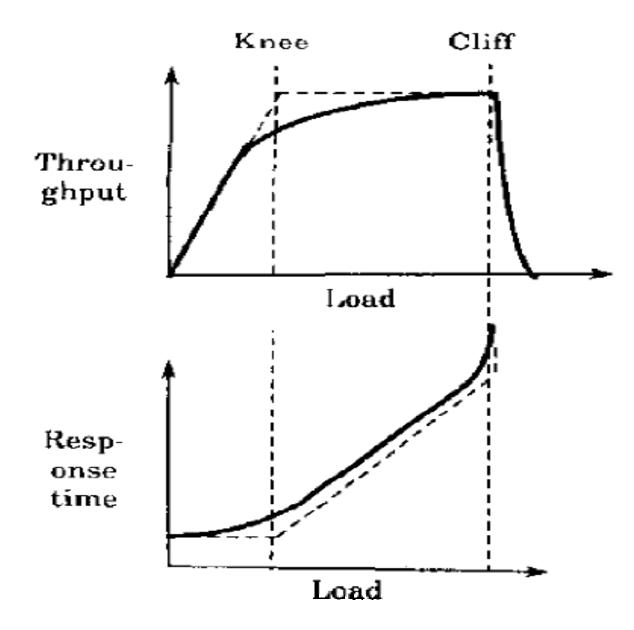
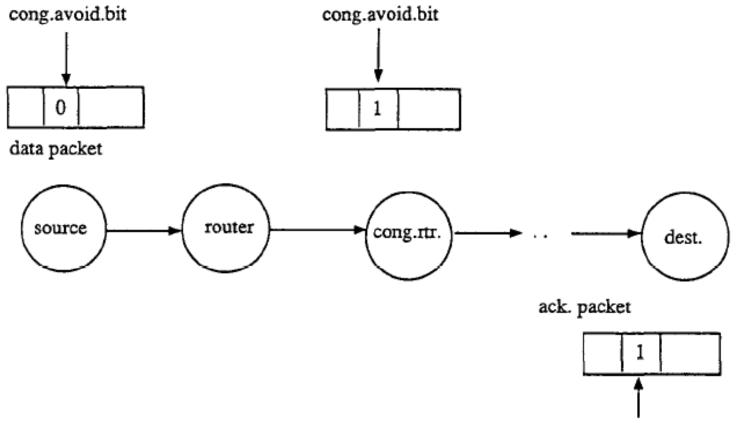
CS 5229 ADVANCED COMPUTER NETWORKS

Dr. Chan Mun Choon School of Computing National University of Singapore

CS 5229


Motivation

- Consider file transfer
- Sender sends a stream of packets representing fragments of a file
- Sender should try to match rate at which receiver and network can process data
 - can't send too slow or too fast
- Too slow
 - Resource under-utilize, unnecessary delay
- Too fast
 - Packet loss, retransmission, long delay


 A Binary Feedback Scheme for Congestion Avoidance in Computer Networks with a Connectionless Network Layer, K. K. Ramakrishnan, R. Jain (Proc. SIGCOMM `88, Stanford, CA, August 1988, Vol. 18, No. 4)

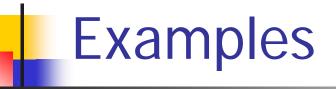
Terminologies

- End-to-end flow control looks at "selfish" control function
- Congestion control/avoidance address the "social" problem
- Congestion control vs. congestion avoidance

cong.avoid.bit

Model

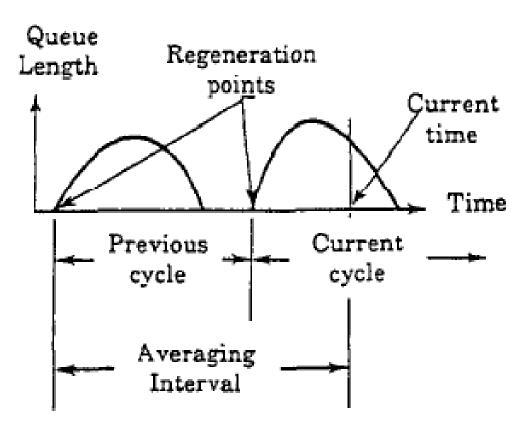
- Network as a feedback control system
- Each user controls the amount of traffic, multiple users have to coordinate
- Instantaneous network state varies dynamically, feedback is noisy and subjected to delay
- Policies needed on the router and user
- Workload: each source is considered to have packets to send at all times
- Window based control



$$Power = \frac{Throughput^{\alpha}}{Response \ time}, \qquad \text{where} \quad 0 < \alpha < 1.$$

