## CS 5229: Advanced Compute Networks

## Basic Queuing Model

Dr. Chan Mun Choon

School of Computing, National University of Singapore

$$
\text { Aug 19, } 2010
$$

## Reference

- Bertsekas and Gallager, "Data Networks", $2^{\text {nd }}$ Edition, Chapter 3: Delay Models in Data Network, Prentice Hall.


## Motivation

- Analyzing network performance is difficult even for a single networking node
- However, if we restrict ourselves to certain set of traffic models, one can obtain valuable qualitative results and worthwhile intuition
- For example, traffic engineering in the telephone network has been effective
- The $M / M / *$ queuing analysis is a simple and elegant way to perform basic traffic engineering


## What is a Poisson Process?

- A Poisson Process A(t)

1. $A(t)$ is a counting process that represents the total number of arrivals that have occurred from 0 to $t, A(t)$ - $A(s)$ equals the number of arrivals in the interval ( $\mathrm{s}, \mathrm{t}$ ]
2. Number of arrivals that occur in disjoint intervals are independent
3. Number of arrivals in any interval $\tau$ is Poisson distributed with parameter $\lambda \tau$

$$
P\{A(t+\tau)-A(t)=n\}=e^{-\lambda \tau} \frac{(\lambda \tau)^{n}}{n!}
$$

## Cont’d

- Mean $=$ Variance $=\lambda$


From: http://en.wikipedia.org/wiki/Poisson_distribution

## Poisson Process

- Merging: if two or more independent Poisson process are merged into a single process, the merged process is a Poisson process with a rate equal to the sum of the rates
- Splitting: if a Poisson process is split probabilistically into two processes, the two processes are obtained are also Poisson


## I nter-arrival Time



- Based on the definition of Poisson process, what is the inter-arrival time between arrivals?
- The distribution of inter-arrival time, $t$, can be computed as $\mathrm{P}\left\{\mathrm{A}(\mathrm{t})=0\right.$. Let $\mathrm{T}_{\mathrm{n}}$ be the arrival time of the $\mathrm{n}^{\text {th }}$ event.

$$
\begin{aligned}
& P\{A(t+\tau)-A(t)=0\}=P\{A(\tau)=0\}=e^{-\lambda \tau} \\
& P\left\{T_{n+1}-T_{n} \leq \tau \mid T_{o}, \ldots, T_{n}\right\}=1-e^{-\lambda \tau}
\end{aligned}
$$

## Exponential Distribution

- Cumulative Density

$$
P\{\tau \leq s\}=1-e^{-\lambda s}
$$ Distribution

- Probability Density

$$
p\{\tau\}=\lambda e^{-\lambda \tau}
$$

Distribution

- Mean

$$
E\{\tau\}=\frac{1}{\lambda}
$$

- Variance

$$
\operatorname{Var}\{\tau\}=\frac{1}{\lambda^{2}}
$$

## Memoryless Property

- For service time with exponential distribution, the additional time needed to complete a customer's service in progress is independent of when the service started

$$
P\left\{\tau_{n}>r+t \mid \tau_{n}>t\right\}=\frac{e^{-\lambda(r+t)}}{e^{-\lambda t}}=e^{-\lambda r}=P\left\{\tau_{n}>r\right\}
$$

## Question

- Inter-arrival time of bus arriving at a bus stop has an exponential distribution.
- A random observer arrives at the bus stop and a bus just leave $t$ seconds ago. How long should the observer expects to wait?


## Applications of Poisson Process

- Poisson Process has a number of "nice" properties that make it very useful for analytical and probabilistic analysis
- Has been used to model a large number of physical occurrences [KLE75]
- Number of soldiers killed by their horse (1928)
- Sequence of gamma rays emitting from a radioactive particle
- Call holding time of telephone calls
- In many cases, the sum of large number of independent stationary renewal process will tend to be a Poisson process
[KLE75] L. Kleinrock, "Queuing Systems," Vol I, 1975.


## Little's Theorem

- Given customer arrival rate ( $\lambda$ ), service rate ( $\mu$ )
- What is the average number of customers ( N ) in the system and what is the average delay per customer ( T ) ?


