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Abstract—As a major driver of the Internet of Things (IoT),
sensors are harvesting data, from their environments, that service
providers make use to trigger the appropriate services. These
service providers require access to a wide range of personal data,
which are often sensitive. In this paper, we propose a lightweight
privacy-preserving trust model based on the observation that a
large class of applications can be provisioned based on simple
threshold detection. The key issue we address in this work
is how to minimize privacy loss in the presence of untrusted
service providers so that providers are prevented from disclosing
information to third parties for secondary uses. Our work can
be considered as a lightweight approach to functional encryption
(FE) for privacy-preservation. The main algorithm in the pro-
posed model is a uniformization scheme that uses a combination
of sensor aliases to hide the identity of the sensing source and per-
function initialization vector to reveal information only to relevant
service providers. We have implemented a prototype of the
proposed scheme on TelsoB, thereby demonstrating the feasibility
of the proposed scheme on resource-constrained devices.

I. INTRODUCTION

IoT is the next big wave that is expected to transform the
way people and objects interact. IoT devices include sensors
embedded in the environment and wearables such as biometric
sensors that can closely monitor one’s health condition and life
style.

One of the challenges which must be overcome before
widespread deployment of services that relies on sensitive
data collected by IoT devices is privacy ([1], [19], [11], [20],
[6], [22]). Due to closeness of the sensors to the physical
realm, privacy issues must be tackled by design to enable wide
acceptance by users [19].

Earlier work on sensor data aggregation assumed the use
of trusted aggregator and thus cannot protect users against un-
trusted aggregator. More recent work ([12], [17]) consider data
aggregation using untrusted aggregator. While these schemes
provide better data privacy protection, they are designed
to perform some kind of data aggregation operations (e.g.
summation, average or minimum). The computation overhead
can be significant and impose substantial burden on resource
constrained devices that are common in IoT environments.

The motivation in our work is based on the observation
that a large class of applications can be provisioned based on
simple detection of whether sensor values have crossed some
given thresholds. For example, consider the case of a well-
ness/health monitor service that will automatically summon a
visit by health care workers if the blood pressure and heart rate
of a user has crossed specific thresholds. In fact, any form of

application scenarios that involve anomaly detection can be
supported by such a framework.

Our model consists of three components: the sensors,
(unstrusted) data store and service providers. The sensors are
pre-configured to generate triggers based on sensor values
crossing given thresholds. Sensors transmit information on
whether triggers are activated or not to an untrusted data store.
The data store only provides storage facility and performs no
computation. Finally, a user subscribes to various services by
telling the respective service providers where to get the data
and how to extract the trigger information.

Our proposal has the following advantages. First, process-
ing on sensor is minimum and can be easily implemented on
resource constrained device. Second, since the data store and
service provider are separate entities, service provisioning is
now open to external third party providers and a user have the
flexibility to dynamically configure the service he/she wants.

Our privacy-preserving design can be considered as a
simple form of functional encryption [5]. The data published
by sensors only relates to the trigger information. Both the
raw sensor readings and the trigger conditions are stored on
the sensors and are not known to the data store. The trigger in-
formation is stored in an encrypted form and a service provider
is provided with the keys to extract only the information
relevant to the service to be provided. In addition, through
the use of aliases, the data store cannot identify the sensor
whom it receives the data from and through a uniformization
process, an observer cannot deduce whatever a trigger has been
activated or not. To validate our claim on efficiency, we have
implemented a prototype of the proposed system on a TelosB
mote running Contiki. Our evaluation shows that our design
indeed requires little resources and incurs minimum overhead.

The rest of this paper is organized as follow. Section
II presents related work and Section III presents a sample
application scenario to motivate our work. We present our
model in Section IV and details of the algorithms implemented
in Section V. Section VI presents evaluations of our prototype
implementation and we conclude in Section VII.

II. RELATED WORK

Privacy-preserving methods have been extensively used in
data publishing, data mining, location-based services, data ag-
gregation in both mobile sensing and wireless sensor networks,
and other areas. Recently, with privacy concern at the heart
of IoT, research outcomes on privacy, with respect to same,
started emerging.



The traditional techniques employed in data publishing and
also extended to other domains are mainly k-anonymity[23],
l-diversity [18], t-closeness [16], and differential privacy [7].
These techniques are designed to support data mining and
solved a problem that is different from the stated problem in
this work.

