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Abstract
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the presence of aliasing, the average precision is a few hundredths of a

pixel.

Several authors have proposed subpixel algorithms that work well

when observed data are samples of ideally bandlimited images. How-

ever, images of real scenes captured by modern optics are not ideally

bandlimited, and thus contain aliasing artifacts. Experimental data

presented here show that the new algorithm yields superior precision

in the presence of aliasing when compared to several earlier methods,

and comparable precision to the iterative method of Thévenaz et al.

1 Introduction

Image registration is an important preprocessing operation that aligns the

pixels of one image to corresponding pixels of a second image. Registration is

the primary tool for comparing two or more images to discover the differences

in the images or to fuse multiple modalities to create a composite that reveals

information not easily accessible within individual images. It is used in the

remote sensing community to study satellite images of the earth, and in

the medical community to enhance the diagnostic capability of radiological

imagery.

Registration algorithms typically assume that images differ by some

transformation from a given family, and they find the transform within

that family that optimizes a particular criterion. Transformation families

include rigid transforms (translation, rotation, and rescaling), linear and

affine (skewed and perspective transforms), and nonlinear warping. Op-

timization criteria include minimizing sum of squares of pixel differences,
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maximizing normalized correlation coefficient, and maximizing mutual in-

formation. For this paper, we assume that two observed sampled images

represent the same scene sampled on identical grids, but offset from each

other by an unknown translational shift, as well as differing by a uniform

change of intensity, perhaps also disturbed by independent additive noise.

Townshend et al. [1] make a case for subpixel accuracy of registration in

their studies of vegetation changes because the changes that they are trying

to measure are on the order of the errors introduced by misregistration by

less than a pixel. The literature contains registration algorithms of various

precision that operate in the pixel (signal) domain [2-22], and in the Fourier

domain [2,5,23-36].

Among the authors who claim subpixel precision, Shekarforoush et al. [34]

describe an algorithm that uses the cross-power spectrum of the Fourier

transforms of two ideally bandlimited images. The Fourier inverse of the

cross-power spectrum is a sinc function displaced from the origin by the

amount of the translation. Abdou [2] describes three algorithms that use

various interpolation schemes to find the translational difference between

images. Kim and Su [30] present a Fourier-based algorithm that estimates

translation changes by modifying the phase of one Fourier transform to make

it as similar as possible to a second Fourier transform. The phase change

corresponds to the translational difference. To eliminate aliasing effects

their algorithm relies on the low frequency components of the transforms.

Thévenaz et al. [21] report an elegant pixel-based iterative algorithm that

is able to register to high precision, and can deal with rotation, translation,
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changes of scale, and illumination changes. Of the schemes mentioned here,

it is the most general.

Algorithms reported to have subpixel precision for ideally bandlimited

images typically have reduced precision in the presence of aliasing. Kim and

Su’s algorithm [30] treats aliasing explicitly, but the others listed do not.

The main result of this paper is the development of a direct algorithm

for image registration that achieves high precision in the presence of small

amounts of aliasing. This paper models the aliased frequency components of

the two images and predicts how this aliasing affects the phase relationships

between their Fourier transforms. Aliasing causes some frequency compo-

nents of the scene to be unreliable, and the new algorithm masks them out

of the registration process. The new algorithm resembles [30] because it

eliminates certain frequency components from the calculations, but it elimi-

nates more than do Kim and Su. For our experimental data, the frequency-

masking algorithm achieves a worst-case precision of a few hundredths of

a pixel, and an average precision of less than a hundredth of a pixel for a

broad range of nonideal prefilters. The iterative algorithm of [21] achieves

comparable precision experimentally, even though the algorithm does not

deal with aliasing explicitly. All other algorithms compared in this paper

have poorer precision.

Section 2 reviews theoretical issues related to aliasing and its effect on

Fourier spectra, particularly on the phase of Fourier transforms. Section 3

describes the new algorithm, and how it deals with aliasing. The ground-

truth model and experimental results appear in Section 4. A summary and
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open research issues is in the final section.

