater that has 1/q2(·)
advantage.

In other words, an owner is strongly vigilant if no cheater can evade detection
non-negligibly better than ε, which is the performance of the minimum proba-
bility error decoder in predicting the original.

A cheater may has access to an auxiliary information which consists of the
communications between the owner V and the probe L̃, and the internal states
of the probe. Let viewV,tag

L (x, k) be the random variable of those information.
We also assume that the probe L̃ has seen the communication during the setup
phase. Thus the view contains all information of tag(x, k) and x. Since view is
polynomial-time, implicitly the size of its output is also in poly(k).

By replacing the auxiliary function in Definition 2 by the view, similarly, we
define:

Definition 4 A polynomial-time cheater (L, comp, L̃) has a δ advantage over
the owner (V, tag, q(·)) if for infinitely many k,

Pr
[〈

L
(
comp(X, viewV,tageL (X, Uk))

)
, V (Uk)

〉
= accept

]
> ε + δ

where X is uniformly distributed among files in Xq(k) and ε is the predictability
of the set Xq(k) with respect to comp, view and k. The probability is taken over
X, Uk, and random choices made by V and L, comp, view.

Similar to Definition 3, an owner (V, tag, q1(·)) is γ-vigilant if there is no cheater
(L, comp, L̃) that has γ-advantage, and is strongly vigilant if there is no cheater
with non-negligible advantage.

2.3 Remarks

1. The compression comp could be a one-way function. The definition does not
exclude a cheater who does not has an advantage and yet unable to “decompress”
the compressed data. That is, the cheater keeps all information of the file as
promised, but no polynomial-time algorithm is able to retrieve it. By doing so,
the cheater actually gains nothing, for example, no extra storage space is freed.
This is more of a playful and trouble making cheater, and not a concern in most
applications. Nevertheless, for the proposed Scheme 3 to be introduced later,
there is no such playful cheater. This is because from sufficient number of replies
by the server, we can derive the original x by solving a system of linear equations.
Thus, its comp can not be one-way.

2. If we have an γ-vigilant owner where γ is a constant, by repeating the
verification protocol, it is not necessary that we will get a more vigilant owner.



3 Two Unsatisfactory Schemes.

To illustrate the formulation, let us consider two simple schemes that are unsat-
isfactory. For the first scheme, there is a memoryless cheater achieving significant
advantage. The second scheme uses a keyed hash and is vigilant over memoryless
cheater, assuming the hash functions satisfy a property. When the cheater has
access to previous interactions, it is not vigilant.

Scheme 1: Checking the bits

Given a file x of size m, the owner randomly picks s ∈ {1, . . . ,m}, and a bit
e. The tag to be stored in the server is t = e xor xs. During verification, the
owner sends s to the server, and the server is supposed to reply with xs xor t.
The owner checks whether the reply is indeed the secret bit e.

Now, consider a cheater who simply discards one bit, say the first bit, from
x. The predictability of Xm is 1

2 . For any challenge s sent by the owner, if s 6= 1,
the cheater can send the correct reply. If s = 1, he will send the value 0. The
probability that owner accept is m−1

m + 1
2m = 1

2 + m−1
2m . Hence the cheater has a

m−1
2m advantage.

Clearly, if a cheater can remember previous interactions, this scheme will fail
miserably. After the first interaction, the cheater just has to remember his reply,
i.e. xs and discard the rest. So, the predictability of Xm is 2−(m−1), and the
cheater always succeeds. Hence, the cheater has a 1− 2−(m−1) advantage.

We may enhance the security of this scheme using existing PIR schemes [2,
8]. During verification, PIR is carried out. After completion of the PIR protocol,
the owner will obtain xs. Next, the server sends t to the owner and the owner
can verify. However, the above simple cheater still achieves m−1

2m advantage over
this enhanced owner.

Scheme 2: Using Keyed Hash

– Setup: The owner picks a k-bits prime p and a keyed hash, that is a family
of hash hi : {0, 1}m → Zp. The owner also picks two secrets s, e ∈ Z∗p and
computes the tag,

t = (e + hs(x)) mod p (1)

The file x, p, and t are sent to the server.

