
CS 5229: Advanced Compute Networks

Basic Queuing Model
Dr. Chan Mun Choon

S h l f C i N i l U i i f SiSchool of Computing, National University of Singapore

Aug 19 2010Aug 19, 2010



Reference 

 Bertsekas and Gallager, “Data Networks”, g , ,
2nd Edition, Chapter 3: Delay Models in 
Data Network Prentice HallData Network, Prentice Hall.

2010/20011 Sem1 Traffic 1 2



Motivation

 Analyzing network performance is difficult even 
f i l t ki dfor a single networking node

 However, if we restrict ourselves to certain set 
f t ffi d l bt i l blof traffic models, one can obtain valuable 

qualitative results and worthwhile intuition
F l t ffi i i i th t l h For example, traffic engineering in the telephone 
network has been effective

 The M/M/* queuing analysis is a simple and elegant The M/M/  queuing analysis is a simple and elegant 
way to perform basic traffic engineering
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What is a Poisson Process?

 A Poisson Process A(t)  
1. A(t) is a counting process that represents the 

total number of arrivals that have occurred from 0 
( ) ( ) l h b f lto t, A(t) – A(s) equals the number of arrivals in 

the interval (s,t]
N b f i l th t i di j i t i t l2. Number of arrivals that occur in disjoint intervals 
are independent

3 Number of arrivals in any interval  is Poisson3. Number of arrivals in any interval  is Poisson 
distributed with parameter 
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Cont’d

 Mean = Variance = 
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Poisson Process

 Merging: if two or more independent Poisson 
process are merged into a single process, the 
merged process is a Poisson process with a rate 
equal to the sum of the rates

 Splitting: if a Poisson process is split p g p p
probabilistically into two processes, the two 
processes are obtained are also Poissonp
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Inter-arrival Time
Number of  events in time interval t has a Poisson Distribution 

 Based on the definition of Poisson process, what is the 
inter-arrival time between arrivals?

Inter-arrival time

inter arrival time between arrivals?
 The distribution of inter-arrival time, t, can be 

computed as P{A(t) = 0}. Let Tn be the arrival time of p { ( ) } n
the nth event.

  eAPtAtAP }0)({}0)()({  eAPtAtAP }0)({}0)()({

 
  eTTTTP nonn 1},...,|{ 1
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Exponential Distribution

 Cumulative Density sesP   1}{
Distribution

esP   1}{

 Probability Density 
Distribution

  ep }{
Distribution

M  1}{ E Mean 
}{ E

 Variance
2

1}{


 Var
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Memoryless Property
 For service time with exponential distribution, the 

additional time needed to complete a customer’s serviceadditional time needed to complete a customer s service 
in progress is independent of when the service started
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Question

 Inter-arrival time of bus arriving at a bus g
stop has an exponential distribution.  
 A random observer arrives at the bus stop A random observer arrives at the bus stop 

and a bus just leave t seconds ago. How long 
should the observer expects to wait?should the observer expects to wait? 
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Applications of Poisson Process

 Poisson Process has a number of “nice” 
properties that make it very useful for analyticalproperties that make it very useful for analytical 
and probabilistic analysis

 Has been used to model a large number of Has been used to model a large number of 
physical occurrences [KLE75]
 Number of soldiers killed by their horse (1928)
 Sequence of gamma rays emitting from a radioactive 

particle
 Call holding time of telephone calls Call holding time of telephone calls
 In many cases, the sum of large number of 

independent stationary renewal process will 
t d t b P itend to be a Poisson process

[KLE75] L. Kleinrock, “Queuing Systems,” Vol I, 1975.
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Little’s Theorem
 Given customer arrival rate (), service rate ()

 What is the average number of customers (N) in the 
system and what is the average delay per customer 
(T) ?(T) ?
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Cont’d

 Let 
 N(t) = # of customers at time t
 (t) = # of customers arrived in the interval [0,t]
 Ti = time spent in system by ith customer

 Nt : “typical” # of customers up to time t is Nt : typical  # of customers up to time t is

 dN
t

 )(1  dN
t 0 )(

t
t

NN lim


 t
t

 lim


 t
t

TT lim



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Little’s Theorem
 Little’s Theorem: N = T

A # f t i l t * Average # of customers = average arrival rate * 
average delay time of a customer

 Crowded system (large N) are associated with long Crowded system (large N) are associated with long 
customer delays and vice versa 

N()