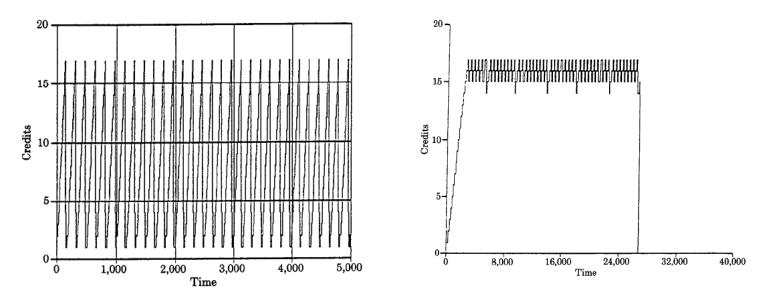
When $\alpha = 1$, power is maximized at the "knee"

- Jain's Index $f = \frac{\left(\sum_{i=1}^{N} x_i\right)^2}{\left(n \sum_{i=1}^{N} x_i^2\right)} \quad \text{where} \quad x_i = \frac{A_i}{D}.$
- 1. Index is between 0 and 1
- 2. Independent of scale
- 3. Continuous value
- 4. If only k of n users are allocated resource, index is k/n


- 1. {0,60,60,60,60,60,60,60,60,60}
 - Index = 0.9
- 2. {10,60,60,60,60,60,60,60,60,60,60}
- 3. {10,20,30,40,50,60,70,80,90,100}
- 4. {10,11,13,15,17,20,25,33,100}

What to monitor on router?

- Router set the congestion indication bit on arriving packet when the average number of packets at the router is greater or equal to 1
- What is measured?


How long to average?

Should be adaptive

Decision Frequency

- If decision is made too often (say every packet), there may be considerable oscillation
- Wp = window size before update
- Wc = window size after update
- Frequency = Wp+Wc

Information Use

- Receive Wp+Wc bits between updates
- Use only the last Wc bits
- Act when at least 50% of bits are set
- Try with M/M/1 model

How to increase or decrease window size?

• DM Chiu, R Jain, "Analysis of the increase and decrease algorithms for congestion avoidance in computer networks," Computer Networks and ISDN systems, 1989.

Assumptions

- Feedback and control loop for all users is synchronous
- Single bottleneck
- Binary feedback
- Congestion state is determined by the number of packets in the system

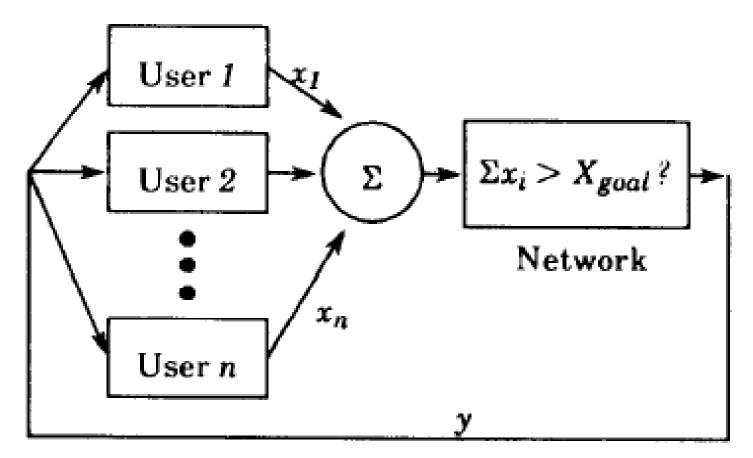


Fig. 2. A control system model of n users sharing a network.

Linear control $x_i(t+1)$ $=\begin{cases} a_1 + b_1 x_i(t) & \text{if } y(t) = 0 \Rightarrow \text{Increase,} \\ a_D + b_D x_i(t) & \text{if } y(t) = 1 \Rightarrow \text{Decrease.} \end{cases}$

- a -> additional
- b -> multiplicative
- ∎ a_I, b_I
- ∎ a_D, b_D

4 options

- 1. Multiplicative Increase/Multiplicative decreases
 - $b_1 > 1, 0 < b_D < 1$
- 2. Additive Increase/Additive decreases
 - $a_1 > 0, a_D < 0, b = 1$
- 3. Additive Increase/Multiplicative decreases
 - $a_1 > 0, 0 < b_D < 1, b_1 = 1$
- 4. Multiplicative Increase/Additive decreases

