
Dynamic Framework for Building Highly-Localized
Mobile Web DTN Applications

Kartik Sankaran†, Akkihebbal L. Ananda†, Mun Choon Chan†, and Li-Shiuan Peh‡

†School of Computing, National University of Singapore
‡Dept. of EECS, Massachusetts Institute of Technology

†{kartiks,ananda,chanmc}@comp.nus.edu.sg, ‡peh@csail.mit.edu

ABSTRACT
Proximity-based mobile applications are increasing in popu-
larity. Such apps engage users while in proximity of places of
interest (malls, bus stops, restaurants, theatres), but remain
closed or unused after the user goes away. Since the number
of ‘places of interest’ is constantly growing and can be large,
it is impractical to install a large number of corresponding
native applications on the phone when each app engages the
user for only a small period of time.

In this paper, we propose a dynamic framework for de-
ploying highly-localized mobile web applications. Such web
applications are deployed locally to users in proximity, and
can be opened in the browser. Communication in the web
app is performed over the Delay-Tolerant Network of mobile
users, removing the need of an Internet connection. DTN
protocols can be dynamically added or removed at run-time,
allowing each application to use a protocol best suited to its
needs. After usage, the web application is closed either man-
ually by the user, or automatically when the user goes away
from the place of interest.

We have implemented the framework on Android. Our
analysis of the framework show that the memory and per-
formance overhead incurred is small. Using this framework,
we have written a simple DTN web application for bus stops
to help the physically challenged.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Store and forward networks

Keywords
Delay-Tolerant Networks; Smartphone; Web applications;
Dynamic framework

1. INTRODUCTION
Proximity-based mobile applications have recently gained

increasing popularity. In these applications, users interact

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHANTS’14, September 7, 2014, Maui, Hawaii, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3071-8/14/09 ...$15.00.
http://dx.doi.org/10.1145/2645672.2645675.

with other users around them. Table 1 lists some of the
popular proximity applications, along with the number of
users who downloaded the application, and their average
rating out of five. Many of these have more than 10 million
downloads, and have high user ratings.

The rise of proximity applications has sparked an interest
in scalable and energy-efficient device-to-device technologies
such as LTE-direct and Bluetooth LE beacons. These tech-
nologies are expanding proximity applications to include not
just interaction with people, but with physical places as well,
such as stores, theatres, and restaurants. For example, users
can check for daily specials in nearby restaurants, and movie
combo offers in nearby theatres.

Each place of interest is typically associated with its own
dedicated application on the phone. Users need to install
these apps in order to use them. However, as the number
of places of interest grows, installing large number of apps
quickly becomes wasteful and annoying to the user. To solve
this problem, what is needed is lightweight and convenient
installation of proximity applications when the user is near
the place of interest, in addition to good device-to-device
communication. When users go away, the apps should no
longer be active nor installed on the phone. This allows
users to have highly-localized interactions, with apps engag-
ing users only when necessary, perhaps even only for a brief
period of a few minutes.

One possible solution is to deploy native mobile apps ‘on-
the-fly’ to users who are in proximity to places of interest
over device-to-device communication link. This eliminates
the need to install apps beforehand and need for Internet
connection to the server. Delay-Tolerant Networks (DTN)
[1] are best suited to deploy apps since they exploit device-
to-device technologies, working in the face of high user mo-
bility. Unlike client-server solutions, DTN does not require
an Internet connection to a central server, nor does it need
access to a user’s location, being inherently locality-specific.

Installation of native apps ‘on-the-fly’ is however still not
lightweight. More importantly, users are wary of giving per-
mission to unknown apps to access their phone’s storage and
private details. Use of web applications, as opposed to native
applications, solves this problem as web applications run in
the browser’s security sandbox. Installation is lightweight
since it only involves opening a web page. The browser in-
forms the user when a web app attempts to access private
details like location, which can be denied. Users are willing
to allow such interactions since it is more akin to browsing
a website.