– Verification: Owner sends s to the server and server replies with (t−hs(x))
mod p. The owner then checks whether the reply that she received is indeed
e.

The size function q(·) can be any polynomial.
The tag t is essentially a ciphertext from the shift-cipher where the plaintext

is hs(x) and the key is e. Consider the following property of the keyed hash.



Property 1 Consider a function q : Z → Z and a family of hash functions
hk
s whose message space is {0, 1}q(k) and both the key space and digest space is
{0, 1}k. This family of hash functions satisfies the following property: For any
positive constant γ, for all sufficiently large k, let X be the random variable of
randomly chosen element from Xq(k) following some distribution (not necessary
uniform), S be the random variable of the uniformly chosen secret, and H =
hS(X). Suppose

ε = max
x

Pr(X = x).

We have
Es←S [max

h
Pr(H = h|S = s)] < ε + γ.

This scheme is γ-vigilant over memoryless cheater, for any positive constant
γ if the keyed hash satisfy Property 1. However, as expected, this scheme fails
miserably when encountering cheaters who can view previous interactions.

Lemma 2 Scheme 2 is γ-vigilant over memoryless cheater for any constant γ,
if the keyed hash satisfies Property 1.

A possible candidate of the hash functions is hs(x) =
∑

sixi mod p where
p is a k-bit prime. However, further analysis is required.

4 Scheme 3: Secure Remote Execution

The owner in this scheme assigns a tag to each bit during setup. During veri-
fication, the owner requests the value of a keyed hash and a “proof” that the
computation is done honestly.

– Setup: Given the file x, the owner picks a composite n = pq, where p,q are
strong primes, and a secret element g with order λ(n) = lcm(p − 1, q − 1).
Owner also picks secret s = (s1, . . . , sm) uniformly from1 {0, 1, . . . , n2}. For
each i, the owner computes

ti = gsi+xi mod n.

The owner sends to the server the following:

n and (xi, ti)i=1,...,m

1 For ease in the proof of Theorem 3, we need this set to be large. It is more reasonable
to choose from Zλ(n), but our proof can not handle that. In the proof, we require a
simulator who does not know λ(n) and yet able to generates the keys. If the set is
large, the distribution of s1 mod λ(n) is statistically close to uniform.



– Verification: The owner picks a random r ∈ Z∗n and sends it to the server.
Let ri = ri mod n and

hr(x) =
m∑

i=1

xiri mod n.

The server computes

B =
m∑

i=1

xiri, and A =
m∏

i=1

tri
i mod n

and sends both A and B to the owner. (Note that B is computed over Z).
Owner verifies using the secrets g and si. That is, the owner computes Ã =
gB+hr(s) mod n and accepts iff A = Ã.

Note that a cheater can evade detection in two ways: The cheater can try
to predict the hash value, i.e. B = hr(x), which is unlikely if the keyed hash
satisfies Property 1. Alternatively, he can try to forge a pair (A,B). To forge a
pair, the cheater may first try to guess g. However, this is very unlikely as there
are many unknowns s1, s2, . . . , sm, g and the posterior probability of g given the
tags is statistically close to uniform. This forces the cheater to factorize n. Detail
of the proof is in Appendix B.

Theorem 3 Scheme 3 is γ-vigilant over memoryless cheater for any positive
constant γ, assuming factorization is difficult and Property 1 is satisfied.

The interactions with verifier is perfect zero-knowledge, in the sense that
there is a simulator, with knowledge of x and other information held by the
server, can generate a sequence that is statistically same as the interactions.
Thus, it is suffice to study the memoryless cheater. From Theorem 3, we have:

Corollary 4 Scheme 3 is γ-vigilant over cheater for any positive constant γ,
assuming factorization is difficult and Property 1 is satisfied.

4.1 Efficiency Issues

1. The size function q(·) is actually sub-linear. Most of the secret bits are for
the sequence si. In practice, the owner wants to keep very small number of secret
bits. One possible solution is to generate si by a cryptographic secure pseudo
random number generator CSPRNG where si = CSPRNG(s, i), and keep only the
seed s. It seems that Scheme 3 is still vigilant.