Criteria for Selection

- How to choose the "best" option?
- 1. Efficiency
 - Sum of rates is close to target rate
- 2. Fairness
 - Jain's index
- 3. Distributedness
 - Minimum feedback, no global information
- 4. Convergence

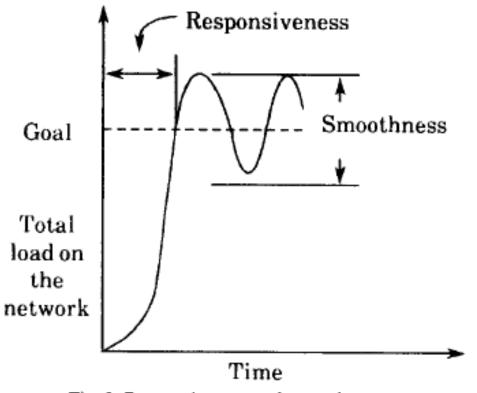


Fig. 3. Responsiveness and smoothness.

With binary feedback, system does not generally converge to a single steady state but oscillates around the "goal" at equilibrium

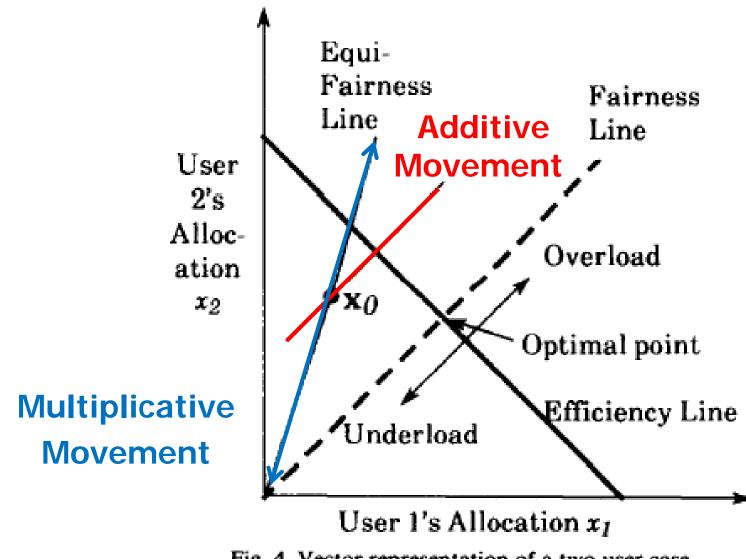


Fig. 4. Vector representation of a two-user case.

Comments

- Using only additive control
 - Can converge to efficiency line, but not to fairness line (though fairness value changes)
- Using only multiplicative control
 - Can converge to efficiency line, but has no effect on fairness

Convergence to Efficiency

.

$$y(t) = 0 \implies \Sigma x_i(t+1) > \Sigma x_i(t),$$

$$y(t) = 1 \implies \Sigma x_i(t+1) < \Sigma x_i(t).$$

$$b_{1} > 1 - \frac{na_{1}}{\Sigma x_{i}(t)}$$

$$b_{D} < 1 - \frac{na_{D}}{\Sigma x_{i}(t)} \quad \forall n \text{ and } \forall \Sigma x_{i}(t).$$
(3)

Convergence to Fairness

$$F(x(t+1)) = \frac{(\sum x_i(t+1))^2}{n(\sum x_i^2(t+1))}$$
(4)
where $c = a/b$ (6)
 $= F(x(t)) + (1 - F(x(t)))$
 $\times \left(1 - \frac{\sum x_i^2(t)}{\sum (c + x_i(t))^2}\right).$ (7)

As long as c >0, fairness improves over time

Cont'd

$$\frac{a_{\rm I}}{b_{\rm I}} \ge 0 \quad \text{and} \quad \frac{a_{\rm D}}{b_{\rm D}} > 0$$

or

$$\frac{a_{\rm I}}{b_{\rm I}} > 0 \quad \text{and} \quad \frac{a_{\rm D}}{b_{\rm D}} \ge 0. \tag{9}$$

Fairness can improve during increase or decreaseAll parameters must be positive

(8)

Distributedness

- Equation (3) won't work because it needs sum of rates and number of users
- Translate condition for sum of flows (global) into conditions for individual flow (local)

$$y(t) = 0 \implies x_i(t+1) > x_i(t) \forall i,$$

$$y(t) = 1 \implies x_i(t+1) < x_i(t) \forall i.$$
(11)