2 Mathematical Background

The basic idea behind the new registration algorithm is that the phase of the

Fourier spectra of an image pair contains sufficient information to determine

the translation offset difference of the images. This section reviews how this

can be exploited in the absence of aliasing, as described by [34], and then

shows why aliasing causes problems that reduce the precision of this method.

The analysis gives us a powerful tool for detecting the frequency components

most likely to be corrupted by aliasing.

Given a two-dimensional image f(x, y) and a translated version of the

image g(x, y) = f(x−x0, y− y0), we wish to find an efficient algorithm that

gives the displacement vector (x0, y0). In the remainder of the discussion, we

reduce the problem to one dimension and note that all the results generalize

to two-dimensions straightforwardly.

Let fc(x) denote a continuous function with Fourier transform Fc(Ω).

The Fourier transform of the shifted function gc(x) = fc(x− x0) is Gc(Ω) =

Fc(Ω)e−jΩx0 . This is the key relationship for all Fourier-based image-registration

algorithms. In the ideal case of continuous transforms of noiseless images, for

any Ω′ the Fourier components Fc(Ω′) and Gc(Ω′) provide a perfect estimate

of x0, to within an integer multiple of (2π/Ω′).

Now consider digital images, which are sampled versions of continuous

images. Assume that fc(x) is continuous and bandlimited to frequencies

less than Ω0. Sampled versions of this image are f(n) = fc(nT ) and g(n) =
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fc(nT − x0), where n is an integer, T is the sampling interval, and x0 is an

arbitrary real-valued displacement with a magnitude less than 0.5. In this

formulation, the value of x0 is the residual that remains after registering

images to the nearest pixel by using a standard algorithm from the literature.

Our goal is to find x0. Because |x0| ≤ 0.5T , the phase ambiguity of 2π/Ω′

is not present.

If the sampling period T is less than π/Ω0, then the Sampling Theorem

states that

fc(x) =
+∞∑

n=−∞
f(n) sinc(x/T − n) (1)

for any x and for integer values of n. Recall that sinc(x) = sin(πx)/(πx).

The registration method of [34] uses discrete Fourier transforms of fi-

nite sampled images for which the reconstruction of Eq. (1) holds approxi-

mately as shown below. The Sampling Theorem requires an infinite number

of samples of f(n), whereas only N samples are available. The discrete

Fourier transform implies a periodicity for f(n) beyond the boundaries of

the N samples, whereas the actual value of the f(n) is unknown beyond the

boundaries. Because of these deviations from the underlying image source,

even though an exact relation exists between the continuous g(x) and f(x),

the corresponding relation between their discrete counterparts is only an

approximation. To obtain that approximation, limit the summation in (1)

to the range 0 ≤ n ≤ N − 1 and replace sinc(x) by dirichletN (2πx/N). This

leads directly to

gc(x) = fc(x − x0) ≈
N−1∑
n=0

f(n) dirichletN ((2π/N)((x − x0)/T − n)). (2)

The dirichlet function is a periodic approximation to sinc, and is defined to
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be dirichletN (x) = sin(Nx/2)/(N sin(x/2)) for x not a multiple of 2π, and

is sign(cos(x)) otherwise. The dirichlet function is very close to sinc for the

interval in the summation in Eq. (2).

For integer frequencies ω, −N/2 ≤ ω ≤ N/2 − 1, let F (ω), G(ω),

and D(ω) be the respective discrete Fourier Transforms of f(x), g(x), and

dirichletN ((2π/N)((x − x0)/T )). Then the convolution in Eq. (2) corre-

sponds to

G(ω) = F (ω)D(ω). (3)

This explains why the inverse Fourier transform of the spectral ratio

D(ω) = G(ω)/F (ω), which is called the cross-power spectrum, is approxi-

mately a sinc function displaced from the origin by an amount x0 [34]. The

approximation error is due to the truncation of an infinite sum to a finite

sum in Eq. (2) and to the approximation of sinc by dirichlet. If fc(x) is

sampled below its Nyquist rate then its continuous transform has energy in

frequencies higher than Ω0, in which case Eq. (2) is not guaranteed to be a

good approximation because the perfect reconstruction of Eq. (1) no longer

holds.

