CS 5229: Advanced Compute Networks

Basic Queuing Model

Dr. Chan Mun Choon

School of Computing, National University of Singapore

Aug 19, 2010

 Bertsekas and Gallager, "Data Networks", 2nd Edition, Chapter 3: Delay Models in Data Network, Prentice Hall.

Motivation

- Analyzing network performance is difficult even for a single networking node
- However, if we restrict ourselves to certain set of traffic models, one can obtain valuable qualitative results and worthwhile intuition
 - For example, traffic engineering in the telephone network has been effective
 - The M/M/* queuing analysis is a simple and elegant way to perform basic traffic engineering

What is a Poisson Process?

- A Poisson Process A(t)
 - A(t) is a counting process that represents the total number of arrivals that have occurred from 0 to t, A(t) – A(s) equals the number of arrivals in the interval (s,t]
 - Number of arrivals that occur in disjoint intervals are independent
 - 3. Number of arrivals in any interval τ is Poisson distributed with parameter $\lambda \tau$

$$P\{A(t+\tau) - A(t) = n\} = e^{-\lambda\tau} \frac{(\lambda\tau)^n}{n!}$$

• Mean = Variance = λ

Poisson Process

- Merging: if two or more independent Poisson process are merged into a single process, the merged process is a Poisson process with a rate equal to the sum of the rates
- Splitting: if a Poisson process is split probabilistically into two processes, the two processes are obtained are also Poisson

The distribution of inter-arrival time, t, can be computed as P{A(t) = 0}. Let T_n be the arrival time of the nth event.

$$P\{A(t+\tau) - A(t) = 0\} = P\{A(\tau) = 0\} = e^{-\lambda\tau}$$

$$P\{T_{n+1} - T_n \le \tau \mid T_o, ..., T_n\} = 1 - e^{-\lambda \tau}$$

Exponential Distribution

- Cumulative Density $P\{\tau \leq s\} = 1 e^{-\lambda s}$ Distribution
- Probability Density Distribution

$$p\{\tau\} = \lambda e^{-\lambda\tau}$$

- Mean $E\{\tau\} = \frac{1}{\lambda}$
- Variance

$$Var\{\tau\} = \frac{1}{\lambda^2}$$

Memoryless Property

For service time with exponential distribution, the additional time needed to complete a customer's service in progress is independent of when the service started

$$P\{\tau_n > r+t \mid \tau_n > t\} = \frac{e^{-\lambda(r+t)}}{e^{-\lambda t}} = e^{-\lambda r} = P\{\tau_n > r\}$$

Question

- Inter-arrival time of bus arriving at a bus stop has an exponential distribution.
 - A random observer arrives at the bus stop and a bus just leave t seconds ago. How long should the observer expects to wait?

Applications of Poisson Process

- Poisson Process has a number of "nice" properties that make it very useful for analytical and probabilistic analysis
- Has been used to model a large number of physical occurrences [KLE75]
 - Number of soldiers killed by their horse (1928)
 - Sequence of gamma rays emitting from a radioactive particle
 - Call holding time of telephone calls
 - In many cases, the sum of large number of independent stationary renewal process will tend to be a Poisson process

[KLE75] L. Kleinrock, "Queuing Systems," Vol I, 1975.

Little's Theorem

- Given customer arrival rate (λ), service rate (μ)
 - What is the average number of customers (N) in the system and what is the average delay per customer (T) ?

Cont'd

Let

- N(t) = # of customers at time t
- α(t) = # of customers arrived in the interval [0,t]
- T_i = time spent in system by ith customer
- N_t : "typical" # of customers up to time t is

$$\frac{1}{t}\int_0^t N(\tau)d\tau$$

 $N = \lim_{t \to \infty} N_t \qquad \lambda = \lim_{t \to \infty} \lambda_t \qquad T = \lim_{t \to \infty} T_t$

Little's Theorem

• Little's Theorem: $N = \lambda T$

- Average # of customers = average arrival rate * average delay time of a customer
- Crowded system (large N) are associated with long customer delays and vice versa

Derivation of Little's Theorem

Little's Theorem (cont'd)

Little's Theorem is very general and holds for almost every queuing system that reaches statistics equilibrium in the limit

