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3D volume data is being increasingly used in many applications.
The digital nature of the data allows easy creation, copying and dis-
tribution. However, it also allows ease of manipulation which can
enable wilful or inadvertent misrepresentation of the content. For
an application like medical imaging, this can have serious diagnos-
tic and legal implications. Thus there is a strong need to establish
the integrity of a particular volume data set. The traditional data
authentication mechanisms like digital signatures or cryptographic
methods are not very useful in this context due to their extreme
fragility. What is required is a method that can detect the integrity
for allowable content-preserving manipulations.

In this work-in-progress report, we present a new technique for
authenticating 3D volume data using a robust content-based digital
signature. This signature is derived from the significant features of
volume data so that if any of these features are altered significantly,
the signature will not match the data set. The term content-based
refers to the fact the important features of the data (whose integrity
we are interested in certifying) should be somehow incorporated
into the digital signature. The rationale being that if some important
content feature is deleted/modified/added, then the digital signature
should not match the doctored data set. The term robust refers to
the fact that any manipulation which does not change the signif-
icant features should not affect the veracity of the signature. For
such benign operations, the digital signature should indeed authen-
ticate the data set. Common types of operations on volume data set
are scaling, thresholding, cropping, cut-and-replace a sub-volume,
filtering, addition/removal of noise and affine transformations. As
long as these operations do not change the content features, they are
considered benign. We use a novel wavelet-based foveation tech-
nique [1] to accurately and succinctly capture the significant content
features. Moreover, the scheme allows a flexible threshold to be set
which can determine the extent of the manipulations which can be
considered benign.

We will now provide an overall description of the method
for generating the robust content-based digital signature and the
method for authenticating a volume data-set using this digital sig-
nature. For the generation of the digital signature, the following
steps are required:

Partition of the voxel values by data analysis: First, all the voxel
values are sorted in the non-descending order. Second, partition the
sorted list using a threshold value.

The threshold value is specified by the user in our current im-
plementation. However, heuristics can be applied if the domain
knowledge is known for the particular class of volume data.

For many volume data sets, the density values of significant con-
tent components are distinguishable even though the voxels repre-
senting them are closely connected to each other. Sometimes, they
may perhaps even have similar voxel values in which case domain
knowledge could be utilized for distinguishing them. For example,
human CT/MRI volumes can be partitioned by using the density
values as well as anatomical knowledge.

Segmentation: From the partition, we derive a set of voxel values
that partition different parts. These voxel values are used to derive
the same number of sets of the isosurfaces. One segment of voxels
can be formed if they are bounded as a closed sub-volume by (1)
one isosurface, (2) several isosurfaces, or (3) one or several isosur-
faces with the one or several border planes of the volume. It can be
efficiently derived using the scan conversion algorithm, an exten-
sion of the standard scanline algorithm used in the rasterization and
hidden-surface elimination, to derive and accumulate the intervals
bounded by the isosurfaces and border planes iteratively.

Feature extraction: It is a process of selection of key voxels. A
3D Gaussian mask is applied on the volume several times as low-
pass filtering. Due to the large size of volume data, we simulate
the 3D Gaussian filtering as a windowed lowpass filtering dimen-
sion by dimension. In the highly blurred resulting volume, the key
voxels are chosen to be local maximum voxels which are above a
predefined threshold. The key voxels are then used as the input to
the foveation procedure.

Wavelet-based foveation: To make sure that important content
throughout the foreground is captured, we apply the foveation tech-
nique which is basically a space-variant filtering technique. We
believe it is very important to use this since it summarizes all the
important content throughout the foreground with the key voxels
as the foci. Thus all significant features are compactly captured.
Additionally since it is a many-to-one mapping, it offers security.
Thus, this information can be used as a key.