2. The communication costs during verification is low. Note that B is computed
over Z. Since it is the sum of products, if n consists of k0 bits, B is at most
(2k0)dlog2 me bits.



3. To further speedup computation at the server during verification, the owner
can indicate a subset of the file to be involved. For example, the owner sends
an additional seed u which generates bits sequence u1, u2, . . . , um. The hashed
value is

h̃r,u(x) =
m∑

i=1

uirixi mod n.

For i’s such that ui = 0, the server can ignore it in the computation of A and
thus achieving speedup. However, this owner is less vigilant.

4. For ease in presentation, each xi in Scheme 3 is one bit. Vigilance remains
the same if we allow the xi’s from Zn. By doing so, the size of the tags is about
the same as the file x.

5 Scheme 4: Trap-door Compression

Scheme 4 follows the second approach mentioned in the introduction.

– Setup: The owner picks a composite n = pq where p, q are strong primes,
and a random s ∈ Zn. By treating the whole file x as a large integer, the
verifier computes the tag:

t = (s + c) mod n where c = x mod φ(n).

The owner sends t,x to the server.
– Verification: The owner randomly picks r ∈ Z∗n, and sends it to the server.

The server computes:
a = rx mod n

Server sends a, t to the owner.
The owner computes

c̃ = (t− s) mod n,

ã = rec mod n

The owner accepts iff a = ã.

The tag t is the ciphertext from the shift cipher where the key is s and the
plaintext is c. A server may compute a honestly, but send (ar mod n) and (t+1
mod n) to the owner. In this case, the owner will accept. Although the server
“forges” the reply, he still needs to compute a honestly and thus not considered
to be cheating.

Similar to Scheme 3, the interactions are perfect zero knowledge since there
is a simulator that generates output that is statistically same as the interactions.



Trap-door compression. Consider the function

hr,n(x) = rx mod n.

If order of r is lcm(p−1, q−1), then each hr is a collision resistant hash function,
assuming factorizing n is difficult [11].

We can view the value n as public information and the factors (p, q) as the
corresponding private key. With the private key, the server is able to lossy-
compress x using the following polynomial-time function that reduces the size
of the file x.

Cp,q(x) = x mod φ(n).

Now, there is a polynomial-time function H such that for any x and r,

hr,n(x) = H(n, r, Cp,q(x)).

Hence, we say that the server is able to compress x with respect to the hash
functions. However, without the private key, any cheater should not be able
to find a polynomial-time function C̃n(·) and another polynomial-time function
H(·) such that.

hr,n(x) = H̃(n, r, C̃n(x)).

In other words, using the public information n, cheater must not able to com-
press x with respect to the hash functions. Since with the private key, x can be
compressed easily, the function Cp,q(·) can be viewed as a trap-door compression.

Unfortunately, we are unable to prove the vigilance of Scheme 4. Nevertheless,
it is easy to show that, there is no cheater who uses a compression function C̃n(·)
that is not one-way. If C̃n is not one-way, then with non-negligible probability,
we can find x and y s.t. C̃n(x) = C̃n(y). This leads to:

hr,n(x) = hr,n(y)

which contradicts the fact that the hash function is collision-resistant.

6 Conclusions and Discussions

We have studied the problem of remote integrity check of a file without having
any information of the original with the verifier. A security model is proposed to
capture the notion of a cheater who has an advantage in suppressing the ambi-
guity introduced by compression. Two simple schemes are analysed to illustrate
our security model. We also proposed two more schemes, one is proven to be se-
cure under the assumption that the underlying hash functions satisfy a property
and factorizataion is hard, and the other scheme is supported by a partial proof
of security.

The main gap to be filled in the proof for Scheme 3 is the property of the
hash functions. From the first glance, it seems that Property 1 can be easily
satisfied. However, it is rather frustrating that we are unable to find a proof.



The reduction of the number of secret bits using a CSPRNG is probably not a
major issue, although the proof may be tedious. There are many more issues to
be studied. From practical aspect, it is interesting to combine Scheme 3 and 4
so that we can inherit advantage from both: computation speedup is possible for
scheme 3, and scheme 4 essentially does not need additional storage at the server.
In addition, it would be interesting to find out whether trap-door compression
is possible.
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A Proof of Lemma 2

LEMMA 2 If the keyed hash satisfies Property 1, then Scheme 2 is γ-vigilant
over memoryless cheater for any positive constant γ.



