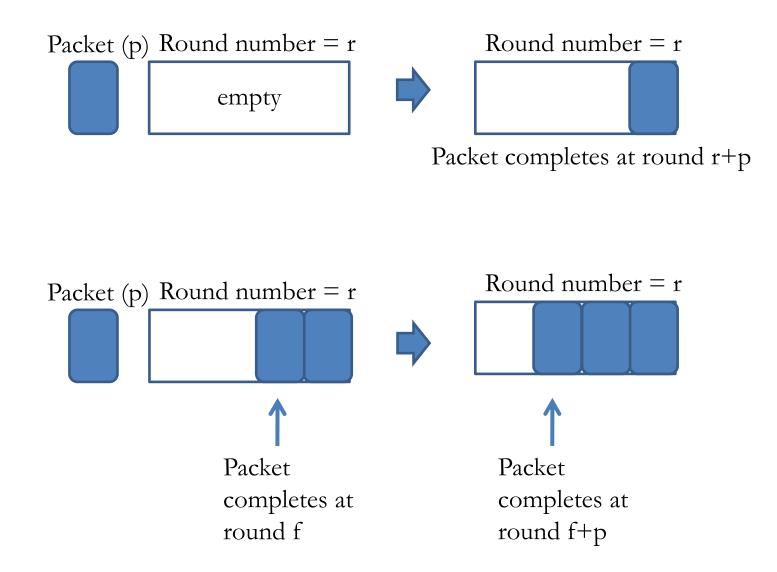
- 10. A Demers, S Keshav, S Shenker, "Analysis and Simulation of a Fair Queueing Algorithm," SIGCOMM 1989.
- 11. JCR Bennett, H Zhang, "WF^2Q: Worstcase fair weighted fair queueing," IEEE Infocom, 1996.

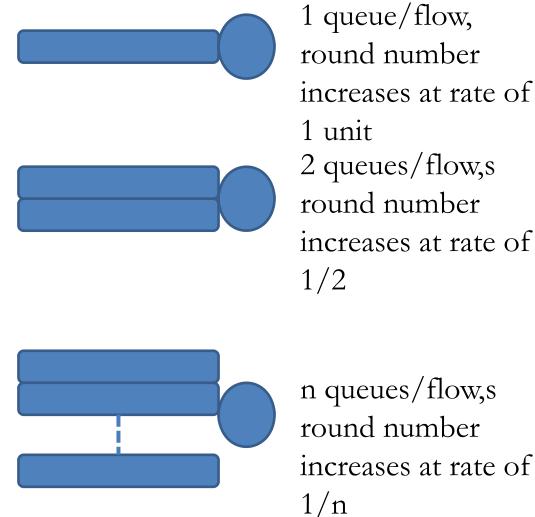
## Weighted Fair Queueing (WFQ)


- Deals better with variable size packets and weights
- The idea is that assume GPS is fairest discipline
- Find the *finish time* of a packet, *had we been doing GPS*
- Then serve packets in order of their finish times
- The scheduler tries to emulate the order in which packets are processed by GPS

## WFQ: first cut

- Suppose, in each *round*, the server served one bit from each active connection
  - begins with emulating bit-by-bit Round-Robin
- Round number is the number of rounds already completed
  - can be fractional
- Each round of service takes a variable amount of time
  - The more connections served, the longer the round takes

## WFQ (cont'd)


- If a packet of length *p* arrives to an empty queue when the round number is *R*, it will complete service when the round number is *R* + *p* => finish number is *R* + *p* 
  - independent of the number of other connections!
- If a packet arrives to a non-empty queue, and the previous packet has a finish number of *f*, then the packet's finish number is *f+p*
- Serve packets in order of finish numbers