Table 1: Examples of Social-Proximity Applications on Android

Application Description Downloads Rating out of 5

Foursquare1 Find interesting places nearby, check-in for discounts 10,000,000+ 4.2

Badoo2 Chatting, dating, making friends with people nearby 10,000,000+ 4.5

Groupon3 Finding local deals and discounts 10,000,000+ 4.6

Skout4 Discovering and meeting new people around 10,000,000+ 4.1

Circles5 Finding people nearby with mutual interests 1,000,000+ 4.5

Sonar6 Connect with friends and like-minded people nearby 1,000,000+ 4.1

GrabTaxi7 Finding and booking nearby cabs 100,000+ 4.1

While web apps do not have the full freedom of native
applications, they are still quite powerful, having access to
location, camera, and even the phone’s sensors. However,
they are currently limited to communication over sockets.
To enable their full potential, web apps need access to com-
munication over the DTN, thus making use of upcoming
device-to-device technologies.

In this workshop paper, we propose and implement a
dynamic framework for developing and deploying highly-
localized mobile DTN web applications. This framework
deploys web apps to users near the places of interest. The
phone notifies the user of received web apps, and if found
interesting, can be opened in the mobile browser. After use,
the web app can be closed either manually, or automatically
when the user leaves the place of interest. We have imple-
mented the framework on Android, and ported it to desktop.
It supports both web and native DTN applications.

Our analysis of the framework shows that the memory
and performance overhead incurred is small. As a demon-
stration, we have written a simple DTN web application for
bus stops to help the physically challenged. The app informs
users when buses are arriving at the pick-up point, and is
customized to physically challenged users to help them in-
form bus drivers that they would like to board.

By supporting both Android and web applications, the
framework exposes DTN to the large community of devel-
opers, making it more likely for DTN applications to be
developed for general use. Since protocols are plugged in
dynamically, it is easy to modify to adapt to current ad-
vances in DTN protocols and device-to-device communica-
tion without re-compilation of the framework.

The rest of the paper is organized as follows: Section 2
discusses related work and provides a motivation for our
framework. Section 3 describes the design of the framework,
while Section 4 describes our sample application. Section 5
evaluates the framework. Section 6 discusses future work,
while Section 7 concludes the paper.

1https://play.google.com/store/apps/details?id=
com.joelapenna.foursquared
2https://play.google.com/store/apps/details?id=
com.badoo.mobile
3https://play.google.com/store/apps/details?id=
com.groupon
4https://play.google.com/store/apps/details?id=
com.skout.android
5https://play.google.com/store/apps/details?id=
com.discovercircle10
6https://play.google.com/store/apps/details?id=me.
sonar.android
7https://play.google.com/store/apps/details?id=
com.grabtaxi.passenger

2. RELATED WORK AND MOTIVATION
In this section, we discuss related work under different

categories. By describing their limitations, we also provide
motivation for development of a dynamic framework.
HTTP-over-DTN browsing: Efforts have been made
to use DTN for web browsing [9, 10, 11, 12]. These papers
concentrate on techniques for serving browsing requests over
DTN, such as bundling of HTTP requests, pre-fetching, and
caching. The underlying DTN is hidden from webpages.

Our framework focuses on deploying DTN web apps, as
opposed to web pages. Web apps are similar to mobile apps:
they are self-contained, i.e. they contain all the scripts and
web pages required for the app to work. Also, DTN web
apps are fully aware of the underlying DTN, using the DTN
API exposed by our framework.
Web-based DTN Apps: Web apps such as Facebook
and blogging have been written to use DTN [13, 14]. While
these apps are ‘DTN-aware’, the work concentrates on how
the apps work using DTN, and does not support localized
deployment of web apps and protocols on-the-fly.
PhoneGap: PhoneGap is a framework for creating cross-
platform mobile apps using web technologies. Each app runs
in the PhoneGap container, which is essentially a ‘super-
browser’: apps can access phone details (such as user con-
tacts) via PhoneGap, normally not accessible to regular web
apps. PhoneGap apps, while written in Javascript, are in-
stalled like native apps. The advantage is that several code
versions are not required for different mobile platforms.

