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Readings
 Readings

HK Choi and John O Limb “A Behavior Model for Web Traffic ” ICNP 1999 HK Choi and John O. Limb, A Behavior Model for Web Traffic,  ICNP 1999. 
 Vern Paxon and Sally Floyd, “Wide-Area Traffic: The Failure of Poisson 

Modeling,” IEEE Transaction on Network, pp. 226-244, June, 1995. 

Reference Reference
 S. Keshav, “An Engineering Approach to Computer Networking”, Chapter 14: 

Traffic Management
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Motivation for Traffic Models

 In order to predict the performance of a network 
t d t b bl t “d ib ” thsystem, we need to be able to “describe” the 

“behavior” of the input traffic
Oft i d t d th l it l if Often, in order to reduce the complexity, we classify 
the user behavior into classes, depending on the 
applicationspp

 Sometimes, we may be even able to “restrict” or 
shape the users’ behavior so that they conform to 

ifi tisome specifications
 Only when there is a traffic model is traffic 

engineering possibleengineering possible
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An example

 Executive participating in a worldwide p p g
videoconference
Proceedings are videotaped and stored in Proceedings are videotaped and stored in 
an archive
 Edited and placed on a Web site
 Accessed later by others y

 During conference
S d il t i t t Sends email to an assistant

 Breaks off to answer a voice call
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What this requires
 For video

 sustained bandwidth of a few hundred Kbps (depends on quality 
and screen size)

 low loss rate low loss rate

 For voice
 sustained bandwidth of at least 8 kbpsp
 low loss rate

 For interactive communication
 low delay (< 100 ms one-way)

 For playback
 low delay jitter
 or …..

F il d hi i For email and archiving
 reliable bulk transport
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Traffic management

 Set of policies and mechanisms that allow p
a network to efficiently satisfy a diverse 
range of service requestsrange of service requests

 Tension is between diversity and 
ffi iefficiency

 Traffic management is necessary forTraffic management is necessary for 
providing Quality of Service (QoS)
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Time Scale of Traffic Management 

 Less than one round-trip-time (cell-level)
 Perform by the end-points and switching 

nodes
 Scheduling and buffer management
 Regulation and policingg p g
 Policy routing (datagram networks)

 One or more round-trip-times (burst-level) One or more round-trip-times (burst-level)
 Perform by the end-points

F db k fl t l Feedback flow control
 Retransmission
 Renegotiation
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Time Scale (cont.)
 Session (call-level)

E d i t i t t ith t k l t End-points interact with network elements
 Signaling
 Admission control Admission control
 Service pricing
 Routing (connection-oriented networks)g ( )

 Day
 Human intervention
 Peak load pricing

 Weeks or months
H i t ti Human intervention

 Capacity planning
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The two camps
 Can increase welfare either by

1 matching services to user requirements1. matching services to user requirements
2. increasing capacity blindly

 Which is cheaper? Utilization vs. complexity Which is cheaper? Utilization vs. complexity
 depends on technology advancement
 User behavior/expectation/tolerance  
 small and smart or big and dumb

 Smarter ought to be better?
 otherwise, to get low delays for some traffic, we need to give 

all traffic low delay, even if it doesn’t need it
 But, if bandwidth is cheap and control is complex, may be But, if bandwidth is cheap and control is complex, may be 

cheaper to increase capacity
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Telephone traffic models (Call)

 How are calls placed?
ll i l d l call arrival model

 studies show that time between calls is drawn from 
an exponential distribution a e po e a d s bu o

 call arrival process is therefore Poisson
 memoryless: the fact that a certain amount of time 

has passed since the last call gives no information ofhas passed since the last call gives no information of 
time to next call

 How long are calls held?How long are calls held?
 usually modeled as exponential
 however, measurement studies (in the mid-90s) show 

th t it i h t il dthat it is heavy tailed 
 A small number of calls last a very long time
 Why?y
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Packet Traffic Model for Voice

 A single voice source is well represented by a 
two state process: an alternating sequence of 
active or talk spurt, follow by silence period
 Talk spurts typically average 0.4 – 1.2s
 Silence periods average 0.6 – 1.8s
 Talk spurt intervals are well approximated by 

exponential distribution, but not true for silence 
period

 Silence periods allow voice packets to be multiplexed 

Ref: Chapter 3 of “Broadband Integrated Networks”, by Mischa Schwartz, 1996.
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Internet traffic modeling

 A few apps account for most of the traffic
 WWW, FTP, E-mail
 P2P

 A common approach is to model apps 
 time between app invocations time between app invocations
 connection duration
 # bytes transferred # bytes transferred
 packet inter-arrival distribution
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Hyoung-Kee Choi and John LimbHyoung Kee Choi and John Limb, 
"A Behavioral Model of Web Traffic," 

ICNP 1999ICNP 1999.
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Web Download Model
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Measurement