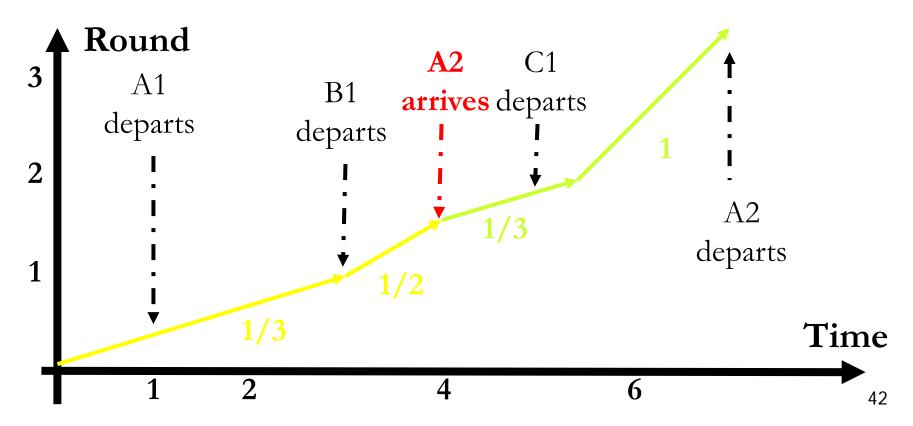
#### WFQ: computing the round number

- Naively: round number = number of rounds of service completed so far
  - what if a server has not served all connections in a round?
  - what if new conversations join in halfway through a round?
- Redefine round number as a real-valued variable that increases at a rate inversely proportional to the number of currently active connections
- With this change, WFQ emulates GPS instead of bit-by-bit RR

Increase is round number is proportional to rate of service for each per queue/flow



increases at rate of n queues/flow,s round number increases at rate of


## WFQ implementation

#### • On packet arrival:

- classify packet and look up finish number of last packet served (or waiting to be served)
  - O(1) to O(N)
- re-compute round number
  - worst case O(N)
- compute finish number
- insert in priority queue sorted by finish numbers
  - O(logN)
- if no space, drop the packet with largest finish number
- On service completion
  - select the packet with the lowest finish number

## Example: FQ

- Three connections: A,B,C. At t=0, packet of size 1,2 and 2 arrives. (A1,B1,C1). Finish time: A1 = 1, B1 = C1 = 2.
- With GPS, at t=3, round 1 is completed, A1 departs, only 2 connections active
- At t=4, round is 1.5, A2 of size 2 arrives, finish time is (1.5+2) 3.5



## Example: GPS

- Three connections: A,B,C. At t=0, packet of size 1,2 and 2 arrives. (A1,B1,C1). At t=4, A2 of size 2 arrives
- Using GPS:
  - At t=3, all packets get 1 bit of service
    - A1 departs
  - At t=4, B1 and C1 get 1.5 bits of service
    - A2 arrives
  - At t=5 1/2, B1 and C1 get 2 bits of service
    - A2 gets 1/2 bits of service
    - B1 and C1 depart
  - At t=7, A2 departs
  - Sequence of service = A1, {B1,C1}, A2
  - Departure time = 3, 5.5, 5.5, 7

## Example

#### FQ

- Finish #:
  - A1 = 1, B1 = C1 = 2
  - A2 = 3.5
- Sequence of service: A1, {B1,C1}, A2
- Departure Time: 1, 3, 5, 7
- GPS
  - Sequence of service: A1, {B1,C1}, A2
  - Departure time: 3, 5.5, 5.5, 7



A queue has service rate of 3 bit/s. Packet arrived are shown in the table below and a GPS scheduler is used.

| Packet      | Α | В    | С   |
|-------------|---|------|-----|
| Time        | 0 | 0.25 | 0.5 |
| Size (bits) | 2 | 1    | 1   |

## Evaluation

- Pros
  - Iike GPS, it provides protection
  - can obtain worst-case end-to-end delay bound
  - gives users incentive to use intelligent flow control (and also provides rate information implicitly)
- Cons
  - needs per-connection state
  - iterated deletion is complicated (occurs during round number computation)
  - requires a priority queue