However, since the app must be installed like a native ap-
plication, installation of PhoneGap apps do not meet the
lightweight and convenience requirements of localized prox-
imity applications. In addition, they lack access to DTN
APIs.
QR Codes: QR codes are useful to direct mobile users
to web pages online by scanning codes using their camera.
While these codes are convenient to post near places of in-
terest, they require users to look for and manually scan the
codes. Discovering web apps is not ‘automatic’ like in our
framework.
DTN middleware for mobile: Several middleware have
been written on mobile for development of DTN applica-
tions. Table 2 provides a list of existing middleware, along
with the type of API exposed, and a brief description of
each. To the best of our knowledge, these middleware do
not expose their API to web applications (with an excep-
tion of Bytewalla, discussed below), limiting their use to
native mobile applications only.

In addition, unlike our framework, these middleware are
static, i.e. the underlying protocols are fixed at compile-
time and shared by multiple applications. It is not possible

Table 2: Existing DTN Frameworks

Framework API exposed to developers Brief Description
Haggle [2] Publish-Subscribe API (attribute-based) Uses a search-based data-centric protocol
Mist [3] Publish-Subscribe API (topic-based) Uses a reliable broadcast with fragmentation

MaDMAN [4] Sockets API Switches between TCP/IP and DTN protocol stack
ubiSOAP [5] Service-Oriented API Floods WSDL files and SOAP messages
MobiClique [6] Social-Networking API Built on top of Haggle
DoDWAN [7] Publish-Subscribe API (attribute-based) Floods WSDL files and SOAP messages (with attributes)
Bytewalla [8] Bundle Protocol API First implementation of the Bundle Protocol on Android

to load and unload protocols on-the-fly, a feature required
by ‘use-and-discard’ proximity web applications.
Service-Adaptation Middleware: The work in [15] pro-
poses a middleware that acts as a bridge between DTN apps
written in different languages and DTN bundle service dae-
mons running on different platforms. Bytewalla is the dae-
mon running on Android, while PCs run the DTN2 service
daemon. This middleware enables web applications to ac-
cess DTN. However, like the web-based apps discussed ear-
lier, it does not support localized deployment of web apps
and protocols on-the-fly.
Dynamix: Dynamic frameworks are quite popular in the
context-aware computing domain. In particular, a frame-
work called Dynamix [16] provides context-awareness to web
applications, by means of context components loaded at run-
time. Architecturally, this framework is closest to our frame-
work.

Although architecturally similar, Dynamix focuses on con-
text awareness: its APIs are oriented around receiving ‘con-
text events’. In contrast, our framework’s (DTN) APIs are
communication-oriented. Dynamix’s context-aware compo-
nents are self-contained, while our protocol components are
linked in the form of protocol stacks for each application.

To summarize this section, existing work have limitations
with respect to the requirements of lightweight and conve-
nient localized DTN web applications. Our framework has
been designed to address these limitations and make such
dynamic DTN applications possible.

3. DESIGN AND IMPLEMENTATION
In this section, we give a high-level overview of the de-

sign and implementation of our framework. As shown in
Figure 1, it consists of three parts: the framework itself, the
deployment application, and the Android/Web applications.

The framework consists of APIs, and protocol components
implementing these APIs, all loaded at run-time. To support
dynamic loading of code, it uses Apache Felix. It runs as a
background (bound) service in Android.

We have written a simple Forwarding Layer API for ap-
plications to access routing protocols. This API supports
multi-hop message transfers over the DTN. We also have
a Link Layer API for one-hop communication, which sup-
ports neighbour discovery and connection-oriented commu-
nication, implemented by link layer components (Bluetooth,
WiFi-direct), and used by forwarding layer components. Dy-
namically loaded APIs are advantageous since OSGi allows
multiple incompatible versions of the API to co-exist with-
out breaking applications.