The privacy concern with location-based services arises
even before the use of such services as pointed out in [14].
The computation of the location information is preferably
performed on the mobile device using GPS instead of a remote
server computing same for a device based on beacons sensed.
An example of the third party computing the location was
implemented in [15]. In order to reduce privacy invasion
from the use of location-based services, the use of different
pseudonyms was suggested in [2]. Moreover, the well-known
k-anonymity and an extended version, known as historical k-
anonymity, in [10] and [3] respectively, were applied in the
context of location-based services to obfuscate the location
reported by one individual. Apart from the pseudonym con-
cept that can be applied to hide the identity of the sensor,
such techniques cannot be utilized when a user application
provides a personalized service, where only true positives are
acceptable, by accessing the users health-related sensors.

There are work done on privacy preserving data aggre-
gation in wireless sensor networks. PDA [12] proposes two
schemes that tradeoff between computational resource and
bandwidth resource. Li and Cao propose [17] a privacy-
preserving data aggregation scheme based on homomorphic
encryption for sensor data collection by an untrusted aggrega-
tor.

When it comes to IoT-specific privacy works, [8] proposed
the use of data tagging. The scheme controls the flow of
information based on the tag it received at creation time.
While [22] proposed a model where access to sensitive data
is restricted to authorized users and devices, [13] proposed an
access control protocol that allows IoT users to share data at
different privacy levels. Part of their system also included the
generalization of sensor data to achieve k-anonymity.

All the above privacy-related works, whether related to IoT
or not, do not prevent an application or service provider from
disclosing a user’s sensitive information. A recent effort in
changing how encryption can be varied to be more flexible is
the idea of functional encryption (FE) [4], [5]. An example
of FE technique is Attribute-Based Encryption (ABE), which
include Ciphertext-Policy (CP) and Key-Policy (KP). However,
these ABE systems have high overhead [5] and are not suitable
for implementation on resource constrained IoT devices.

III. APPLICATION SCENARIO - IOT WELLNESS SERVER

While the proposed scheme is not so attractive to analytics
applications requiring raw sensor data, it is expected to work
pretty well for threshold-based applications. An example of a
system using the proposed scheme is shown in Figure 1. This
example is a personalized wellness server for patient moni-
toring. The patient/user starts by registering on the wellness
IoT server. He provides his (encrypted) personal details and
a preferred list of doctors/hospitals. He then configures his
sensors to send the trigger to the wellness server when the
trigger conditions are met.

In this scenario, there are two services subscribed: (1)
issuing an emergency call, and (2) sending patient data to
user’s preferred doctor for recommendations. While these two
services may be triggered by the same set of sensors, they may
have different trigger conditions. For example, when the heart
rate and blood pressure readings have been on an elevated
level for some time, a doctor may be consulted. On the other
hand, if these values are dangerously high, an ambulance can
be called immediately. It is easy to imagine that many other
services can be derived from additional sensors and different
sensor combinations.

Fig. 1. Scenario with a threshold-based application.

With the proposed scheme, the user has control over what is
being shared with whom. Many applications can be subscribed
to without having the sensitive information being stored on
the data store or unnecessarily revealed to the application
providers.

IV. PROPOSED PRIVACY-PRESERVING MODEL

The proposed model is designed to meet the following
objectives. First, the IoT servers or service providers should
be prevented from disclosing sensed values, types of sensors,
and user preferences, in the form of triggering conditions or
functions, to third-parties (e.g. health insurance companies or
potential employees) for secondary uses. Second, by observ-
ing the communications between the sensors, data store and
service providers, it should not be possible to determine the
source of the data as well as whether any particular trigger
condition has been met. Third, even though a user subscribes
to multiple services, each service provider should get access
only to relevant information needed for the service.

In this work, we consider two kinds of adversaries

• A semi-trusted service provider that has access to
the outcome of a selected set of trigger conditions.
Based on these outcomes, it determines the course of
action (e.g. call the ambulance) even though it does
not know the user configurations/conditions/functions
(e.g. Blood pressure (Systolic) > 180). Note that the
provider is semi-trusted because it is given access to
only a user-defined subset of all possible sensors plus
trigger conditions combinations.

• A passive listener that can observe the communica-
tions between the sensor and data store as well as
data store and application provider.