## Light Load

|                       | Table II. Scenario 1 |           |       |       |        |       |
|-----------------------|----------------------|-----------|-------|-------|--------|-------|
|                       |                      |           | F     | ГР    | Telnet |       |
|                       | Quantity             | Policy    | 1     | 2     | 3      | 4     |
|                       | Throughput           | G/FCFS    | 1746  | 1746  | 99     | 96    |
|                       | (packets)            | G/FQ      | 1746  | 1746  | 102    | 94    |
| $\times$ $\wedge$ / / |                      | JK/FCFS   | 1747  | 1745  | 102    | 104   |
| X ↓ / ✓ 800kbps       |                      | JK/FO     | 1746  | 1746  | 105    | 103   |
|                       |                      | DEC/DEC   | 1746  | 1746  | 97     | 98    |
|                       |                      | DEC/FQbit | 1745  | 1746  | 83     | 88    |
|                       | Average round-trip   | G/FCFS    | 1.43  | 1-43  | 1.36   | 1.35  |
|                       | time                 | G/FQ      | 1.43  | 1-43  | 0.079  | 0.091 |
| ليجسا                 |                      | JK/FCFS   | 1.43  | 1.43  | 1.35   | 1.36  |
| ← 56kbps              |                      | JK/FQ     | 1.43  | 1.43  | 0.084  | 0.089 |
|                       |                      | DEC/DEC   | 0.286 | 0.286 | 0.206  | 0.218 |
| s                     |                      | DEC/FQbit | 1.38  | 1.39  | 0.088  | 0.074 |
| 3                     | Retransmitted        | G/FCFS    | 0     | 0     | 0      | 0     |
|                       | packets              | G/FQ      | 0     | 0     | 2      | 1     |
|                       | -                    | JK/FCFS   | 0     | 0     | 0      | 0     |
|                       |                      | JK/FQ     | 0     | 0     | 0      | 0     |
|                       |                      | DEC/DEC   | 0     | 0     | 0      | 0     |
|                       |                      | DEC/FQbit | 0     | 0     | 0      | 0     |
| ]                     | Dropped packets      | G/FCFS    | 0     | 0     | 0      | 0     |
|                       |                      | G/FQ      | 0     | 0     | 0      | 0     |
|                       |                      | JK/FCFS   | 0     | 0     | 0      | 0     |
|                       |                      | JK/FQ     | 0     | 0     | 0      | 0     |
|                       |                      | DEC/DEC   | 0     | 0     | 0      | 0     |
|                       |                      | DEC/FQbit | 0     | 0     | 0      | 0     |

| High         | Load |
|--------------|------|
| $\mathbf{O}$ |      |

Table III. Scenario 2

|                    | FTP       |       |              |              |       |       | Telnet       |       |        |
|--------------------|-----------|-------|--------------|--------------|-------|-------|--------------|-------|--------|
| Quantity           | Policy    | 1     | 2            | 3            | 4     | 5     | 6            | 7     | 8      |
| Throughput         | G/FCFS    | 18    | 1154         | 1159         | 3     | 1149  | 15           | 31    | 3      |
| (packets)          | G/FQ      | 178   | 838          | 591          | 600   | 615   | 621          | 96    | - 98   |
| <b>N</b> <i>i</i>  | JK/FCFS   | 582   | 583          | 585          | 585   | 583   | 582          | 3     | 0      |
|                    | JK/FQ     | 574   | 579          | 546          | 594   | 599   | 601          | 87    | 96     |
|                    | DEC/DEC   | 582   | 582          | 582          | 582   | 582   | 582          | 90    | 99     |
|                    | DEC/FQbit | 582   | 582          | 582          | 582   | 582   | 582          | 83    | 89     |
| Average round-trip | G/FCFS    | 403   | $2 \cdot 18$ | 2.16         |       | 2.18  | 140          | 115   |        |
| time               | G/FQ      | 16.8  | 3-31         | 4.88         | 4.83  | 4.53  | 4-47         | 0.079 | -0.078 |
|                    | JK/FCFS   | 1.85  | 1.93         | 1.93         | 1.85  | 1.93  | 1.85         |       |        |
|                    | JK/FQ     | 1.75  | 1.78         | $1 \cdot 19$ | 1.86  | 2.20  | $2 \cdot 16$ | 0.091 | -0.085 |
|                    | DEC/DEC   | 0.859 | 0-859        | 0.859        | 0.859 | 0.859 | 0-859        | 0.783 | -0.778 |
|                    | DEC/FQbit | 1.59  | 1.59         | 1.59         | 1.59  | 1.59  | 1.59         | 0.088 | 0.089  |
| Retransmitted      | G/FCFS    | 43    | 10           | 7            | 6     | 9     | 17           | 25    | 5      |
| packets            | G/FO      | 73    | 224          | 176          | 168   | 243   | 159          | 2     | 2      |
| F                  | JK/FCFS   | 57    | 57           | 57           | 57    | 57    | 57           | 6     | 0      |
|                    | JK/FO     | 83    | 80           | 60           | 64    | 61    | 61           | 0     | 0      |
|                    | DEC/DEC   | 0     | 0            | 0            | 0     | 0     | 0            | 0     | 0      |
|                    | DEC/FQbit | 0     | 0            | 0            | 0     | 0     | 0            | 0     | 0      |
| Dropped packets    | G/FCFS    | 26    | 5            | 4            | 3     | 5     | 11           | 15    | 2      |
|                    | G/FQ      | 33    | 139          | 106          | 88    | 167   | 98           | 0     | 0      |
|                    | JK/FCFS   | 56    | 56           | 56           | 56    | 56    | 56           | 5     | 0      |
|                    | JK/FQ     | 80    | 76           | 48           | 61    | 57    | 54           | 0     | 0      |
|                    | DEC/DEC   | 0     | 0            | 0            | 0     | 0     | 0            | 0     | 0      |
|                    | DEC/FQbit | ō     | 0            | 0            | 0     | 0     | 0            | 0     | 0      |