A related registration algorithm uses phase correlation defined to be

the Fourier inverse of phase(G(ω)F̂ (ω)) where the function phase(F (ω)) is

the unit magnitude complex function whose phase is equal to the phase of

F (ω). When shift distance x0 is an integral number of pixels, the func-

tion phase(G(ω)F̂ (ω)) equals the cross-power spectrum phase. The inverse

transform of both the phase correlation and the cross-power spectrum at

these shifts is δ(x − x0). The functions differ when x0 is a fractional shift
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because phase correlation is an inverse transform of a unit-magnitude func-

tion, but the cross-power spectrum does not have unit magnitude in general.

At this point we turn to the problem of estimating the phase of an aliased

cross-power spectrum when fc(x) is sampled below its Nyquist rate. To do

this, we make an assumption about the aliasing that corrupts digital images.

We assume that the optical system or other prefilter is not an ideal low-pass

filter, and that the spectral leakage is most likely to be in the frequencies just

above the sampling cutoff frequency. Also, the attenuation increases strongly

with frequencies higher than sampling cutoff, with essentially no energy at

frequencies above twice the sampling cutoff. Figure 1(a) illustrates this

situation. The figure shows a Fourier spectrum plotted against normalized

continuous frequency Ω,−2π ≤ Ω < 2π, which represents the spectrum

in a one-dimensional image after prefiltering according to our assumptions.

Sampling the image at a sampling interval of T = 2π/Ω0 produces the N

samples as shown in Fig. 1(b). The sprecta for F (ω) and G(ω) in Fig. 1(b)

are sums of phase-shifted components of frequencies Fc(Ω) in Fig. 1(a). For

integer ω in the interval −N/2 ≤ ω < 0 we have

F (ω) = Fc(2πω/N) + Fc(2π(ω + N)/N)

G(ω) = Fc(2πω/N)e−2πjωx0/N + Fc(2π(ω + N)/N)e−2πj((ω+N)x0/N).(4)

For ω in the interval 0 ≤ ω ≤ N/2 − 1, replace (ω + N) by (ω − N) in the

second term of Eq. (4).

The aliasing terms in Eq. (4) create F (ω) and G(ω) such that the vector

ratio G(ω)/F (ω) is not equal to e−2πjωx0/N , as required for Eqs. (1) and

(2). A graphic illustration of this situation appears in Fig. 2. The complex
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Figure 1: (a) Spectrum of image after prefiltering. (b) Downsampling and

resulting aliasing of prefiltered image.

vector F (ω) is shown to be the sum of two complex components of Fc(Ω).

The complex vector G(ω) is the complex sum of those same components, one

of which is rotated by 2πωx0/N , and the other rotated by 2π(ω +N)x0/N .

The vector G(ω) is not a rotation of F (ω) by 2πωx0/N because of the excess

phase of 2πx0 in the second component of the sum. In general, the aliasing

caused by the excess rotational phase leaves G(ω) with an amplitude differ-

ent from that of F (ω) whereas bandlimited images experience no change of

amplitude in the frequency domain after translation.
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Figure 2: Vector illustration of aliasing

Our problem is to estimate the phase 2πωx0/N as a function of ω from

observations of the vector sums shown in Fig. 2. The components of Fc are

9



not directly observable. The next section shows how we can eliminate badly

aliased frequency components from further consideration, and thereby esti-

mate x0 from frequency components whose phases yield accurate estimates

of x0.

3 Frequency Masking Subpixel Shift Estimation

We propose to estimate x0 from the phase of the ratio G(ω)/F (ω) for a

selected set of ω. Examination of Fig. 2 shows that observed relative phase

of G(ω)/F (ω) for a specific value of ω is likely to be a good estimate of x0

if the magnitude of the alias component Fc(2π(ω + N)x0/N) is small com-

pared to the magnitude of the in-band component Fc(2πωx0/N). Fig. 1(b)

shows that this is likely to occur under our assumptions at frequencies near

the origin because of the attenuation of aliasing magnitude with increasing

frequency by the prefilter. Hence, we should limit the frequency range to

frequencies near the origin [30].