We will mainly consider the case of a semi-trusted appli-
cation provider. The key question is as follows. Given that the
application provider needs to know the outcome of the sensor



trigger condition, how can the privacy loss be minimized while
the service is being provided? We address this question in two
steps. First, we look at the problem in a more general manner
using mutual information. Next, we consider the problem in a
more detailed level in terms of minimizing privacy loss. The
case of a passive listener can be handled through standard
symmetric key encryption.

A. Privacy loss in terms of mutual information

Privacy loss can be considered in a more general manner
using mutual information; a similar approach to work [21].

First, let us define the attributes of interest:

• S, the random variable for the set of sensors that can
be utilized;

• V , the random variable for the set of sensed values
(assuming we are interested in these sensor values at
a particular time t);

• T , the random variable for the set of (binary) outcomes
for the trigger conditions.

We then have (1) H , the entropy function, that measures
uncertainty with respect to the random variables, and (2)
I , the mutual information function, that returns how much
information about unknown variables is revealed when the
outcome of a certain variable is known.

In our model, privacy loss is related to what information
can be deduced based on known information. The uncertainty
about the connected sensors and their respective actual read-
ings, H(S, V ), is affected by how much it is conditioned
by T . Therefore, H(T ) also includes mutual information
I((S, V );T ), where I(S, V ;T ) = H(S, V ) − H(S, V |T ).
I(S, V ;T ), the privacy loss (shaded region shown in figure
2), represents the amount information being disclosed about
the connected sensor and its respective reading.

I((S, V );T )
H(S, V |T ) H(T |S, V )

privacy
loss

H(S,V) H(T)

1Fig. 2. Privacy loss is about how much is learned about the sensor and its
respective value, given that there was a trigger for a service.

The general form of the distribution about (1) the set of
sensors used (S), (2) the set of sensor values (V ), and (3) the
potential of a particular value from a particular sensor causing
a trigger (T ) is useful to understand the potential privacy
loss from general inferences. For this study, the distributions
considered are uniform (U ), power law (P ) and normal (N ).
Power law distribution is useful to show cases where only a few
instances of combinations of the considered element are much
more likely to affect the outcome. It might be the case that only
a few values, over a few attached sensors, have much higher
probabilities of causing a trigger while the majority of values
from most sensors have a very low probability of causing a
trigger.

The results with respect to a number of sensors with a set
of possible values, as an average over 1000 runs, are shown

in figure 3. The parameters of the distributions used in the
simulation study are as follows: (1) uniform: probability of 1

16
for the 16 sensors and 16 discrete values considered and 1

2
for the trigger, (2) power law: alpha was set to 0.4, and (3)
standard normal with µ = 0 and σ = 1.

H(S, V ) is the maximum information that can be inferred
about sensors used and their values. The maximum privacy loss
for all the respective combinations (distributions) is shown in
figure 3 with the dotted red line. This pattern is almost the
same irrespective of the amount of sensors and their possible
readable values. Privacy loss is bounded by H(T ). Given that
T can have only two possible outcomes, the maximum of
H(T ) is 1. Therefore, privacy loss with the proposed model is
less or equal to 1 bit. Moreover, it is to be noted that privacy
loss is minimized when the T ∼ U .

B. Privacy Loss with Semi-Trusted Application Provider

In order to provide services (e.g. an ambulance is called),
some of the outcome of the triggers setup by a user needs to
be revealed to the relevant service provider. At the same time,
it is also important that any additional information that are
not needed to provide the service should not be known to the
provider. Hence, we called the provider semi-trusted.

As discussed previously, in order to minimize loss of
privacy, T should ideally be uniformly distributed. However,
T is obviously not uniformly distributed in general. In order to
minimize privacy loss, we introduce a uniformization scheme
to transform the outcomes available to the semi-trusted service
provider so that the distribution of T observed is uniformly
distribution independent of the actual distribution.

This high level idea of the proposed trigger uniformization
scheme is shown in figure 4. As input, the scheme requires
the list of physical sensors used, as well as the probabilities
of meeting various triggering conditions for each physical
sensors. A physical sensor is then mapped to many (sensor)
aliases.