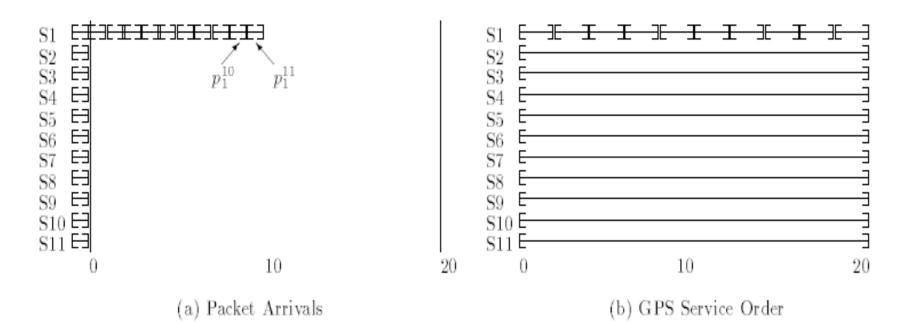
Table IV. Scenario 3

|                    |           | FTP   | Telnet | Ill-<br>behaved |
|--------------------|-----------|-------|--------|-----------------|
| Quantity           | Policy    | 1     | 2      | 3               |
| Throughput         | G/FCFS    | 3     | 11     | 3497            |
| (packets)          | G/FQ      | 3491  | 95     | 5               |
| -                  | JK/FCFS   | 0     | 0      | 3500            |
|                    | JK/FQ     | 3489  | 110    | 6               |
|                    | DEC/DEC   | 0     | 0      | 3500            |
|                    | DEC/FQbit | 3489  | 108    | 5               |
| Average round-trip | G/FCFS    | 1362  | 2.87   | 2.97            |
| time .             | G/FQ      | 0-716 | 0-080  | 903             |
|                    | JK/FCFS   |       |        | 2.83            |
|                    | JK/FQ     | 0-716 | 0-085  | 860             |
|                    | DEC/DEC   |       |        | 2.85            |
|                    | DEC/FQbit | 0-626 | 0.077  | 918             |
| Retransmitted      | G/FCFS    | 7     | 139    | 0               |
| packets            | G/FQ      | 0     | 2      | 0               |
| -                  | JK/FCFS   | 2     | 0      | 0               |
|                    | JK/FQ     | 0     | 0      | 0               |
|                    | DEC/DEC   | 1     | 1      | 0               |
|                    | DEC/FQbit | 0     | 0      | 0               |
| Dropped packets    | G/FCFS    | 7     | 127    | 3504            |
|                    | G/FQ      | 0     | 0      | 6995            |
|                    | JK/FCFS   | 2     | 0      | 3500            |
|                    | JK/FQ     | 0     | 0      | 6994            |
|                    | DEC/DEC   | 1     | 1      | 3500            |
|                    | DEC/FQbit | 0     | 0      | 6994            |