Example

BG, Example 3.1

- L is the arrival rate in a transmission line
- N_Q is the average # of packets in queue (not under transmission)
- W is the average time spent by a waiting packet (exclude packet being transmitted)
- From LT, $N_Q = \lambda W$
- Furthermore, if X is the average transmission time,
 - $\rho = \lambda X$
 - where ρ is the line's utilization factor (proportion of time line is busy)

Example

- BG, Example 3.2
 - A network of transmission lines where packets arrived at n different nodes with rate $\lambda_1 \lambda_2 \dots \lambda_n$
 - N is total number of packets in network
 - Average delay per packet is

$$T = \frac{N}{\sum_{i=1}^{n} \lambda_i}$$

independent of packet length distribution (service rate) and routing

A Question ...

- Waiting time at two fast-food stores MD and BK
 - In MD, a queue is formed at each of the m servers (assume a customer chooses queue independently and does not change queue once he/she joins the queue)
 - In BK, all customers wait at a single queue and served by m servers
 - Which one is better?

Multiplexing of Traffic

- Traffic engineering involves the sharing of resource/link by several traffic streams
- Time-Division Multiplexing (TDM)
 - Divide transmission into time slots
- Frequency Division Multiplexing (FDM)
 - Divide transmission into divide frequency channels
- For TDM/FDM, if there is no traffic in a data stream, bandwidth is wasted

Statistical Multiplexing

- In statistical multiplexing, data from all traffic streams are merged into a single queue and transmitted in a FIFO manner
- One big advantage moving from circuit switching to packet switching is that statistical multiplexing can be exploited
- Benefits statistical multiplexing
 - has smaller delay per packet than TDM/FDM
 - can have larger delay variance
 - Results can be shown using queuing analysis

Memoryless (or Poisson process with rate λ)

- Default N is infinite
- D deterministic, G General

Birth-Death Process

- Model queue as a discrete time Markov chain
- Let P_n be the steady state probability that there are n customers in the queue
- Balance equation: at equilibrium, the probability a transition out of a state is equal to the probability of a transition into the same state

Derivation of M/M/1 Model

Balance Equations:

• $\lambda P_0 = \mu P_1$, $\lambda P_1 = \mu P_2$, ..., $\lambda P_{n-1} = \mu P_n$ • Let $\rho = \lambda/\mu$

•
$$\rho P_0 = P_1, \rho P_1 = P_2, \dots, \rho P_{n-1} = P_n$$

 $P_n = \rho^n P_0$

Derivation of M/M/1 Model

$$\begin{split} P_{n} &= \rho^{n} P_{0} \\ \Sigma_{n} P_{n} &= \Sigma_{n} \rho^{n} P_{0} = P_{0} / (1 - \rho) &= 1 \ (\rho < 1) \\ P_{0} &= (1 - \rho) \\ P_{n} &= \rho^{n} (1 - \rho) \end{split}$$

Average Number of Customers in System, N $N = \sum_{n} nP_{n} = \rho / (1 - \rho) = \lambda / (\mu - \lambda)$

Properties of M/M/1 Queue

$$\mathbf{N} = \rho / (1 - \rho) = \lambda / (\mu - \lambda)$$

- ρ can be interpreted as the utilization of the queue
- System is unstable if $\rho > 1$ or $\lambda > \mu$ as N is not bounded
- In M/M/1 queue, there is no blocking/dropping, so waiting time can increase without any limit
 - Buffer space is infinite, so customers are not rejected
 - But there are "infinite number" of customers in front

M/M/1

$$T = \frac{N}{\lambda} = \frac{\rho}{\lambda(1-\rho)} = \frac{1}{\mu - \lambda}$$

$$W = \frac{1}{\mu - \lambda} - \frac{1}{\mu} = \frac{\rho}{\mu - \lambda}$$

More properties of M/M/1

Example

BG, Example 3.8 (Statistical Multiplexing vs. TDM)

- Allocate each Poisson stream its own queue
 (λ,μ) or shared a single faster queue (kλ,kμ)?
- Increase λ and μ or a queue by a constant k > 1
- $\rho = k\lambda/k\mu = \lambda/\mu$ (no change in utilization)
- N = $\rho / 1 \rho = \lambda / \mu \lambda$ (no change)
- What changes?

• T = $1/k(\mu - \lambda)$

- Average transmission delay decreases by a factor k
- Why?