Result

$$a_{1} + (b_{1} - 1)x_{i}(t) > 0 \quad \forall x_{i}(t) \ge 0,$$

$$a_{D} + (b_{D} - 1)x_{i}(t) < 0 \quad \forall x_{i}(t) \ge 0.$$

This implies further constraining equation (10) to
be

$$a_{\rm I} > 0, \qquad b_{\rm I} \ge 1,$$

 $a_{\rm D} = 0, \qquad 0 \le b_{\rm D} < 1.$ (12)

Stated as proposition 1

Convergences to Fairness

- C > 0, determines the rate of convergence
 - Large c means faster convergence
- C = a/b, to increase C
 - Choose large a or small b
- Smallest b is 1
 - Additive increases is good for fairness convergence

Proposition 3. For both feasibility and optimal convergence to fairness, the increase policy should be additive and the decrease policy should be multiplicative.

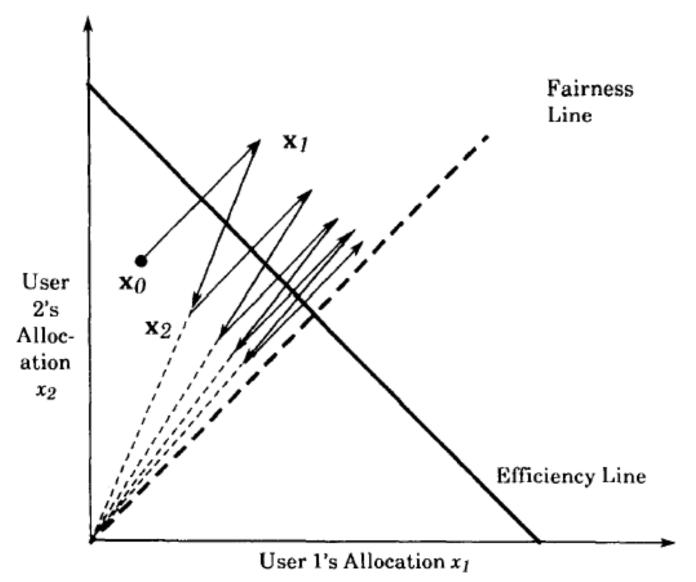


Fig. 5. Additive Increase/Multiplicative Decrease converges to the optimal point.

Discussions

- What about variable delays?
- What is user actions are asynchronous?
- What if router does not provide feedback?
- Is it worthwhile to estimate number of users?

 Congestion Avoidance and Control, V. Jacobson (Proc. SIGCOMM `88, Stanford, CA, August 1988, Vol. 18, No. 4)

Fairness

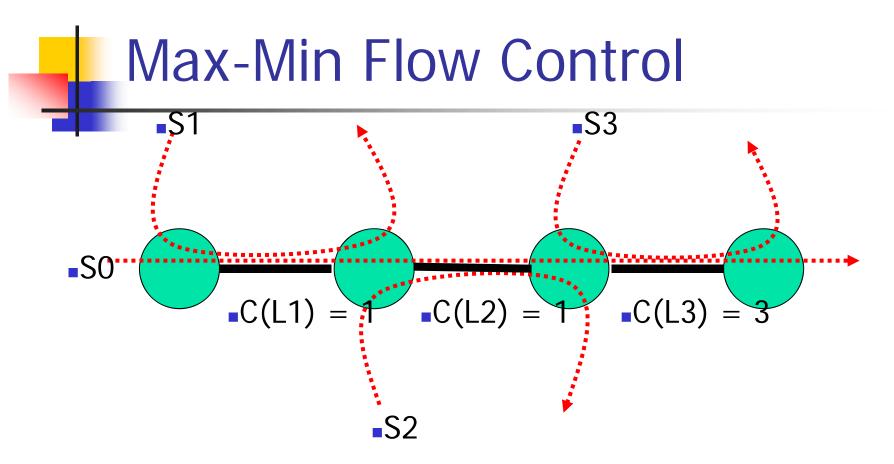
- Scheduling discipline *allocates* a *resource*
- An allocation is fair if it satisfies some notion of fairness
- Intuitively
 - each connection gets what it "deserves"

Fairness (contd.)