## Cont'd

- Let
- $N(\mathrm{t})=\#$ of customers at time t
- $\alpha(\mathrm{t})=\#$ of customers arrived in the interval [0,t]
- $\mathrm{T}_{\mathrm{i}}=$ time spent in system by $\mathrm{i}^{\text {th }}$ customer
- $N_{t}$ : "typical" \# of customers up to time $t$ is

$$
\frac{1}{t} \int_{0}^{t} N(\tau) d \tau
$$

$$
N=\lim _{t \rightarrow \infty} N_{t} \quad \lambda=\lim _{t \rightarrow \infty} \lambda_{t} \quad T=\lim _{t \rightarrow \infty} T_{t}
$$

## Little's Theorem

- Little's Theorem: $\mathrm{N}=\lambda T$
- Average \# of customers = average arrival rate * average delay time of a customer
- Crowded system (large N) are associated with long customer delays and vice versa



## Derivation of Little's Theorem

## Little's Theorem (cont'd)

- Little's Theorem is very general and holds for almost every queuing system that reaches statistics equilibrium in the limit


## Example

- BG, Example 3.1
- $L$ is the arrival rate in a transmission line
- $N_{Q}$ is the average \# of packets in queue (not under transmission)
- W is the average time spent by a waiting packet (exclude packet being transmitted)
- From LT, $\mathrm{N}_{\mathrm{Q}}=\lambda \mathrm{W}$
- Furthermore, if $X$ is the average transmission time,
- $\rho=\lambda x$
- where $\rho$ is the line's utilization factor (proportion of time line is busy)


## Example

- BG, Example 3.2
- A network of transmission lines where packets arrived at n different nodes with rate $\lambda_{1} \lambda_{2}, \ldots, \lambda_{\mathrm{n}}$
- N is total number of packets in network
- Average delay per packet is

$$
T=\frac{N}{\sum_{i=1}^{n} \lambda_{i}}
$$

- independent of packet length distribution (service rate) and routing


## A Question ...

- Waiting time at two fast-food stores MD and BK
- In MD, a queue is formed at each of the $m$ servers (assume a customer chooses queue independently and does not change queue once he/she joins the queue)
- In BK, all customers wait at a single queue and served by $m$ servers
- Which one is better?


## Multiplexing of Traffic

- Traffic engineering involves the sharing of resource/link by several traffic streams
- Time-Division Multiplexing (TDM)
- Divide transmission into time slots
- Frequency Division Multiplexing (FDM)
- Divide transmission into divide frequency channels
- For TDM/FDM, if there is no traffic in a data stream, bandwidth is wasted


## Statistical Multiplexing

- In statistical multiplexing, data from all traffic streams are merged into a single queue and transmitted in a FIFO manner
- One big advantage moving from circuit switching to packet switching is that statistical multiplexing can be exploited
- Benefits statistical multiplexing
- has smaller delay per packet than TDM/FDM
- can have larger delay variance
- Results can be shown using queuing analysis


## Basic Queuing Model



## M/M/1

Arrival Proces§
Memoryless (or Poisson process with rate $\lambda$ )

- Default N is infinite
-D - deterministic, G-General


## Birth-Death Process



- Model queue as a discrete time Markov chain
- Let $\mathbf{P}_{\mathrm{n}}$ be the steady state probability that there are n customers in the queue
- Balance equation: at equilibrium, the probability a transition out of a state is equal to the probability of a transition into the same state


## Derivation of M/M/1 Model

- Balance Equations:
$-\lambda \mathbf{P}_{\mathbf{0}}=\mu \mathbf{P}_{1}, \lambda \mathbf{P}_{\mathbf{1}}=\mu \mathbf{P}_{\mathbf{2}}, \ldots, \lambda \mathbf{P}_{\mathrm{n}-1}=\mu \mathbf{P}_{\mathbf{n}}$
- Let $\rho=\lambda / \mu$
- $\rho \mathbf{P}_{0}=\mathbf{P}_{1}, \rho \mathbf{P}_{1}=\mathbf{P}_{2}, \ldots, \rho P_{n-1}=P_{n}$

$$
P_{n}=\rho^{n} P_{0}
$$

## Derivation of $\mathrm{M} / \mathrm{M} / 1$ Model

$$
\begin{gathered}
P_{n}=\rho^{n} P_{0} \\
\Sigma_{n} P_{n}=\Sigma_{n} \rho^{n} P_{0}=P_{0} /(1-\rho)=1(\rho<1) \\
P_{0}=(1-\rho) \\
P_{n}=\rho^{n}(1-\rho)
\end{gathered}
$$