Example

- BG, Example 3.9
 - Consider k TDM/FDM channels
 - From previous example, merging k channels into a single (k times faster) will keep the same N but reduces average delay by k
 - So why use TDM/FDM ?
 - Some traffic are not Poisson. For example, voice traffic are "regular" with one voice packet every 20ms
 - Merging multiplexing traffic streams into a single channel incurs buffering, "queuing delay" and jitter

Extension to M/M/m Queue

- There are m servers, a customer is served by one of the servers
- $\lambda p_{n-1} = n\mu p_n \ (n \le m)$
- $\lambda p_{n-1} = m \mu p_n (n > m)$

Derivation of M/M/m Model

Balance Equations:

•
$$\lambda P_0 = \mu P_1$$
, $\lambda P_1 = 2\mu P_2$, ..., $\lambda P_{n-1} = n\mu P_n$
Let $\rho = \lambda/m\mu$

$$p_n = p_0 \frac{(m\rho)^n}{n!}, n \le m$$

$$p_n = p_0 \frac{m^m \rho^n}{m!}, n > m$$

Derivation of M/M/m Model

$$\sum_{n=0}^{\infty} p_n = 1$$

In order to compute P_n , P_0 must be computed first.

BK vs. MD

- BK M/M/m
- MD m * M/M/1
- Let m = 5,
 - λ of BK is 3, μ be 1
 - λ of each server in MD is 3/5 = 0.6
- What is the expected delay?

Extension to M/M/m/m Queue

- There are m servers and m buffer size
- This is no buffering
- Calls are either served or rejected, calls rejected are lost
- Common model for telephone switching

Balanced Equations: $\lambda P_0 = \mu P_1, \ \lambda P_1 = 2\mu P_2, \ \dots, \ \lambda P_{n-1} = n\mu P_n$ $P_n = P_0 \ (\rho^n) \ / n!$ $\sum_{n=1}^{\infty} P_n = \sum_{n=1}^{\infty} P_0 \ (\rho^n) \ / n! = 1$ $P_0 = (\sum_{n=1}^{\infty} (\rho^n) \ / n!)^{-1}$

When does loss happens?

Loss happens when a customer arrives and see m customers in the system

M/M/m/m Queue

- PASTA: Poisson Arrival see times averages
 - P_m is time average
 - Use time averages to compute loss rate
- Loss for M/M/m/m queue is computed as the probability that there are m customers in the system:

($\rho^{m}/m!$) ($\Sigma^{m}_{n=0}$ ($\rho^{n}/n!$)) ⁻¹

The above equation is known as Erlang B formula and widely used to evaluate blocking probability

What is an Erlang?

- An *Erlang* is a unit of telecommunications traffic measurement and represents the continuous use of one voice path
 - Average number of calls in progress
- Computing Erlang
 - Call arrival rate:λ
 - Call Holding time is: $1/\mu$, call departure rate = μ
 - System load in Erlang is λ/μ
- Example:
 - $\lambda = 1$ calls/sec, $1/\mu = 100$ sec, load = 1/0.01 = 100 Erlangs
 - $\lambda = 10$ calls/sec, $1/\mu = 10$ sec, load = 10/0.1 = 100 Erlangs
- Load is function of the ratio of arrival rate to departure rate, independent of the specific rates

Erlang B Table

Capacity (Erlangs) for grade of service of				
# of Servers (N)	P=0.0 2	P=0.0 1	P=0.00 5	P=0.0 01
1	0.02	0.01	0.005	0.001
5	1.66	1.36	1.13	0.76
10	5.08	4.46	3.96	3.09
20	13.19	12.03	11.1	9.41
40	31.0	29.0	27.3	24.5
100	87.97	84.1	80.9	75.2

• For a given grade of service, a larger capacity system is more efficient (statistical multiplexing)

• A larger system incurs a larger changes in blocking probability when the system load changes

Example

- If there are 40 servers and target blocking rate is 2%, what is largest load supported?
 - P=0.02, N = 40
 - Load supported = 31 Erlang

Example

- Calls arrived at a rate of 1calls/sec and the average holding time is 12 sec. How many trunk is needed to maintain call blocking of less than 1%?
 - Load = 1*12 = 12 Erlang
 - From Erlang B table, if P=0.01, N >= 20