

CS 5229 Advanced Compute Networks

Practical Wireless Network Coding

Sachin Katti, et. al., "XORs in the AIR: Practical Wireless Network Coding," SIGCOMM 2006.

Traditional Method

SI & S2 send packets to RI & R2.

Network Coding

Maximum rate = 2

Wireless Transmission

Traditional Method

Maximum Rate = 1/4 (1 pkt in 4 rounds)

Wireless Transmission

Maximum Rate = = 1/3 (1 pkt in 3 rounds) Gain = (1/3) / (1/4) = 4/3

About Linear Network Coding

Network Coding: An Instant Primer

Christina Fragouli EPFL - IC christina.fragouli@epfl.ch

Jean-Yves Le Boudec EPFL - IC *jean-yves.leboudec@epfl.ch* Jörg Widmer DoCoMo Labs

widmer@docomolabeuro.com

Encoding

Assume that a number of original packets $M^1, ..., M^n$ are generated by one or several sources. In linear network coding, each packet in the network is associated with a sequence of coefficients $g_1, ..., g_n$ in \mathbb{F}_{2^s} and is equal to $X = \sum_{i=1}^n g_i M^i$. The summation has to occur for every symbol position, i.e., $X_k = \sum_{i=1}^n g_i M_k^i$, where M_k^i and X_k is the *k*th symbol of M^i and X respectively.

Decoding

Assume a node has received the set $(g^1, X^1), ..., (g^m, X^m)$. In order to retrieve the original packets, it needs to solve the system $\{X^j = \sum_{i=1}^n g_i^j M^i\}$ (where the unknowns are M^i). This is a linear system with m equations and n unknowns. We need $m \ge n$ to have a chance of recovering all data, i.e., the number of received packets needs to be at least as large as the number of original packets. Conversely, the condition $m \ge n$ is not sufficient, as some of the combinations might be linearly dependent.

Random Linear Code

With random network coding there is a certain probability of selecting linearly dependent combinations [14]. This probability is related to the field size 2^s . Simulation results indicate that even for small field sizes (for example, s = 8) the probability becomes negligible [29].

COPE

- Forwarding architecture that exploits network coding to improve throughput of wireless networks
- Some highlights
 - Exploits idle listening
 - Exploits broadcast nature of wireless channel
 - Buffers packets
 - Practical implementation

(a) B can code packets it wants to send

Packets in B's Queue Next Hop $\mathbb{P}^1 \longrightarrow A$ $\mathbb{P}^2 \longrightarrow C$ $\mathbb{P}^3 \longrightarrow C$ $\mathbb{P}^4 \longrightarrow D$

(b) Nexthops of packets in B's queue

Coding Option	ls it good?
P1 + P2	Bad Coding (C can decode but A can't)
P1 + P3	Better Coding (Both A and C can decode)
P1 + P3 + P4	Best Coding (Nodes A, C, and D can decode)

Opportunistic Listening

- Listens to wireless channel and buffer packets even if it is not the destination (for say 0.5s)
 - Why not longer?
- Node broadcasts reception report to tell its neighbors which packet it has stored
 - Piggy back to data packet
 - Special control packet

Opportunistic Coding

- Only XOR coding is used (not general linear code)
- Which packet should a node selects for transmission?
- Selects the packet that can be decoded by the maximum number of neighbors
- In COPE, a coded packet must be decoded by its neighbors.
 - Coded packets are not forwarded/relayed further

Coding Gains

(a) Chain topology; 2 flows in reverse directions.

THEOREM 4.1. In the absence of opportunistic listening, COPE's maximum coding gain is 2, and it is achievable.

{Largest Seq #) Y(i-3)	X(i-1),Y(i-2)	X(i-2),Y(i-1)	X(i-3)
<mark>X(i)</mark> , Y(i-3)	X(i),Y(i-2)	X(i-2), Y(i-1)	X(i-3)
Y(i-2)	<mark>X(i-1) XORY(i-2)</mark> X(i),Y(i-2)	X(i-1),Y(i-1)	X(i-3)
Y(i-2)	X(i), Y(i-1)	X(i-2) XORY(i-1) X(i-1),Y(i-1)	X(i-2)
Y(i-2)	X(i),Y(i-1)	X(i-1),Y(i)	<mark>Y(i)</mark> X(i-2)

What is the coding gain?

(b) "X" topology2 flows intersecting at n₂.

What is the coding gain?

n1 & n3 hears n4 & n5

n4 & n5 hears n1 and n3

(c) Cross topology 4 flows intersecting at n₂

With only coding, gain is 4/3.

But MAC protocol shares bandwidth equally, what is the gain?

What is the coding + MAC gain?

(c) Cross topology 4 flows intersecting at n₂

Topology	Coding Gain	Coding+MAC Gain
Alice-and-Bob	1.33	2
"X"	1.33	2
Cross	1.6	4
Infinite Chain	2	2
Infinite Wheel	2	∞

Table 2—Theoretical gains for a few basic topologies.

What kind of gain can we expect in practice?

Coding Algorithm

- Schedule from head of queue, does not delay packet to increase coding opportunity
- Coding/XOR packets of similar length
- Never code together packets headed to the same next hop
- When reception reports have not been received, use estimate, including delivery probability

Pseudo-Broadcast

- Broadcast packets are not reliable
 - No (link layer) acknowledgement
 - Difficult to retransmit and add backoff
- Use pseudo-broadcast
 - Use unicast, sends to one receiver
 - Use extended header to list other receivers
 - Only the named receiver acknowledges
 - Does not resolve reliability issue

(a) UDP gain in the Alice-and-Bob topology

TCP Performance in Testbed

Figure 10—End-to-end loss rate and average queue size at the bottlenecks for the TCP flows in the testbed. Loss rates are as high as 14% even after 15 MAC retries; TCP therefore performs poorly. The queues at the bottlenecks almost never build up resulting in very few coding opportunities and virtually no gains.

Performance with UDP

UDP - Details