## WFQ Variants

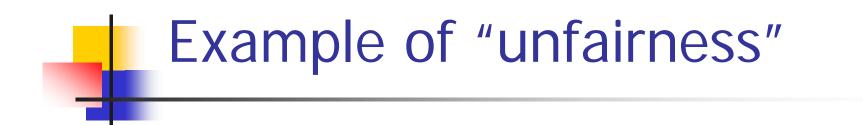
- There are many WFQ variants that are easier to implement and provides different levels of performance bounds
  - SCFQ self clock fair queueing (1994)
  - DRR Deficit Round-Robin (1995)
  - W<sup>2</sup>FQ worst-case fair WFQ (1996)
  - and many, many more ....
- In practice, when WFQ variants are available on routers, the number of classes/flows supported tend to be small

## How "fair" is WFQ


- Unweighted case:
  - if GPS has served *x* bits from connection A by time t
  - WFQ would have served at least x P bits, where P is the largest possible packet in the network
  - However, WFQ could send much more than GPS would => absolute fairness bound > P

$$d_{i,WFQ}^{k} - d_{i,GPS}^{k} \le \frac{L_{max}}{r} \quad \forall i,k \tag{5}$$

 $W_{i,GPS}(0,\tau) - W_{i,WFQ}(0,\tau) \le L_{max} \quad \forall i,\tau \qquad (6)$ 


Is this fair enough?

# Motivation





#### Weight of S1 = 10, all the rest are 1



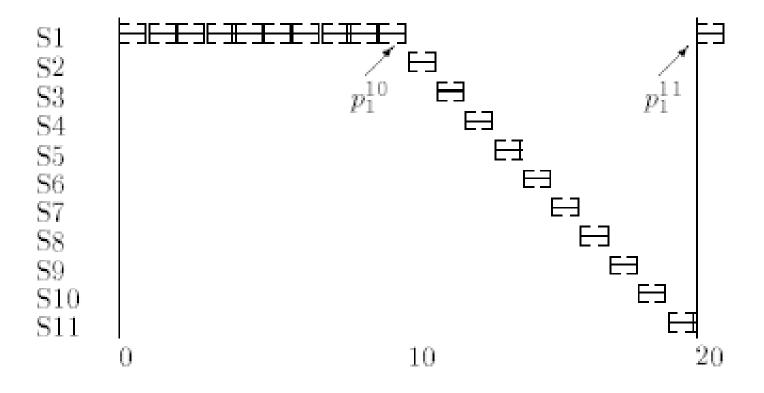



Figure 2: WFQ Service Order

# W2FQ

- A packet can arrive later and yet be served earlier
- WFQ: choose among all packets, the first packet that would complete its service
- W2FQ: considers only packets that would have started (even completed) under GPS
  - Among these (eligible) packets, choose the packet that would have completed first



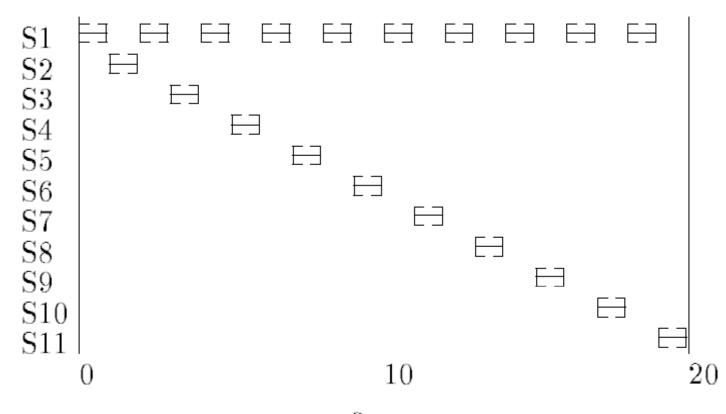



Figure 4: WF<sup>2</sup>Q Service Order