But this is not sufficient to attain high precision, as indicated by the

experimental data later in the paper. There usually exist highly aliased fre-

quency components near the origin. Using these frequencies greatly reduces

the precision of the estimate of x0. The frequencies that are most likely to

be corrupted are those for which the spectral magnitude is small. There-

fore, the algorithm masks out contributions from spectral components whose

magnitudes are small relative to the rest of the magnitudes, regardless of

whether they occur at low or high frequencies.

The full algorithm for two-dimensional data is very simple and consists
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of these major steps:

1. Use any image registration algorithm to find a translation that regis-

ters the two images to the nearest integral pixel coordinates.

2. Apply a Blackman or Blackman-Harris window in the pixel domain to

eliminate image-boundary effects in the Fourier domain [37].

3. Calculate the discrete Fourier transforms of f(x, y) and g(x, y).

4. Mask out spectral components that lie outside a radius of R from the

central peak. A suitable value of R is 0.6N/2 where N is the minimum

of the number of samples in the x and y dimensions.

5. Mask out spectral components for which either F (ω, ν) or G(ω, ν) have

magnitudes less than a specified threshold α.

6. Using the frequencies that remain after masking, find a least-squares

estimate of (x0, y0).

The windowing operation is well-known and eliminates the spurious in-

troduction of high-frequency spectral energy due to edge effects. We found

that a separable Blackman window (as well as a separable Blackman-Harris

window) worked quite well [37]. We also tested a radially symmetric Black-

man window and several other windows that are flatter than the Blackman

window in the middle of the image. The radially symmetric window gave

results comparable to the separable window, but is more complex to create.

The flatter windows use more information from the center of the image, but

they tend to be less effective in eliminating spurious high frequency energy
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from the edges of the images. The separable Blackman and Blackman-Harris

windows yielded the best results for the least computation.

The use of radius R = 0.6N/2 constrains the frequencies to be close to

the origin. We found that the constant factor 0.6 can be as small as 0.5 or

as large as 0.7 without materially affecting the algorithm.

The choice of threshold α warrants a brief discussion. The algorithm

sorts the frequencies by magnitude and retains the M largest in the spec-

trum, for some value of M . In the absence of other information, a good way

to choose M is to vary M over a range of values, and observe the estimated

translation as a function of M . Experimental data in the next section show

that there is a region where the estimated translation is virtually indepen-

dent of M . The displacement estimate produced by M in this region is the

one to use.

To estimate translation displacements from the Fourier spectra, let B de-

note the set of frequency coordinate pairs (ω, ν) that survive the masking op-

erations. Let phase(ω, ν) be the phase of the complex ratio G(ω, ν)/F (ω, ν)

at point (ω, ν) ∈ B. In the absence of aliasing, phase(ω, ν) has x and y slopes

equal to 2πx0/N and 2πy0/N , respectively. The least squares estimate of

the slope of a plane that passes through the origin is:

x0 =
(

N

2π

) (
ων ν phase − ν2 ω phase

ων2 − ω2 ν2

)

y0 =
(

N

2π

) (
ων ω phase − ω2 ν phase

ων2 − ω2 ν2

)

where the quantities with overbars are the means of the respective products

taken over all frequency pairs that survive the masking operation. Note that
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any uniform change of intensity of the form g′ = Ag+B for constants A and

B has no effect on the registration process because change of illumination

does not change the value of phase(ω, ν).

This completes the description of the registration algorithm.

4 Experimental Data

4.1 Ground truth

In order to measure the precision of the registration algorithm, we prepared

ground truth using a scheme described in [34]. The idea is to use a single

high-resolution image to represent the actual scene, and to create an image

pair from this scene by filtering and downsampling the high-resolution image

in two different ways. The downsampled images are shifted with respect

to each other by integer amounts x0 and y0 in the high-resolution grid.

After downsampling by M in each dimension, the relative shifts are x0/M

and y0/M , respectively. After downsampling, one image optionally has its

intensity values rescaled uniformly.

For the detailed analysis of the frequency-masking algorithm, we used

52 aerial photos of various urban and agricultural landscapes for this study.

