CS 5229

Scheduling

Dr. Chan Mun Choon
School of Computing, National University of Singapore

i Acknowledgement/Reference

= Some slides are taken from the following
source:

= S. Keshav, “An Engineering Approach to
Computer Networking”, Chapter 9: Scheduling

i Outline

= What is scheduling, why we need it?

= Requirements of a scheduling discipline
= Fundamental choices

= Scheduling disciplines

= Buffer management and packet drop
strategies

i Scheduling

= Sharing always results in contention
s A scheduling discipline resolves contention:
= Who's next?

= Key Is to share resources fairly and provide
some form of performance guarantees

% Components

= A scheduling discipline does two things:
= decides service order (scheduling)

= manages queue of service requests (buffer
management)

= Example:

= scheduling discipline decides service order
= and also If some query should be ignored

% Where?

= Anywhere where contention may occur
= At every layer of protocol stack

= Usually studied at network layer, at output
gueues of switches

% Why do we need one?

m Because applications need it

s Whenever we need to decide how resources
are to be allocated

= We expect at |least two types of future
applications
= best-effort (adaptive, non-real time)
= €.g. email, some types of file transfer

= guaranteed service (non-adaptive, real time)
= €.¢. packet voice, interactive video, stock quotes

i What can scheduling disciplines do?

= Give different users different qualities of service
= Example of passengers waiting to board a plane
= early boarders spend less time waiting
= bumped off passengers are ‘lost’!
= Scheduling disciplines can allocate
= bandwidth
= delay
= loss
= They also determine how fa/r the network is

% Cont’d

= Applications have different demands on
the networks

= Long flow vs. short flow
= TCP vs. UDP
= Rate control vs. continuous stream

i Outline

= What Is scheduling, why we need it?

= Requirements of a scheduling discipline
= Fundamental choices

= Scheduling disciplines

= Buffer management and packet drop
strategies

10

% Requirements

= An ideal (network resource) scheduling
discipline
= IS easy to implement
= IS fair
= provides performance bounds

= allows easy admission control decisions
= to decide whether a new flow can be allowed

% Fase of implementation

= Scheduling discipline has to make a
decision once every few microseconds!

= Should be implementable in a few
Instructions or hardware
= for hardware: critical constraint is VLS| space
= Work per packet should scale iess than
linearly with number of active connections

% Fairness

= Scheduling discipline allocates a resource

= An allocation is fair If it satisfies some
notion of farrness

= Intuitively
= each connection gets what it “deserves”

% Fairness (contd.)

= Fairness Is /ntuitively a good idea

= But It also provides protection
= traffic hogs cannot overrun others

= automatically builds firewalls around heavy
users

1ess IS a g/obal objective, but
scheduhnglslocal

= Each endpoint must restrict its flow to the
smallest fair allocation

i Notion of Fairness

= What is “fair” in resource sharing?
= Everybody gets what they need?
= How about excess resources?

= Example:

= A “flat” tax system whereby everybody pays the same tax rate.

= A “progressive” tax system whereby people who has larger
Income pay at a higher tax rate.

= Factors to consider
= How does fairness relate to ability to use resource?
- How does fairness affects overall resource utilization?

15

i Outline

= What is scheduling, why we need it?

= Requirements of a scheduling discipline
= Fundamental choices

= Scheduling disciplines

= Buffer management and packet drop
strategies

16

i Fundamental choices

1. Work-conserving vs. non-work-conserving
2. Degree of aggregation

= Work conserving: server Is never idle when
there Is packets awaiting service

= Maximizes utilization of server resource
= Why bother with non-work conserving?

% Non-work-conserving disciplines

= Key conceptual idea: delay packet till
eligible

= Reduces delay-jitter => fewer buffers in
network

= How to choose eligibility time?
= rate-jitter regulator
= bounds maximum outgoing rate

= delay-jitter regulator
= compensates for variable delay at previous hop

i Do we need non-work-conservation?

= Can remove delay-jitter at an endpoint instead
= but also reduces size of switch buffers...

= Increases mean delay
= not a problem for p/ayback applications

= Wastes bandwidth
= can serve best-effort packets instead (if available)

i Degree of aggregation

= More aggregation
= |ess state: less memory and computation
= cheaper: smaller VLSI, less to advertise
= cost: less individualization/differentiation

= Solution
= aggregate to a c/ass, members of class have same

IAAIJ P el e e Vel o VaVe [P oW N] III‘AIMAIA

PEOlIriarice reguirciticrit
= No protection within class
= Issue: what is the appropriate class definition?

i Outline

= What is scheduling, why we need it?