 1 hour trace (done in 1998)( )
 > 1900 clients

~ 24 000 Web requests ~ 24,000 Web-requests
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Q-Q Plot
 a Q-Q plot is a graphical method for comparing two probability 

distributions by plotting their quantiles against each otherdistributions by plotting their quantiles against each other. 
 If the two distributions being compared are similar, the points in the Q-Q 

plot will approximately lie on the line y = x. 
Refence http //en ikipedia o g/ iki/Q Q plot Refence: http://en.wikipedia.org/wiki/Q-Q_plot
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Results
 Distribution models: Weibull, Lognormal, Gamma, Chi-square, 

Pareto and Exponential (Geometric) distributionsPareto and Exponential (Geometric) distributions.
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Traditional Assumptions

 Packet and connection arrivals are often 
assumed to be Poisson
A number of studies have shown that the A number of studies have shown that the 
inter-arrivals are clearly not exponential

 Use of Poisson models under-estimate the 
“burstiness” of trafficburstiness  of traffic 
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Why is the result important?

 Congestion Modeling
 Congestion can be longer than expected, with 

losses concentrated over a small period
 Slight increase in traffic can result in large 

increase in loss rate
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M/G/1 Queue
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Check for Poisson Traffic

 For a exponential distribution with mean p
,
 E(2) = 2/2 E( ) = 2/

 Mean Waiting Time (W)
=  (2/2) / 2(1-)
= (/) / (1-)(/) / ( )
= / (-)
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“Uniform” Traffic

 Link speed is 32,000 bps
  = 3 packet per second (Poisson arrivals)
 Average packet size is 400 bytes,  = 10 pkts/s
 Uniform scenario:

 Size of packet is constant, 400 bytes or 3,200 bits
  = 0.3, E(X) = 0.1s
 E(X2) = 0.01 
 W = (3 * 0.01) / 2(1 – 0.3) 

= 0.02143s or 21.43ms
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“Bursty” Traffic (1)
1480 1480

40 40 40 40 40 4040 40 40 40 40 40

•  = 0.3, E(X) = 0.1s
• P(size=40bytes) = 0.75, P(size=1480bytes) = 0.25 
• E(X2) = 0.75*(40*8/32000)2 + 0.25*(1480*8/32000)2

= 0 000075 + 0 034225 = 0 0343= 0.000075 + 0.034225 = 0.0343
• W = 3 ( 0.0343) / 2(1 - 0.3) = 0.0735s or 73.5ms
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Bursty Traffic (2)

•  = 0.3, E(X) = 0.1s , ( )
• P(size=10bytes) = 0.9, P(size=3910bytes) 

= 0 1= 0.1
• E(X2) = 0.9(10*8/32000)2 + 

0.1(3910*8/32000)2
~ 0 09556~ 0.09556

 W = 3 (0.09556) / 2(1 – 0.3) 
= 0.2048s or 204.8ms
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M “b t ” t ffi•More “bursty” traffic 
l d l i ileads to longer waiting 
time (or more loss)

•What is bursty traffic? y
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Heavy Tail

 heavy-tailed distributions are y
probability distributions whose tails are 
not exponentially boundednot exponentially bounded

Intuitively, there is a small, but non negligible, 
chance that x can be very largechance that x can be very large
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Example

Exponential: Exponential: 
 P(X>x) = e-x

 Weibull distribution (0<k<1): 
 P(X>x) = P(X>x) = 
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Long Tail

 If the long-tailed quantity exceeds some high level, the 
probability approaches 1 that it will exceed any other 
higher levelhigher level.

 All long-tailed distributions are heavy-tailed, but the 
converse is false and it is possible to construct heavy-converse is false, and it is possible to construct heavy-
tailed distributions that are not long-tailed.
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Example

 Weibull distribution (0<k<1): ( )
 P(X>x) = 
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Pareto Distribution

 Pareto originally used this distribution to describe the 
ll i f l h i di id lallocation of wealth among individuals 
 A larger portion of the wealth of any society is owned by a 

smaller percentage of the peoplesmaller percentage of the people
 Sometimes expressed more simply as the 80-20 rule

 Other examples:p
 The sizes of human settlements (few cities, many 

hamlets/villages) 
Fil i di t ib ti f I t t t ffi hi h th TCP File size distribution of Internet traffic which uses the TCP 
protocol (many smaller files, few larger ones)

 Zipf’s Law or zeta distribution: discrete counterpart of Zipf s Law or zeta distribution: discrete counterpart of 
Pareto
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Pareto Distribution 
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Example

 Pareto: P(X>x) = x-1.5 (a=1,=1.5)( ) ( , )
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Exponential/Pareto Distribution

 Exponential Distribution: P(X>x) = e-x/3 

 Pareto Distribution: P(X>x) = x-1.5 (a=1,=1.5)
 Means of both distributions are 3
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Conditional Mean Exceedance (CME)

 Uniform distribution
CME is a decreasing function of x CME is a decreasing function of x