Proof:
Suppose that there is a memoryless cheater (comp, L, ·) who has γ advantage,

for some positive constant γ. From the definition of cheater (Definition 2), for
infinitely many k’s, we have

Pr [ 〈 L (C(X, Uk)) , V (Uk) 〉 = accept ] > ε + γ. (2)

where C(x,k) = comp(x, tag(x,k)), and the probability is taken over X, Uk as
defined in Definition 2, and the random choices made by L and V during the in-
teraction, in particular, r chosen by the verifier V . The predictability (Definition
1) is

ε = Ex←X,k←Uk

{
max
x0∈F

Pr[X = x0 |C(x,k)]
}

(3)

The owner accepts when the hashed value is correct, which implies that the
cheater is able to predict the hashed value with probability more than ε + γ.
Since the cheater can not do better than the minimum error probability decoder,
from (2), we have:

Ex←X,k→Uk,r←R

{
max

h
Pr [H = h | C(x,k), r]

}
> ε + γ. (4)

where H = hr(x) and C(x,k) = comp(x, tag(x,k)).
Now, we consider Property 1. For any compressed file c0, we treat X|C = c0

as the random variable X(the notation is “overloaded” here) in Property 1.
Hence, by the property, for any c0, we have

Er←R[max
h

Pr(H = h|C = c0, R = k)] < ε + γ

Thus, it is impossible to have (4).

B Proof of Theorem 3

THEOREM 3 Scheme 3 is vigilant over memoryless cheater, assuming factor-
ization is difficult, and the hash functions satisfy Property 1.
Proof: (Sketch)

Suppose there is a cheater (comp, L, ·) that has advantage over Scheme 3 with
size function q(·), We want to construct an algorithm that factorizes a composite
with non-negligible probability by simulating the cheater.

Given a randomly chosen k-bit composite n = pq, carry out the following:

– Simulating the owner: Randomly choose a file x of size m = q(k), g ∈ Zn,
s1, . . . , sm from Zn2 . Next construct the tag.



– Simulating the cheater: Construct the compressed file c from the tag. Eventu-
ally, the compressed data is computed from x, n and r which are the random
bits used by the owner to derive si and g. Let use write

c = f(x, r, n).

– Simulating the interactions: Choose a random challenge r ∈ Zn which is to
be the challenge sent by the owner. If gcd(r, n) > 1, factor n and halt. Let
(A,B) be the response of the cheater computed from the compressed data c
and r .
Recall that the owner will accept iff A ≡ ghr(s)+B (mod n). Let

Ã = ghr(s)+hr(x) mod n

– First Failing point: If the owner does not accept, then halt.
– Second Failing point: If A = Ã, that is B = hr(x) then halt.
– Third Failing point: If A 6= Ã, then we can obtain a pair (d, e) where e ≡ gd

(mod n). These are obtained by:

d = B − hr(x)

e = AÃ−1 mod n

If e 6∈ {−1, 1}, then halt.
– Factorize n: If e ∈ {−1, 1}, we can easily obtain the 2 factors of n from d.

We want to show that the probability that the execution will reach the last
step is non-negligible. If there is a γ-cheater, then there is a probability of ε + γ
passing the First Failing point. Now, let us consider the Second Failing point.
Recall that the unsatisfactory Scheme 2 is vigilant over memoryless cheater. If
the hash satisfies Property 1, then for sufficiently large k, the probability that
B = hr(x) is smaller than ε + γ/2. Therefore, there is a constant probability
that the Second Failing point is passed.

For the Third Failing point, note that if we are able to get a pair (d, e) where
e 6∈ {−1, 1}, then information theoretic-wise, we can restrict g to a very small set
of candidates. On the other hand, any primite root in the multiplicative group
generated by g can give the tags, t1, t2, . . . So, we are unable to get the pair with
probablity more than a constant.

In sum, the Third Failing point is passed with constant probability. Hence,
we can factorize n.