= Requirements of a scheduling discipline
= Fundamental choices

= Scheduling disciplines

= Buffer management and packet drop
strategies

22

% First In First Out (FIFO)

= Most common scheduling

= Schedule packets according to the time of
arrival

= Disadvantages
= Cannot differentiate between packets

"'f\N

\We I
= AGvVantage
o Easy to |mplement

= Question: How does a complex scheduler
Improves the performance?

23

i The Conservation Law

= If the scheduler is work conserving, and the scheduling is
Independent of the packet service time

= Where p; = mean utilization of connection | and g; =
mean waiting time of connection |

= Therefore, if by using a different scheduling discipline, a
particular connection receives a lower delay than with
FCFS, at least one other connection must have a higher
delay.

= The average delay with FCFS is a tight lower bound for
work conserving and service time independent scheduling
disciplines

24

i Service-Time Dependent Scheduling

D(.) be the average waiting time

FCFS: First Come First Serve

SPT: shortest processing time first

SRPT: shortest remaining processing time first
D(FCFS) >= D(SPT) >= D(SRPT)*

However, service-time dependent scheduling are not
common In packet SW|tch|ng because the packet ordering

_—m o i . -
S

will be modified and UEIdy for Idfge PacCKets increas

C'D

References: L. Kleinrock, “Queuing Systems,” Volume 11, Chapter 3
and 4, 1975.

25

 AK Parekh, RG Gallager, “A generalized
processor sharing approach to flow control in
integrated services networks: the single-node

case,” IEEE/ACM Transactions on Networking
1993.

% General Process Sharing (GPS)

= A scheduler should be easy to implement, fair,

provides performance bounds, and allows easy
admission control decisions

= GPS achieves a max-min allocation

= provides performance

(throughput/delay/jitter) bound and allows

admission control (when used with additional
mechanisms)

27

% General Process Sharing (GPS)

= Conceptually, GPS serves packets as if they are
In separate logical queues, visiting each non-
empty gueues in turn

= In each turn, an infinitesimally small amount of data is
served so that in any finite time interval, it can visit all
logical queues

= Obviously, GPS is unimplementable since one cannot
serve infinitesimals, only bits or packets

= However, GPS provides a baseline for the most (max-
min) fair packet scheduling

28

% GPS

= A more formal definition of GPS

= A connection is backlogged whenever it has data in its
gueue

= There are N connections with real positive weights
¢(1),..., 6(N)

= Let S(i,7,t) be the amount of data from connection |
served In the interval [r,1]

= For any backlogged connection I, in any interval [z,t]
and for |

S(1,7,1)/53,7,t) == ¢(1)/ Q)
= A non-backlog connection is getting all the resource it needs
= Backlog connections share all excess resources evenly

29

% What next?

= We can’t implement GPS
s SO, lets see how to emulate It

= We want to be as fair as possible (as close
to GPS as possible)

= But also have an efficient implementation

30

% (Weighted) round robin

= Serve a packet from each non-empty gueue In
turn

= Unfair if packets are of different length or
weights are not equal

= Different weights, fixed packet size

= serve more than one packet per visit, after
normalizing to obtain integer weights

= Example: weight = {1,1.5}, In each round,
serves 2 packets from queue 1 and 3 packets
from queue 2

31

% (Weighted) round robin

= Different weights, variable size packets
= normalize weights by mean packet size

= €.g. weights {0.5, 0.75, 1.0}, mean packet
sizes {50, 500, 1500}

= normalize weights: {0.5/50, 0.75/500,
1.0/1500} = { 0.01, 0.0015, 0.000666},
normalize again {60, 9, 4}

32

% Problems with Weighted Round Robin

= With variable size packets and different weights,
need to know mean packet size in advance

= Can be unfair for long periods of time
O Eg

= 13 trunk with 500 connections, each connection has
mean packet length 500 bytes, 250 with weight 1, 250
with weight 10

= Each packet takes 500 * 8/45 Mbps = 88.8
microseconds

= Round time = (250*10 + 250*1) * 88.8 = 2750 *
88.8 = 244.2 ms

33