 The longer you wait, the sooner you will be done

 Exponential distribution Exponential distribution
 CME is independent of x (memoryless)
 Additional waiting time is independent of time already spent g p y p

waiting

 Long Tail
 CME is increasing with x
 The longer you have waited, the more likely to wait for a longer 

period of time
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• W. Leland, M. Taqqu, W. Willinger, and D. 
Wilson, “On the Self‐Similar Nature of 
Ethernet Traffic (Extended Version),” 
IEEE/ACM Transactions on Networking 2(1)IEEE/ACM Transactions on Networking, 2(1), 
pp. 1‐15, February 1994.
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Vern Paxson and Sally Floyd, 
"Wide‐Area Traffic: The Failure of PoissonWide Area Traffic: The Failure of Poisson 

Modeling," 
T i f N ki J 1995Transaction of Networking, June 1995.
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TCP Trace 
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Telephone traffic is fairly well modelled during one-Telephone traffic is fairly well modelled during one
hour intervals using homogeneous Poisson arrival 
processes
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TELNET connection arrivals and FTP session arrivals are 
very well modelled as Poisson, both for 1-hour and 10-
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Packet Trace 
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Variance Time-Plot

 Variance-time plots are obtained by p y
plotting log(var(X(m) )) against log(m) 
("time") and by fitting a simple least( time ) and by fitting a simple least 
squares line through the resulting points 
in the planein the plane

 For most processes, the result is a straight p g
line with slope equals to -1

 For self similar process the line is much For self similar process, the line is much 
much flatter, between -1 and 0
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Summary of Observations 

 For interactive TELNET traffic
 connection arrivals are well-modeled as Poisson
 However, packet arrivals are not Poisson

 Similarly, for FTP traffic
 Session arrivals are Poisson Session arrivals are Poisson
 Data connections within a FTP session is not Poisson
 Distribution of file size transfer for a data connection Distribution of file size transfer for a data connection 

is heavy tail

 For SMTP/NNTP traffic connection arrivals are For SMTP/NNTP traffic, connection arrivals are 
not Poisson
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T Karagiannis, et. al, “A 
N i P iNonstationary Poisson 
View of Internet Traffic ”View of Internet Traffic,  

INFOCOM 2004INFOCOM 2004
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Poisson (still useful … )

 Since the original data set was collected (1989, 1994), 
b h li k d d h b f I dboth link speeds and the number of Internet-connected 
hosts have increased by more than three orders of 
magnitudemagnitude
 In the 1994 packet trace, there are 26M packets in 12 

hourshours
 Study the Poisson assumption’s validity on several OC48 

(2.5 Gbps) backbone traces taken from CAIDA ( p )
(Cooperative Association for Internet Data Analysis)

 Traces: from Aug 2002 – Apr 2003, 
 In about 50 minutes, there are 434M packets
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Cont’d

 Result can be interpreted at different time scales
1. Packet arrivals appear Poisson at sub-second time 

scales.
2. Internet traffic appears non-stationary at multi-

second time scales.
I t t t ffi hibit l d d (LRD)3. Internet traffic exhibits long-range dependence (LRD) 
at scales of seconds and above.

As the Internet increases in size and the technologies As the Internet increases in size and the technologies 
connected to it change, the appropriate traffic models 
need to be reevaluated.need to be reevaluated.
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Traffic Shaping

 Traffic may be “shaped” or “smoothed” to 
reduce any adverse impact on the network
 Usually, buffer the packets at the “access” routers 

and then send out packets at a smoothed, more 
regular rate  

 The so called “leaky bucket” is a popular 
mechanism
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Policing Mechanisms
Three common-used criteria: 
 (Long term) Average Rate: how many 

packets/bits can be sent per unit time (in the 
long run)
 crucial question: what is the interval length: 100 

packets per sec or 6000 packets per min  have same 
average!

 Peak Rate: e.g., 6000 pkts per min. (ppm) avg.; 
15000 ppm peak rate

 (Max.) Burst Size: max. number of pkts/bits sent 
consecutively (with no intervening idle)
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Example 
 Policy

A t 1000 424Kb Average rate = 1000pps or 424Kbps
 Peak rate = 2Kpps or 848Kbps
 Burst Size = 1000 packets or 424Kb Burst Size = 1000 packets or 424Kb

 Policy 2 
 Average rate = 1000pps or 424KbpsAverage rate  1000pps or 424Kbps
 Peak rate = 4Kpps or 1696Kbps
 Burst Size = 1000 packets or 424Kb

 Policy 3
 Average rate = 1000pps or 424Kbps

P k t 2K 848Kb Peak rate = 2Kpps or 848Kbps
 Burst Size = 2000 packets or 828Kb
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Example (Worst Case)
Policy 1

Policy 2 Higher Peak Rateg e ea ate

Policy 3 Higher Burst SizePolicy 3
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Policing Mechanisms
Token Bucket: limit input to specified Burst Size and 

Average RateAverage Rate. 

b k t h ld t k bucket can hold  tokens
 tokens generated at rate  token/sec unless bucket full

i l f l h b f k d i d over interval of length t: number of packets admitted 
less than or equal to  ( t + ).
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Policing Mechanism

 How useful is such a policing mechanism?p g
 What are the pros and cons?
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