Each of the images is 1024× 1024 pixels, and was downsampled by a factor

of M = 8 in each dimension. Each of the two images was shifted by integer

amounts ranging from -4 to +3 pixels in each dimension, thereby creating

64 possible shifts for each image and 4096 total pairs of shifts for each

image, and over 200,000 registrations overall. This presented the algorithm
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with every possible relative phase shift of the images with respect to each

other and with respect to the Blackman window. The results show that

the algorithm exhibits virtually no bias with respect to the position of the

Blackman window relative to the images for our data. For the comparisons

of the frequency-masking algorithm with other algorithms, we used a single

aerial photo in 4096 relative pairs of shifts.

To control the amount of aliasing, we used a Gaussian filter prior to

downsampling. The filter was characterized by a support area and a σ.

Since downsampling by 8 compresses an 8× 8 region of pixels into a single

pixel, a bandlimiting filter must have a central peak at least 8 × 8 to keep

aliasing small. Our experiments changed σ from 2 to 5 in steps of 1. The size

of the central peak is approximately 2σ, so that σ = 2 produces substantial

aliasing and σ = 5 produces a very small amount of aliasing. The support

of the filter was 17× 17 for the data reported here. We also explored other

ranges of support and σ to confirm that the registration algorithm behaves

as expected as we move outside the parameter region studied in detail, and

found that the results were consistent with the data reported here.

4.2 Experimental results

The first experiment is a comparison of the precision of our algorithm and

other algorithms as a function of σ. For these experiments, we used a single

image, and no change of illumination. These results appear in Fig. 3 for

worst-case errors over both individual coordinates and average errors per

coordinate direction. The mean-square error in two-dimensions is approxi-
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mately
√
2 times the average error per coordinate. Figure 4 shows the image

used to compare the algorithms.

2 3 4 5
   0 

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
Abdou, polynomial fit

Abdou, Gaussian fit
Shekarforoush et al.

Abdou, freq interpolation
Kim and Su
Frequency Masking

W
o

rs
t-

C
as

e 
A

b
so

lu
te

 E
rr

o
r 

(p
ix

el
s)

Filter σ

Worst-Case Error vs. Filter σ

2 3 4 5
  0 

0.02

0.04

0.06

0.08
Abdou, polynomial fit
Abdou, Gaussian fit
Shekarforoush et al.
Abdou, freq interpolation
Kim and Su
Frequency Masking

A
ve

ra
g

e 
A

b
so

lu
te

 E
rr

o
r 

(p
ix

el
s)

Filter σ

Average Error vs. Filter σ

(a) (b)

Figure 3: (a) Comparison of worst-case error per coordinate for six direct

subpixel registration algorithms. (b) Comparison of average error per coor-

dinate for the same six algorithms.

The Kim/Su algorithm is most like ours because it restricts its attention

to low frequencies in the Fourier domain. It seeks a phase for which the

sum of squares differences between the spectrum of the first image and the

phase shifted spectrum of the second image is minimal. Our implementation

tuned the algorithm somewhat from the published description. To eliminate

spectral leakage, we used a Blackman window, and affirmed that windowing

made the registration robust with respect to boundary effects. The data

in [30] were taken without a window, although the paper did indicate that

windowing should be considered. When we tried this algorithm without win-

15



Figure 4: Aerial photograph used in the comparisons. (Courtesy of Positive

Systems, Inc.)

dowing, the results tended to be more accurate than with windowing, but

were highly dependent on how the boundaries of the ground truth were pre-

pared for the experiment. Windowing removes this dependence and removes

artifacts of spectral leakage. The frequency region to which we restricted

the algorithm had a size 89×89 for a frequency domain of size 128×128. We

found experimentally that this size yields the most precise results for the ex-

periment. Our implementation of the algorithm uses iterative hill-climbing

to locate the optimal value of the Fourier phase.

The Shekarforoush algorithm estimates the displacements by fitting points

to a sinc function, but when the points are corrupted by aliasing, the al-

gorithm produces poor estimates. We found a slight instability in the im-

plementation when the ratio G(ω)/F (ω) became large because of a small

value of F (ω), which we removed by artificially setting F (ω) to unity at this
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frequency.