Average Number of Customers in System, $\mathbf{N}$

$$
\mathbf{N}=\Sigma_{\mathbf{n}} \mathbf{n} \mathbf{P}_{\mathbf{n}}=\rho /(1-\rho)=\lambda /(\mu-\lambda)
$$

## Properties of M/M/1 Queue

- $\mathbf{N}=\rho /(1-\rho)=\lambda /(\mu-\lambda)$
- $\rho$ can be interpreted as the utilization of the queue
- System is unstable if $\rho>1$ or $\lambda>\mu$ as $N$ is not bounded
- In $\mathrm{M} / \mathrm{M} / 1$ queue, there is no blocking/dropping, so waiting time can increase without any limit
- Buffer space is infinite, so customers are not rejected
- But there are "infinite number" of customers in front


## M/M/1

- From Little's Theorem,

$$
\begin{aligned}
& T=\frac{N}{\lambda}=\frac{\rho}{\lambda(1-\rho)}=\frac{1}{\mu-\lambda} \\
& W=\frac{1}{\mu-\lambda}-\frac{1}{\mu}=\frac{\rho}{\mu-\lambda}
\end{aligned}
$$

## More properties of M/M/1



Utilization

## Example

- BG, Example 3.8 (Statistical Multiplexing vs. TDM)
- Allocate each Poisson stream its own queue $(\lambda, \mu)$ or shared a single faster queue ( $k \lambda, k \mu$ )?
- Increase $\lambda$ and $\mu$ or a queue by a constant $k>1$
- $\rho=k \lambda / k \mu=\lambda / \mu$ (no change in utilization)
- $N=\rho / 1-\rho=\lambda / \mu-\lambda$ (no change)
- What changes?
- T = 1/k( $\mu-\lambda$ )
- Average transmission delay decreases by a factor $k$
- Why?


## Example

- BG, Example 3.9
- Consider k TDM/FDM channels
- From previous example, merging $k$ channels into a single ( $k$ times faster) will keep the same N but reduces average delay by k
- So why use TDM/FDM ?
- Some traffic are not Poisson. For example, voice traffic are "regular" with one voice packet every 20ms
- Merging multiplexing traffic streams into a single channel incurs buffering, "queuing delay" and jitter


## Extension to M/M/m Queue

- There are $m$ servers, a customer is served by one of the servers
- $\lambda \mathbf{p}_{\mathrm{n}-1}=\mathbf{n} \mu \mathbf{p}_{\mathrm{n}}(\mathrm{n}<=\mathbf{m})$
- $\lambda \mathrm{p}_{\mathrm{n}-1}=\mathrm{m} \mu \mathrm{p}_{\mathrm{n}}(\mathrm{n}>\mathrm{m})$



## Derivation of $\mathrm{M} / \mathrm{M} / \mathrm{m}$ Model

- Balance Equations:
- $\lambda \mathbf{P}_{\mathbf{0}}=\mu \mathbf{P}_{1}, \lambda \mathbf{P}_{\mathbf{1}}=\mathbf{2} \mu \mathbf{P}_{2}, \ldots, \lambda \mathbf{P}_{\mathbf{n - 1}}=\mathbf{n} \mu \mathbf{P}_{\mathbf{n}}$
- Let $\rho=\lambda / \mathbf{m} \mu$

$$
\begin{aligned}
p_{n} & =p_{0} \frac{(m \rho)^{n}}{n!}, n \leq m \\
p_{n} & =p_{0} \frac{m^{m} \rho^{n}}{m!}, n>m
\end{aligned}
$$

## Derivation of $\mathrm{M} / \mathrm{M} / \mathrm{m}$ Model

$$
\sum_{n=0}^{\infty} p_{n}=1
$$

In order to compute $\mathrm{P}_{\mathrm{n}}, \mathbf{P}_{0}$ must be computed first.