The foveated volume is obtained from a uniform resolution vol-
ume through a space-variant smoothing process where the width
of the smoothing function is small near the fovea but gradually in-
creases towards the peripheral. The process of going from a uni-
form volume to a foveated volume is known as foveation. The
foveation of a function V : Rd ! R is determined by a smoothing
function g : Rd ! R, and a weight function w : Rd ! R�0.
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The weighting functionw depends upon three parameters and takes
the form
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We call � the rate as it determines how fast resolution falling
off, call  the fovea as it determines the point of highest resolution,
and call � the foveal resolution as it determines the resolution at the
fovea. Both � and � are non-negative and the smoothing function
g is normalized so that
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g(x) dx = 1. In general, we could
replace the weighting function by any non-negative function. Given



two weighting functions w1,w2, the blended w3 is

w3(x) = maxfw1(x); w2(x)g: (3)

This generalization is useful when we are interested in volumes
with multiple foveae.

Foveated volumes can also be treated as the approximation of an
volume using a fixed number of bit, using a weighted norm as the
underlying measure. This weighted norm can be derived from (1)
and has the form,
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where the weighting function w is the function in (2).
Wavelet bases have important applications in mathematics and

signal processing due to their ability to build sparse representation
for large classes of functions and signal [2]. It is a natural choice
for foveated volume due to their locality in space and frequency.
Interesting, the choice of the weighting function (2) gives a self-
similarity across scales [1], which is illustrated in Fig 1. This prop-
erty leads to a simple but fast extraction algorithm [1].
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Figure 1: Allowable Lowpass Filtering: (a) Original wavelet coef-
ficients (Cw); (b) After allowable lowpass filtering (C 0

w); (c) Re-
maining coefficients (Cw�). Cw � C 0

w = Cw
�.

Extracting the coefficients: Recall that the first part of the signa-
ture (S;W ) is the highly compressed volume. To obtain S, one
could first compute the foveation (1) with respect to the multi-
foveae weighting function, and then compress the foveated volume
using a known lossy or lossless compression technique for uniform
volumes. Because computing (1) directly is computational inten-
sive, we use the approximation (5).

(T fov
I) � IDWT(M DWT(I)); (5)

where DWT is the discrete wavelet transformation and IDWT is
its inverse. M is a predetermined mask.

In our implementation, S is extracted from the volume by quan-
tizing the wavelet coefficients M DWT(I), followed by a lossless
compression using gzip.

Note that gzip is a general lossless compression tool, which
does not exploit properties of volumes, especially the coherence of
wavelet coefficients across space and scale. Thus it is not the best
technique for our application. A possible improvement can be done
by incorporating the well-known zero-tree algorithm [3] into our
scheme.

Encryption: For additional security, public-key cryptography [4]
is utilized to encrypt the key derived in the previous step. Basically,
the secret key of the owner of the volume data is used to encrypt
the feature key obtained. For the purpose of authentication, the
public-key of the owner can be used to decrypt this information
and the feature key can be thus recovered. Since this step is well-
understood, we will not discuss it further in this paper.
For authenticating a particular volume data-set, the following steps
are performed:

Affine transformation parameters recovery: Since, one of the be-
nign manipulations could be the affine transformation of the vol-
ume, the transform parameters are computed first. Matching: The
content features of the transformed volume are compared with the
content features of the original data-set (obtained from the digital
signature after decryption using the owner’s public key). A match
value between the original features and the transformed volume fea-
tures is computed. If this match value exceeds a certain threshold,
then the volume is certified as genuine else it is considered untrust-
worthy.

We have conducted experiments on two volume data sets,
SKULL (68 � 64 � 64) and TOMATO (64 � 208 � 216) (Fig-
ure 2). In the selection of key voxels, we used a windowed lowpass
filtering for five times with the window size 9 and the threshold
1.5. The resulting numbers of key voxels are 25 for SKULL and
124 for TOMATO. The sizes of the signatures are 8KB and 19KB
respectively. Five experiments were done with these two volume
data sets. The first three experiments examine the signature robust-
ness under global manipulation like low-pass filtering, sharpening,
and lossy compression, whereas the last two experiments consider
local manipulation like cropping and localized modification. One
experiment result of adding Gaussian noise is shown in Figure 3.
In this experiment, for SNR of the noise as low as 14.70dB, the
volume was still authenticated. Other experimental results are also
promising.

Figure 2: Two volume data sets.
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Figure 3: An experiment result: distortion vs. SNR.