The plot shows three different algorithms proposed by Abdou. The first

fits a polynomial curve through points that lie on a correlation peak. The

second fits a Gaussian through those points, and the third linearly inter-

polates the spectra at integer offsets to find the closest approximation to

the observed spectrum. The first two algorithms are direct algorithms. The

third algorithm iterates a search over the interpolation coefficients. Because

the third algorithm operates in the Fourier domain, we used a Blackman

window on the images prior to registration. We did not window the data

when applying the first two algorithms.

Abdou’s spectral interpolation algorithm required special treatment and

some modifications. This algorithm computes the spectra of four copies of

one image, each displaced relative to the other by displacements that lie

on the corners of a unit square in the pixel-domain grid. The algorithm

interpolates the cross products of each of these with the spectrum of the

second image and finds the interpolation closest to the cross product of the

spectra of the two images. Since the central peak dominates the spectral

magnitudes, virtually the entire estimate of displacement is due to inter-

polation of the central peaks. To avoid this problem, we zeroed out the

central peaks in the spectra, which is equivalent to normalizing the images

to the same average intensities. Nevertheless, the spectral magnitudes near

the central peak are very large compared to magnitudes elsewhere in the

frequency plane, so that the interpolation depends on relatively few of the

frequency coefficients.
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All of the algorithms except the Kim/Su algorithm produce higher pre-

cision as aliasing decreases.

The iterative algorithm of [21] was studied somewhat differently from

the other algorithms. The important aspect of this algorithm is that it

drives toward a minimum sum of squared pixel differences between two im-

ages by performing a sequence of spline interpolations in the image domain.

The spline interpolations are very close to sinc interpolations, and therefore

they tend to affect the phase of the corresponding Fourier spectra without

changing the magnitudes. Hence, the interpolations do not remove aliasing

artifacts that may exist in one or both images as they interpolate one image

into the other. For this reason, the iterations are unlikely to be able to

drive the differences in the images to zero. In the absence of aliasing, it is

clear that the iterations can reduce the sum of squares to near zero, and the

point at which this occurs corresponds to the subpixel translation difference

of the images. In the presence of aliasing, it is not clear that the subpixel

coordinates of the minimum sum of squared pixel differences are the same

as those that minimize the subpixel translational difference of the images of

the images.

We studied this question experimentally by computing the position of

the minimum of the sum of squares of pixel differences for various ground

truth shifts in the presence of aliasing. The experiments showed that the

minimum occurs at a point consistent with our ground truth and with a

precision to that of our frequency masking algorithm. Hence, the iterative

algorithm can achieve comparable precision if it can drive interpolations
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to the minimum sum of squares value. This was tested and confirmed by

Thévenaz et al. who graciously ran their code on a sample image pair

supplied by the authors. The observed precision for an image pair filtered

with σ of 3.0 was approximately 0.005 pixels, which is approximately the

same as the frequency masking algorithm on the same image pair. The

question remains open as to why this algorithm achieves this precision with

aliased images.

To check the robustness of our algorithm, we tested it on a suite of 52

images with a σ = 3. In this study, two of the 52 images were outliers,

and had insufficient detail in their respective centers to give good worst-case

registrations. The Blackman window weighs the center of the images very

strongly, and for these images, not enough detail was left after windowing to

yield very precise results at the subpixel level. The worst case registrations

for these two images had errors that lay between 0.1 and 0.2 pixels in at

least one dimension. The remaining 50 had worst-case errors that did not

exceed 0.067 pixels in either dimension. The average error in each dimension

was on the order of 0.0055 pixels. We repeated the experiment with uniform

changes of intensity applied to one of the images, and obtained essentially

the same results. Hence, the algorithm is insensitive to such changes of

intensity, as the theory suggests it should be.