## BK vs. MD

- $B K$ - $M / M / m$
- MD - m* M/M/1
- Let $\mathrm{m}=5$,
- $\lambda$ of BK is $3, \mu$ be 1
- $\lambda$ of each server in MD is $3 / 5=0.6$
- What is the expected delay?


## Extension to $\mathrm{M} / \mathrm{M} / \mathrm{m} / \mathrm{m}$ Queue

- There are m servers and m buffer size
- This is no buffering
- Calls are either served or rejected, calls rejected are lost
- Common model for telephone switching



## M/M/m/m Queue

Balanced Equations:

$$
\begin{aligned}
& \lambda P_{0}=\mu P_{1}, \lambda P_{1}=2 \mu P_{2}, \ldots, \lambda P_{n-1}=n \mu P_{n} \\
& P_{n}=P_{0}\left(\rho^{n}\right) / n! \\
& \Sigma_{n}^{m} P_{n}=\Sigma_{n}^{m} P_{0}\left(\rho^{n}\right) / n!=1 \\
& \mathbf{P}_{0}=\left(\Sigma_{n}^{m}\left(\rho^{n}\right) / n!\right)^{-1}
\end{aligned}
$$

When does loss happens?
Loss happens when a customer arrives and see $m$ customers in the system

## M/M/m/m Queue

- PASTA: Poisson Arrival see times averages
- $P_{m}$ is time average
- Use time averages to compute loss rate
- Loss for $\mathrm{M} / \mathrm{M} / \mathrm{m} / \mathrm{m}$ queue is computed as the probability that there are $m$ customers in the system:

$$
\left(\rho^{m} / m!\right)\left(\sum_{n=0}^{m}\left(\rho^{n} / n!\right)\right)-1
$$

- The above equation is known as Erlang B formula and widely used to evaluate blocking probability


## What is an Erlang?

- An Erlang is a unit of telecommunications traffic measurement and represents the continuous use of one voice path
- Average number of calls in progress
- Computing Erlang
- Call arrival rate: $\lambda$
- Call Holding time is: $1 / \mu$, call departure rate $=\mu$
- System load in Erlang is $\lambda / \mu$
- Example:
- $\lambda=1 \mathrm{calls} / \mathrm{sec}, 1 / \mu=100 \mathrm{sec}$, load $=1 / 0.01=100$ Erlangs
- $\lambda=10 \mathrm{call} \mathrm{s} / \mathrm{sec}, 1 / \mu=10 \mathrm{sec}$, load = 10/0.1 = 100 Erlangs
- Load is function of the ratio of arrival rate to departure rate, independent of the specific rates


## Erlang B Table

| Capacity (Erlangs) for grade of service of |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| \# of <br> Severs <br> $(\mathrm{N})$ | $\mathrm{P}=0.0$ <br> 2 | $\mathrm{P}=0.0$ <br> 1 | $\mathrm{P}=0.00$ <br> 5 | $\mathrm{P}=0.0$ <br> 01 |
| 1 | 0.02 | 0.01 | 0.005 | 0.001 |
| 5 | 1.66 | 1.36 | 1.13 | 0.76 |
| 10 | 5.08 | 4.46 | 3.96 | 3.09 |
| 20 | 13.19 | 12.03 | 11.1 | 9.41 |
| 40 | 31.0 | 29.0 | 27.3 | 24.5 |
| 100 | 87.97 | 84.1 | 80.9 | 75.2 |

- For a given grade of service, a larger capacity system is more efficient (statistical multiplexing)
- A larger system incurs a larger changes in blocking probability when the system load changes


## Example

- If there are 40 servers and target blocking rate is $2 \%$, what is largest load supported?
- $\mathrm{P}=0.02, \mathrm{~N}=40$
- Load supported $=31$ Erlang


## Example

- Calls arrived at a rate of 1calls/sec and the average holding time is 12 sec . How many trunk is needed to maintain call blocking of less than $1 \%$ ?
- Load $=1 * 12=12$ Erlang
- From Erlang B table, if $\mathrm{P}=0.01, \mathrm{~N}>=20$