The objective of the scheme is that by observing output,
one cannot determine the outcome of the triggers and their
actual respective origins. Only relevant service providers are
granted the keys to recover the set of trigger outcomes that
are needed to implement the requested services. Still, the
actual sensor, where the trigger originated, remains not only
hidden but also made hard to guess. Conceptually, this is
achieved by masking a real sensor with sensor aliases that
have the same probability of triggering the service. Details of
the implementation are given in the next section.

V. PRIVACY-PRESERVING SENSOR DATA DISSEMINATION

The basis for the proposed algorithms is the trust and
uniformization models described in section IV. The proposed
algorithm can be considered as a lightweight model of FE, that
not only hides the plaintext but also obfuscate the potential
sources of the trigger.

A. Overview

Table I and figure 5 highlights the required functions and
the relationships between them respectively. The functions
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1Fig. 3. Privacy loss, red dashed lines, with respect to the distribution of S,V
and T (case of 16 sensors and 16 values in sensor range)

real sensors:
p(t):

s1 s2 s3 s4 s5 s6 s7 . . . sn
p1 p2 p3 p4 p5 p6 p7 . . . pn

real triggers

trigger
uniformization

process

perceived
triggers

sensor aliases:
p(t):

s1 s2 s3 s4 s5 s6 s7 . . . sm

p(t):
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pa =
1
m

1Fig. 4. Trigger uniformization model: While real sensors have different
probabilities of triggering an event, this tendency is uniformized with sensor
aliases.

‘uniformize and encrypt’ and ‘decrypt’ are executed period-
ically as and when data needs to be published and interpreted
respectively. The rest of the functions are executed once.

TABLE I. SUMMARY OF FUNCTIONS

Functions Descriptions
(1) Setup: estimate
probability

Estimate the probability that a given function will
be TRUE, based on sample data collected

(2) Keygen: gener-
ate aliases/functions

Generate the aliases with set of functions and keys
for uniformization and encryption respectively

(3) Uniformize and
encrypt

Maximize the entropy of finding out the real
sensor behind the trigger of an event and encrypt
data to be disseminated

(4) Decrypt Decrypt the outcome(s) of the function(s) applied
on the data

The functions are briefly described as follows:

1) Setup: The ‘setup’ process takes as inputs the distribu-
tion of the sensor data and a list of functions. A function could
be a simple condition, like ‘≥ 30’, that is evaluated against
sensor data. The outcome from the ‘setup’ is the estimated
probabilities of the respective functions being evaluated to
TRUE.

2) Keygen: The ‘keygen’ process then takes the output
from the ‘setup’, the list of functions and the number of
maximum aliases possible. It generates a set aliases with
respective set of functions. The number of appearances of a

trusted
party

semi-trusted
party

one-off

periodic

1

2

3 4

functions

data
collection

setup:
estimate
probability

probabilities
of functions

/functions

maximum
sensor
aliases

keygen:
generate
aliases/fns

shared keys

list of
aliases/functions

service
provider

shared keys

x,
sensor reading

uniformize
and encrypt

published data
decrypt

functions
of x

1Fig. 5. Relationships between functions of the proposed scheme.

particular function over the aliases depends on the probability
that the particular function is evaluated to TRUE. The number
of appearances is useful in the masking process, that we refer
to as ‘trigger uniformization’, of a particular function over a
particular physical sensor. Finally, the keys to identify a par-
ticular {sensor alias,function} pair is shared with semi-trusted
parties and is used to encode and decode the disseminated data.

3) Uniformize and encrypt: The ‘uniformize and encrypt’
process first evaluates the functions with respect to the current
sensor reading. Next, based on the outcome, it selects the
sensor aliase(s) over which the outcome is broadcasted. This
is done in such a way that an observer sees a trigger, from
a function evaluating to TRUE, to be equally likely coming
from multiple sensors. Finally, the data is encrypted before
dissemination.

4) Decrypt: The ‘decrypt’ process allows a semi-trusted
service provider, with the appropriate keys, to decide whether
a particular service is being requested. Also, it is to be noted
that all keys, with respect to the desirable triggers, are shared
‘offline’ with the respective service providers.