Although Figure 1 shows only two protocols and a single
protocol stack, the framework supports multiple protocol
stacks, with protocols dependencies arranged in a directed

Deployment/Collection Tool

Forwarding Layer API Proxy

Forwarding Layer API Stub

Link Layer API Proxy

Link Layer API Stub

Link Layer Protocol Implementation

(Eg: Bluetooth)

Core DTN

Framework

Forwarding Protocol Implementation

(Eg: Epidemic Routing)

Android Apps

Javascript Forwarding Layer

API

Web Apps (browser)

Local Web Server

Transportation Context

Detection (using sensors)

Figure 1: Design of the framework

acyclic graph. Every application can potentially load and
use its own protocols, or even share protocol stacks. Pro-
tocol components are given a user-readable name in their
config files. Applications can request for protocols with the
specified name. Changing protocols involves loading a dif-
ferent protocol and giving it the same config name.

API components are broken into proxy and stub parts,
in accordance with Android’s inter-process communication
(AIDL). The proxy and stub parts contain logic that shields
upper layers from change in underlying protocols at run-time
by saving state information, and hides underlying AIDL.

The deployment app is a ‘special’ DTN application that is
used to deploy web apps, protocols components (jar files),
and even native applications (it also supports collection of
logs over DTN for debugging purposes). The user is notified
of received web apps, which are opened in the browser, while
protocol stacks are loaded into the framework.

3.1 Web app support
Web apps are provided with two Javascript libraries Dtn-

Message.js and FwdLayerAPI.js. The first contains conve-
nience methods for creating DTN messages, while the second
exposes the Forwarding layer API.

The framework runs a local embedded web server which
receives DTN API calls from web apps via AJAX, and trans-
lates them into corresponding Java calls. To overcome the
same-origin policy restriction, the server supports Cross-
origin resource sharing8. To enable web apps to receive DTN
messages, the Javascript code uses AJAX long polling.

We have implemented a low-power transportation context
detection service to detect when the user is IDLE, WALK-
ING, or in VEHICLE. In the future, we will be integrating
this into the framework for automatic closing of web apps.
For now, the web app is closed in the browser manually, and
is not difficult for the user.

The framework runs both on Android and PCs. A subset
of the Android libraries were implemented on PC so that
it can compile and run largely without modification. The
framework currently has full support for native Android ap-
plications, while web app support is in the prototype stage.

4. SAMPLE DTN WEB APPLICATION
To demonstrate the usefulness of localized web apps, and

illustrate how these apps work from the user’s perspective,
we wrote a simple app for bus stops and terminals to help
the physically disabled as well as regular commuters board
buses. This app is a web version of a DTN Android applica-
tion written by students of the National University of Sin-
gapore (the framework has been used for two semesters by
student groups in the Wireless and Sensor Networks course
to build DTN apps for project work).

In bus terminals, commuters would like to know when the
bus driver has been instructed to go to the pick-up point.
Rather than install the LTA (Land Transport Authority) ap-
plication from the play store beforehand, they can use the
web app for a more localized and brief interaction. Physi-
cally disabled, such as wheelchair commuters, require assis-
tance to board buses at bus stops and terminals. They need
to inform drivers in advance so that they can board first, us-
ing a customized version of the app to do this. Our web app
uses DTN to enable bus drivers to announce their allotted
pick up time, regular commuters to receive this information,
and wheelchair commuters to request drivers to assist them
while boarding.

Since the framework has been ported to desktop, and sup-
ports multiple applications and users on a single device, the
web app was developed locally before deploying it to mo-
bile devices. This is especially important since it is easier to
debug code using tools available in desktop browsers.

A device (laptop/mobile) located at the bus stop (alterna-
tively can be placed on buses) deploys the web app wirelessly
over the DTN to commuters nearby. Users carrying mobile
devices running the framework receive the deployed app on-
the-fly. In our prototype, received web apps are displayed
in the notification bar. If interested, users can open the app
in their browser. The user can choose a customized inter-
face: for example, wheelchair people can choose the web app
specialized to help them.

The app for regular users only displays arrival information
sent by drivers (Bus driver’s interface is shown in Figure 2a).
Wheelchair people have the additional capability to inform
drivers in advance that they would like to board, as shown
in Figure 2b. Customized DTN protocols can be optionally

8http://en.wikipedia.org/wiki/Cross-origin_
resource_sharing

bundled with the web app, and plugged into the framework
at run-time. After usage (i.e. the commuter has boarded),
the app can be simply closed in the browser. The framework
automatically releases resources used by the app.