To deal with the question of how to set thresholds, Fig. 5 plots the

displacement estimate as a function of threshold for the registration of a

specific image for one offset with σ = 3. The figure verifies that there is

a region of the threshold parameter space for which the displacement is
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almost independent of threshold. In this case, we thresholded magnitudes

by eliminating frequency components whose magnitudes fell below α ·pRMS ,

where pRMS is the RMS magnitude of this spectrum at frequencies that lie

in a 5 × 5 region around the central peak. (Any threshold function that

orders the magnitudes and accepts the M largest can be substituted.)
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Figure 5: Plot of displacement as a function of threshold variable α.

Fig. 6(a) shows a disparity map in the frequency plane that illustrates

how aliasing effects the phase of G(ω, ν)/F (ω, ν) as a function of (ω, ν). A

pixel is colored white in this plane if the phase is very close to the phase for

an alias-free image pair, otherwise the pixel is colored black. Note how the

white pixels tend to lie near the center of the image. Fig. 6(b) shows the map

of frequencies actually used in the registration process. Note that almost all

of the white frequencies in Fig. 6(b) are white in Fig. 6(a), which indicates

that the algorithm successfully ignores frequency components corrupted by

aliasing.

The algorithm also performs well in the presence of noise. Figure 7

plots the precision of the algorithm for an image filtered with σ = 3 in the
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(a) (b)

Figure 6: (a) Disparity map in the frequency domain that shows alias-free

components (in white). (b) Frequency components used for registration

(white).

presence of additive white Gaussian noise for various signal-to-noise ratios.

The horizontal lines in the plot indicate the precision in the absence of

noise. The performance is excellent for both the average and worst-case

errors. This performance is comparable to the performance reported for the

iterative algorithm in [21].

The data presented above indicates that the algorithm is quite robust

and accurate over a range of nonideal low pass filters.

5 Conclusions and Open Research

The subpixel registration presented here enjoys very high precision in the

presence of aliasing. It is conceptually simple to implement and is very ef-

ficient because its complexity is essentially that of two Fourier transforms.
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Figure 7: Plot of displacement as a function of signal-to-noise ratio for

additive white Gaussian noise.

The other direct algorithms appear to be more sensitive to aliasing, which

leads to precision reduction. The iterative algorithm of [21] has the ad-

vantage of dealing with rotations and scale changes as well as translations

and illumination changes, and appears to yield comparable precision in the

presence of aliasing. Our algorithm can be adapted to deal with rotations

and scale changes by using Fourier-Mellin invariants as described in [33],

but to do so requires interpolations either in the Fourier or in the image do-

main. The algorithm becomes interative in that setting rather than direct.

The additional complexity may not produce an algorithm that is inherently

more accurate or more efficient than the algorithm in [21]. Nevertheless, the

algorithm is useful in applications in which illumination and translational

differences between images have to be discovered accurately and efficiently.

Also, the algorithm can be used to find an initial state for driving the iter-

ative algorithms in [2, 21, 30] .

Among the questions that remain open is the question of creating a faster
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version of this algorithm by taking smaller Fourier transforms. Since the

algorithm uses essentially only the central quadrant of the Fourier domain,

it would be useful to produce only those coefficients instead of filling the

entire Fourier domain before discarding most of the frequency data.

Another interesting question is to investigate the sum of squares pixel

differences criteria for registering two images, and to determine why that

criterion seems to give correct results in the presence of aliasing. When

registering aliased images in general, is it sufficient to interpolate images

during registration with spline or sinc, which do not alter aliasing? Or is it

necessary to do a more sophisticated interpolation calculation that removes

aliasing artifacts?
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Figure 1: (a) Spectrum of image after prefiltering. (b) Downsampling and
resulting aliasing of prefiltered image.
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Figure 2: Vector illustration of aliasing
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Figure 3: (a) Comparison of worst-case error per coordinate for six direct
subpixel registration algorithms. (b) Comparison of average error per coor-
dinate for the same six algorithms.
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Figure 4: Aerial photograph used in the comparisons. (Courtesy of Positive
Systems, Inc.)
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Figure 5: Plot of displacement as a function of threshold variable α.
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(a)

(b)

Figure 6: (a) Disparity map in the frequency domain that shows alias-free
components (in white). (b) Frequency components used for registration
(white).
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Figure 7: Plot of displacement as a function of signal-to-noise ratio for
additive white Gaussian noise.
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