- Fairness is intuitively a good idea
- But it also provides *protection*
 - traffic hogs cannot overrun others
 - automatically builds *firewalls* around heavy users
- Fairness is a *global* objective, but congestion avoidance (as presented before) is local
- Each endpoint must restrict its flow to the smallest fair allocation

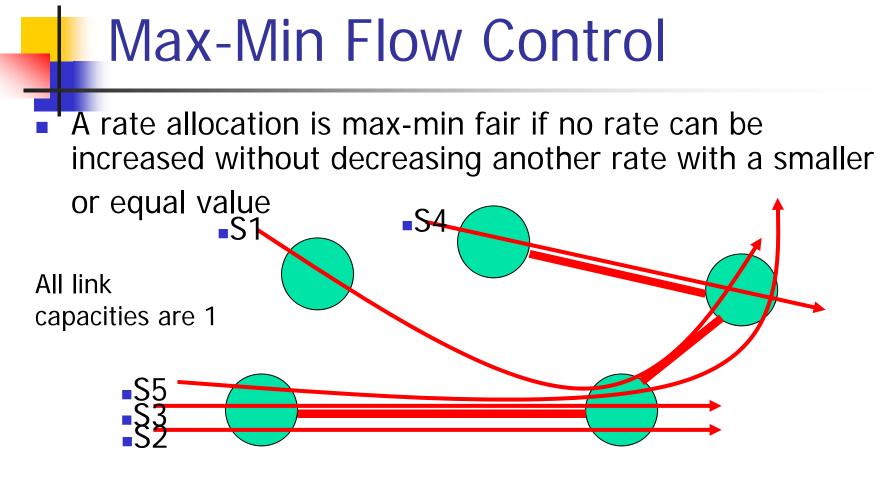
Notion of Fairness

- What is "fair" in resource sharing?
 - Everybody gets what they need?
 - How about excess resources?
 - What if there is insufficient resource?
- Example:
 - A "flat" tax system whereby everybody pays the same tax rate.
 - A "progressive" tax system whereby people who has larger income pay at a higher tax rate.
- Factors to consider
 - How does fairness relate to ability to use resource?
 - How does fairness affects overall resource utilization?



Equal Share

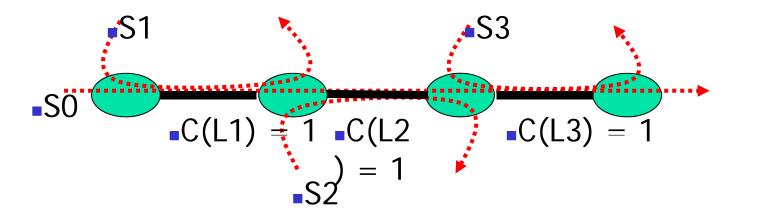
- Resources are shared among all users independent of user requirements and resource utilization
- Is it a good model for resource sharing?
- Jain's index use equal share as the objective



- Maximizes the minimum share of a resource whose demand is not fully satisfied
- Intuitively:
 - each connection gets no more than what it wants
 - the excess, if any, is equally shared

How much rate should be allocated to S0, S1, S2 and S3?

- Two possibilities:
- •{0.5,0.5,0.5,0.5} but L3 is under-utilized
- {0.5,0.5,0.5,2.5} S3 gets more bw with no impact on others


- 1. {1/3, 1/3, 1/3, 1/3, 1/3}
- 2. {**2**/3, **1**/3, **1**/3, **2**/3, **1**/3}
- 3. **{**2/3, 1/3, 1/3, 1, 1/3**}**

Max-Min Allocation

- Apply max-min allocation to a single resource
- Interesting case is when demand is greater than capacity
- Given users with demands {2,2.6,4,5} and capacity 10.
 Total demand = 13.5.
- 1. $\{2.5, 2.5, 2.5, 2.5\}$ $\{0.5, -0.1, -1.5, -2.5\}$ excess=0.5
- 2. $\{2, 2.66, 2.66, 2.66\}$ $\{0, 0.06, 1.34, 2.34\}$ excess=0.06
- 3. $\{2, 2.6, 2.7, 2.7\}$ $\{0, 0, 1.3, 2.3\}$

Proportional Fair (PF)

- Maximize sum of utility (a function of the allocated rate), a reasonable utility function is log()
- A PF allocation x_i satisfies Σ(y_i x_i)/x_i <= 0 for any feasible allocation y
- The allocation below would be
 - Max-Total: {0,1,1,1}. Total = 3. Utility = ?
 - Max-Min Fair: {0.5,0.5,0.5,0.5}. Total = 2. Utility = ?
 - Proportional Fair: {0.25,0.75,0.75,0.75}. Total = 2.5. Utility = ?

43