(a) For bus drivers (b) For Wheelchair people

Figure 2: Bus Stop Web App

Our sample application demonstrates the advantages of lo-
calized web apps: localized interactions, lightweight installa-
tion, and secure execution in the browser. Most importantly,
these apps exploit device-to-device communication. In the
future, our app will be extended to use swipe gestures and
audio for the blind.

Description of our students’ apps, documentation, APIs,
and tutorials are available at the framework’s website9.

5. EVALUATION
In this section, we first compare the use of centralized

server versus device-to-device communication with respect
to power usage and latency experienced. We then evaluate
the performance and memory overhead of our framework.

5.1 Server versus Device-to-device
Existing proximity applications have to use a central server

to calculate whether a user is close to a place of interest.
The phone uploads its location to the server, which informs
it when it is nearby interesting places. Uploading over the
cellular network is costly in terms of power. Use of device-to-
device technologies can reduce power consumed, but requires
periodic ‘device discovery’. In this section, using power mea-
surements on the Monsoon power meter, we quantify and
compare the power usage of server-based versus device-to-
device technologies, and show that there is indeed a power
saving in spite of the device discovery process.

The power consumption depends on the frequency of lo-
cation updates (for server-based solution) and on frequency
of device discovery (for device-to-device technologies). The
lower the frequency, the lower the power consumed, but at
the expense of latency. We assume the device at the ‘place
of interest’ (eg: bus stop) is powered externally, and only
focus on the user’s phone’s power usage here.

We consider the case where location updates to the server
occur over the LTE network, while the device-to-device tech-
nology used is WiFi-direct. Using the Monsoon power me-
ter, we measured the power profile for sending a small (ping)
packet to a server on a Galaxy S3 phone, as well as the power
profile for device scanning. Table 3 lists the power values

9http://www.comp.nus.edu.sg/~kartiks/nusdtn/

Table 3: Monsoon power meter measurements

Operation Power (mW)
CPU (asleep) 25
CPU (awake) 85
LTE (active) 2000
LTE (tail) 490

WiFi (scan) 300

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 3 5 7 9 11 13 15 17 19 21 23 25 27 29

P
o
w

e
r

U
sa

g
e
 (

m
W

)

Time interval (sec)

Device-to-device
LTE

Figure 3: Power of server (LTE) v/s device-to-device (WiFi)

measured. Unlike WiFi-direct, LTE suffers from a long tail
(more than 12 seconds) after the packet has been sent.

Based on these measurements, we calculated the power
consumption at different frequency of location updates and
scans, shown in Figure 3. For the same latency, server-based
approaches would consume higher power. For example, at
a (reasonable) 20 second worst-case latency, the power sav-
ing of using device-to-device technologies is 86%. Thus, use
of device-to-device communication can benefit future prox-
imity applications by being more power-efficient. Although
the power to transfer web apps is not included in Figure 3,
we expect that the higher bandwidth between devices would
make such transfers faster and lower power than LTE as well.

5.2 Deployment Latency
The latency between a device arriving at a place of in-

terest and receiving the deployed web app is important to
users. As explained earlier, this is a function of the discovery
interval used (set to 10 seconds in our deployment tool). We
measured the deployment latency and found it to be 6.4 sec-
onds on average, which is reasonable. This can be modified
to tradeoff savings in power (Figure 3).

5.3 Performance Overhead
In DTN, devices exchange information when they come

into range of one another. It is critical that data is trans-
ferred as quickly as possible during the limited contact du-
ration time. Here we measure the performance overhead
introduced by the framework during the data transfer.