Arrival 

T2

Arrival

Departure 

T1

T2 Departure, 
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Derivation of Little’s Theorem
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Little’s Theorem (cont’d)

 Little’s Theorem is very general and holds y g
for almost every queuing system that 
reaches statistics equilibrium in the limitreaches statistics equilibrium in the limit
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Example 

 BG, Example 3.1
 L is the arrival rate in a transmission line
 NQ is the average # of packets in queue (not Q s t e a e age o pac ets queue ( ot

under transmission)
 W is the average time spent by a waiting g p y g

packet (exclude packet being transmitted)
 From LT, NQ = W, Q

 Furthermore, if X is the average transmission 
time, ,
  = X
 where  is the line’s utilization factor (proportion of 
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Example
 BG, Example 3.2

 A network of transmission lines where packets arrived 
at n different nodes with rate 1 2 ,…,n

l b f k k N is total number of packets in network
 Average delay per packet is  n

NT



n

i
i

1


 independent of packet length distribution (service 
rate) and routing

Traffic 18



A Question …

 Waiting time at two fast-food stores MD g
and BK
 In MD a queue is formed at each of the m In MD, a queue is formed at each of the m 

servers (assume a customer chooses queue 
independently and does not change queueindependently and does not change queue 
once he/she joins the queue)
In BK all customers wait at a single queue In BK, all customers wait at a single queue 
and served by m servers

h h b Which one is better? 
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Multiplexing of Traffic

 Traffic engineering involves the sharing of 
resource/link by several traffic streams

 Time-Division Multiplexing (TDM)p g ( )
 Divide transmission into time slots

Frequency Division Multiplexing (FDM) Frequency Division Multiplexing (FDM)
 Divide transmission into divide frequency 

h lchannels
 For TDM/FDM, if there is no traffic in a data 

stream, bandwidth is wasted
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Statistical Multiplexing
 In statistical multiplexing, data from all traffic 

streams are merged into a single queue andstreams are merged into a single queue and 
transmitted in a FIFO manner

 One big advantage moving from circuit switching One big advantage moving from circuit switching 
to packet switching is that statistical multiplexing 
can be exploited

 Benefits statistical multiplexing 
 has smaller delay per packet than TDM/FDM

h l d l i can have larger delay variance
 Results can be shown using queuing analysis
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Basic Queuing Model


N

M/M/1

Departure Process 
Exponential with mean 1/

M/M/1

A i l P
Number of servers

Arrival Process
Memoryless (or Poisson process with rate )

D f lt N i i fi it• Default N is infinite
• D  - deterministic, G - General
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Birth-Death Process

    

0 1 2 n-1 n n+1

        

• Model queue as a discrete time Markov chainModel queue as a discrete time Markov chain
• Let Pn be the steady state probability that there are n 
customers in the queue
• Balance equation: at equilibrium, the probability a 
transition out of a state is equal to the probability of a 
transition into the same state
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Derivation of M/M/1 Model

 Balance Equations: q
 P0 = P1, P1 = P2, … , Pn-1 = Pn

Let =  Let  = 
 P0 = P1, P1 = P2, … , Pn-1 = Pn 0 1  1 2  n 1 n

Pn = nP0
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Derivation of M/M/1 Model

Pn = nP0

 P =  nP = P / (1 ) = 1 ( < 1)n Pn = n  P0  = P0 / (1 – ) = 1 ( < 1)

P0 = (1 – )

Pn = n (1 – ) 

Average Number of Customers in System, N

N =  nP =    N = n nPn =  – – 
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Properties of M/M/1 Queue

 N = – – 

  can be interpreted as the utilization of the 
queue

 System is unstable if > 1 or  as N is not 
bounded

 In M/M/1 queue, there is no blocking/dropping, so 
waiting time can increase without any limitwaiting time can increase without any limit

 Buffer space is infinite, so customers are not 
rejectedrejected

 But there are “infinite number” of customers in 
front
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M/M/1

 From Little’s Theorem, 


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More properties of M/M/1
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Example

 BG, Example 3.8 (Statistical Multiplexing vs. TDM), p ( p g )
 Allocate each Poisson stream its own queue 

() or shared a single faster queue (k,k)?( ) g q ( )
 Increase  and  or a queue by a constant k > 1 
 = k/kno change in utilization)  k/k no change in utilization)
 N = – no change
 What changes? What changes?