Two aspects of the framework cause overhead during com-
munication: the Inter-process communication (IPC) where
data is copied from the DTN application to the framework,
and the API Proxy/Stub (see Figure 1). We expect the
Proxy/Stub overhead to be independent of data size, since
it does not involve any data copying. We expect IPC over-
head to vary linearly with data size. Note that IPC occurs
only when data is initially passed from the DTN app to the

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 100 1000 10000

T
im

e
 (

m
ill

is
e
cs

)

File size (kB)

Total Transfer time
Overhead time

Figure 4: Overhead during file transfer

Table 5: Memory Overhead

Part of the Framework Memory
API Proxy (application-side) 1.1 MB

Framework Service (nothing plugged in) 8.9 MB
Framework Service 9.1 MB

(2 APIs + 2 Protocols, no messages)

routing protocol. After the initial copy, it is buffered in the
framework for forwarding to other devices opportunistically.

To reduce IPC overhead for large data (audio, pictures),
the framework allows data to be transferred from the app via
files in the phone’s storage. This removes the need for data
copy, and is more convenient for the app. Only (optional)
‘metadata’ needs to be copied via IPC. For example, a mall
application advertising a special sale would transfer product
photos via files, while smaller textual data like name and
price would be transferred via IPC.

Figure 4 shows the overhead involved for file transfer be-
tween two phones running the framework, using TCP over
a 802.11b interface. Each data point is an average of 30 tri-
als. The overhead is small compared to the transfer time,
especially for moderate to large file sizes. Table 4 shows a
breakdown of the overhead. As expected, Proxy/Stub over-
head is independent of data size. IPC overhead is due to the
large metadata size (32 kB) used in the experiment, but is
independent of the file size. Overhead is 6% and lower for
moderate to large file sizes. If IPC is not involved (i.e. data
is already buffered), then the overhead is even lower.

5.4 Memory Overhead
Here we measure the extra memory used by the frame-

work. In our implementation, the API Proxy class occupies
memory in the application memory space. The framework
itself runs as a service, and occupies memory separately from
the application. Table 5 shows the memory overhead, eval-
uated using the Eclipse Memory Analyser.

Android imposes a limit on heap, which varies with OS
version. Assuming a 32 MB limit, this leaves 23 MB for
buffering. If each message is 1 MB, we can buffer 20 mes-
sages, which is too few. However, bulk of data is in the form
of pictures/audio stored as files on the sdcard, and not in
heap. The heap contains only the message’s metadata. If
metadata is 32 kB, the phone can buffer about 700 messages.
As newer phones have larger RAM, we do not expect the 9
MB overhead to be significant.

Table 4: Breakdown of Framework Overhead during File Transfer (time is in millisecs)

File size Metadata size Proxy IPC Stub Transfer time Overhead% Overhead% (no IPC)
256 kB 32 kB 5.66 81.03 8.40 581.12 16.36 2.42
512 kB 32 kB 8.93 25.03 8.20 752.50 5.60 2.28
1 MB 32 kB 6.53 76.09 6.75 1464.98 6.10 0.91
2 MB 32 kB 7.32 25.04 36.18 2137.29 3.21 2.04
4 MB 32 kB 13.47 25.67 8.66 4309.97 1.11 0.51

6. DISCUSSION AND FUTURE WORK
Use of WebSockets: We will be re-writing our code
to use WebSockets, now increasingly supported in mobile
browsers, suitable for push-based notifications of messages
received, to replace AJAX long polling.
Security: While web apps run in the browser sandbox,
protocols loaded in the framework have dangerous access to
Android libraries. In the future, we will use OSGi’s fine-
grained access control to restrict a protocol’s access.

7. CONCLUSION
In this paper, we proposed a dynamic framework for de-

ployment of localized DTN web apps. The apps free users of
the burden of installing multiple native apps on the phone.
They are easy to open/close in a browser, and operate only
during proximity interactions. To demonstrate their useful-
ness, we wrote an app for bus stops to help the physically
disabled. Our analysis shows that the framework has low
overhead. In the future, we will enhance the web app sup-
port, and analyse the performance in a real setting.

8. ACKNOWLEDGMENTS
This research was supported in part by the National Re-

search Foundation Singapore through the Singapore-MIT
Alliance for Research and Technology (SMART) program.