 T = 1/k( – )
 Average transmission delay decreases by a factor k Average transmission delay decreases by a factor k

 Why?
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Example

 BG, Example 3.9, p
 Consider k TDM/FDM channels

From previous example merging k channels From previous example, merging k channels 
into a single (k times faster) will keep the 
same N but reduces average delay by ksame N but reduces average delay by k

 So why use TDM/FDM ?
ff Some traffic are not Poisson. For example, voice 

traffic are “regular” with one voice packet every 
20ms20ms

 Merging multiplexing traffic streams into a single 
channel incurs buffering “queuing delay” and jitter
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Extension to M/M/m Queue

• There are m servers, a customer is served by one of the e e e se ve s, cus o e s se ved by o e o e
servers
• pn-1 = npn (n <= m)
• pn-1 = mpn (n > m)

0 1 2 1 1

    

0 1 2 m-1 m m+1

    m m m
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Derivation of M/M/m Model

 Balance Equations: 
 P0 = P1, P1 = 2P2, … , Pn-1 = nPn

 Let  = m 

m n)(  mn
n

mppn  ,
!
)(

0


m nm mn
m

mppn  ,
!0

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Derivation of M/M/m Model

1


np
0

n

np

In order to compute P P0 must beIn order to compute Pn, P0 must be 
computed first.
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BK vs. MD

 BK – M/M/m/ /
 MD – m * M/M/1

L t 5 Let m = 5, 
  of BK is 3,  be 1
  of each server in MD is 3/5 = 0.6

What is the expected delay? What is the expected delay?
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Extension to M/M/m/m Queue

• There are m servers and m buffer size
• This is no buffering
• Calls are either served or rejected, calls rejected are lost
• Common model for telephone switching

   

0 1 2 m-1 m

    m  m m
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M/M/m/m Queue

Balanced Equations:
P0 = P1, P1 = 2P2, … , Pn-1 = nPn

Pn = P0 (n) / n!n 0 ( )

m
n Pn = m

n P0 (n) / n! = 1
P = (m (n) / n!) -1P0 = (m

n (n) / n!) 1

When does loss happens?
Loss happens when a customer arrives and see m 
customers in the system
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M/M/m/m Queue

 PASTA: Poisson Arrival see times averagesg
 Pm is time average
 Use time averages to compute loss rate

 Loss for M/M/m/m queue is computed as the 
probability that there are m customers in the 
system:

(m/m!) ( m 
n=0 (n/n!) ) -1( /m!) (  n=0 ( /n!) ) 

 The above equation is known as Erlang B
formula and widely used to evaluate blockingformula and widely used to evaluate blocking 
probability
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What is an Erlang?
 An Erlang is a unit of telecommunications traffic 

meas rement and represents the contin o s se of one oicemeasurement and represents the continuous use of one voice 
path
 Average number of calls in progressAverage number of calls in progress

 Computing Erlang
 Call arrival rate:
 Call Holding time is: /, call departure rate = 
 System load in Erlang is 

 Example: 
  = 1 calls/sec, 1/ = 100sec, load = 1/0.01 = 100 Erlangs
 = 10 calls/sec, 1/ = 10sec, load = 10/0.1 = 100 Erlangs

 Load is function of the ratio of arrival rate to departure rate, 
independent of the specific rates
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Erlang B Table

Capacity (Erlangs) for grade of service of

# of 
Servers

P=0.0
2

P=0.0
1

P=0.00
5

P=0.0
01 • For a given grade ofServers 

(N)
2 1 5 01

1 0.02 0.01 0.005 0.001

For a given grade of 
service, a larger capacity 
system is more efficient 
(statistical multiplexing)

5 1.66 1.36 1.13 0.76

10 5.08 4.46 3.96 3.09

(statistical multiplexing)

• A larger system incurs 
l h i20 13.19 12.03 11.1 9.41

40 31.0 29.0 27.3 24.5

00 8 9 8 80 9 2

a larger changes in 
blocking probability 
when the system load 

100 87.97 84.1 80.9 75.2 changes
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Example

 If there are 40 servers and target blocking 
rate is 2%, what is largest load 
supported?pp
 P=0.02, N = 40
 Load supported = 31 Erlang Load supported  31 Erlang
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Example

 Calls arrived at a rate of 1calls/sec and the 
average holding time is 12 sec. How many 
trunk is needed to maintain call blocking g
of less than 1%?
 Load = 1*12 = 12 Erlangg
 From Erlang B table, if P=0.01, N >= 20
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