9. REFERENCES
[1] Kevin Fall. A delay-tolerant network architecture for

challenged internets. In Proceedings of the 2003
conference on Applications, technologies, architectures,
and protocols for computer communications,
SIGCOMM ’03, pages 27–34, New York, NY, USA,
2003. ACM.

[2] Erik Nordström, Per Gunningberg, and Christian
Rohner. Haggle: a data-centric network architecture
for mobile devices. In Proceedings of the 2009
MobiHoc S3 workshop on MobiHoc S3, MobiHoc S3
’09, pages 37–40, New York, NY, USA, 2009. ACM.

[3] M. Skjegstad, F.T. Johnsen, T.H. Bloebaum, and
T. Maseng. Mist: A reliable and delay-tolerant
publish/subscribe solution for dynamic networks. In
New Technologies, Mobility and Security (NTMS),
2012 5th International Conference on, pages 1–8, 2012.

[4] A. Petz and C. Julien. The madman middleware for
delay-tolerant networks. In Poster at HotMobile 2010
(Proceedings of the 11th workshop on Mobile
computing systems and applications), 2010.

[5] Mauro Caporuscio, Pierre-Guillaume Raverdy, Hassine
Moungla, and Valerie Issarny. ubisoap: A service
oriented middleware for seamless networking. In
Proceedings of the 6th International Conference on
Service-Oriented Computing, ICSOC ’08, pages
195–209, Berlin, Heidelberg, 2008. Springer-Verlag.

[6] Anna-Kaisa Pietiläinen, Earl Oliver, Jason LeBrun,
George Varghese, and Christophe Diot. Mobiclique:
middleware for mobile social networking. In
Proceedings of the 2nd ACM workshop on Online
social networks, WOSN ’09, pages 49–54, New York,
NY, USA, 2009. ACM.

[7] Frédéric Guidec and Yves Mahéo. Opportunistic
content-based dissemination in disconnected mobile ad
hoc networks. In International Conference on Mobile
Ubiquitous Computing, Systems, Services and
Technologies, UBICOMM 2007, pages 49–54, 2007.

[8] H. Ntareme and S. Domancich. Security and
performance aspects of bytewalla: A delay tolerant
network on smartphones. In Wireless and Mobile
Computing, Networking and Communications
(WiMob), 2011 IEEE 7th International Conference
on, pages 449–454, 2011.

[9] Jörg Ott and Dirk Kutscher. Bundling the web: Http
over dtn. Proceedings of WNEPT, 2006.

[10] Aruna Balasubramanian, Yun Zhou, W Bruce Croft,
Brian Neil Levine, and Aruna Venkataramani. Web
search from a bus. In Proceedings of the second ACM
workshop on Challenged networks, pages 59–66. ACM,
2007.

[11] Jay Chen, Lakshminarayanan Subramanian, and
Jinyang Li. Ruralcafe: Web search in the rural
developing world. In Proceedings of the 18th
International Conference on World Wide Web, WWW
’09, pages 411–420, New York, NY, USA, 2009. ACM.

[12] Mikko Pitkanen, Teemu Karkkainen, and Jörg Ott.
Opportunistic web access via wlan hotspots. In
Pervasive Computing and Communications (PerCom),
2010 IEEE International Conference on, pages 20–30.
IEEE, 2010.

[13] Anders Lindgren. Social networking in a disconnected
network: fbdtn: facebook over dtn. In Proceedings of
the 6th ACM workshop on Challenged networks, pages
69–70. ACM, 2011.

[14] L Peltola. Dtn-based blogging. Helsinki University of
Technology, Department of Communications and
Networking, 2007.

[15] Hao Zhuang, Hervé Ntareme, Zhonghong Ou, and
Björn Pehrson. A service adaptation middleware for
delay tolerant networks based on http simple queue
service. In Proc. of the 6th Workshop on Networked
Systems for Developing Regions (NSDR’12), 2012.

[16] Darren Carlson, Bashar Altakrouri, and Andreas
Schrader. Ambientweb: Bridging the web’s
cyber-physical gap. In Internet of Things (IOT), 2012
3rd International Conference on the, pages 1–8. IEEE,
2012.