B. Setup and key generator

The main functions of this subsection are defined as
follows:

P ← setup(F )

∀i,∃j : skij ← keygen(fi, p(fi = 1))

fi = {ri, opi}, opi ∈ {<,>,≈}
skij = {aj , cxij , ivxij , AES skij}

AES skij ∈ {keyij , ∅}

skij is mainly a set composed of an optional standard sym-
metric encryption key and key indexes required to hide/recover
the outcome of fi over a sensor alias j. The key indexes are
pointers to specific bits of the broadcast space. An instance
of sk can be “(10.0.0.1, 65, 50, ∅)”. More details about the
indexes are found in the subsection V-C. At a higher cost,
in terms of both space and computation, it is also possible
to use standard symmetric encryption algorithm to protect the
outcome of the functions. Then, AES skij 6= ∅.



λ : secret parameters for defining the functions
a : sensor alias (reference to a physical sensor, e.g IP address)
cx : index of encrypted outcome from the function
f : function/condition
i : represents the ith function
ivx : index of initialization vector
j : represents the jth sensor’s alias
op : operator for the condition/function
p : the probability function
r : reference value
sk : shared key
AES sk : shared key of AES or any other symmetric encryption algorithm
F : set of functions
P : set of probabilities for the respective functions to be TRUE

While F and the set of aliases, A, are shared with trusted
parties only, selected skij can be shared with semi-trusted
parties as well. In the setup phase, the probabilities can
either be estimated through measurements or be given by
the developer. The pseudocode for ‘keygen’ is given below.
The estimated probabilities from the setup phase are used in
‘keygen’ to compute the number of required aliases that fi has
to appear in order to allow for the trigger uniformization.

algorithm: keygen(F , P )
repeat
num aliases[i] = ceil(p(fi = 1) ∗MAX ALIASES)
increment i

until all functions/conditions in F are done
repeat
alias[j] = RANDOM ALIAS()
increment j

until MAX(num aliases[])
reset j
repeat

reset i
repeat

if (num aliases[i] < j)
cxij = RANDOM FREE SLOT()
ivxij = RANDOM FREE SLOTS()
sk[i][j] = (alias[j], cxij , ivxij)

increment i
until all fi for alias[j] are done
increment j

until MAX(num aliases[]) are done

With reference to the ‘keygen’ algorithm, it is to be
noted that the constant MAX ALIASES, maximum number
of possible sensor aliases, depends on the resources available
on the sensor platform. Section VI shows the possible values
when our prototype was implemented on a particular platform.
As the c and iv are randomly placed in the output, the keys
sk contains information on where to retrieve the required
outcome.

C. Uniformization and encryption

The encoding process includes a uniformization process
and a standard encryption function and is accomplished as
shown in figure 6. A number of functions is applied on the
sensor reading. The respective outcomes are encrypted and
published. In the process, based on the outcomes, an alias j
(or multiple aliases) is selected to potentially uniformize the
source of the trigger. The process for generating the broadcast
space, B, can be summarized as::

∀i,∃=1j ⇐⇒ fi(x) = 1 :

Bj ← encrypt(fi(x)→ {0, 1}, skij)

The following is achieved:

sensor
reading

x

functions

f1(x)

f2(x)

...

fn(x)

outcomes

d1

d2

...

dn

uniformization

d1, j

d2, j

...

dn, j

encryption

enc(d1, sk1j)

enc(d2, sk2j)

...

enc(dn, sknj)

broadcast

Bj

1Fig. 6. Encoding process: from sensor reading to published data

1) Broadcast uniformization: As shown in figure 7, the slot
at the index cxij , of the broadcast space B for the sensor alias
j, holds the value cij , where cij = fi(x)⊕ . . . (the XORed
outcome of ivij individual bits). The number of bits in the iv
must be at least 2 so as to ensure that cij is equally likely to
appear as 0 or 1, whether fi(x) is either 0 or 1. As such, all
bits across successive broadcasts are equally likely to be 0 or
1, irrespective of (1) x, and (2) fi. As the entropy of a bit
is at its highest, the uncertainty for potential eavesdroppers is
maximized.

Each fi is associated with a distinct iv so as to enable a
flexible distribution of the data. This approach allows a service
provider to observe only what he is granted access, as far as
possible.

Bj =

fi(x)⊕ ivij [0]⊕ ...︸ ︷︷ ︸

aliasj cij ivij [0]

cxij ivxij

1Fig. 7. Broadcast structure: Bj ; indexes cxij and ivxij are randomly
assigned at ‘keygen’ phase. aliasj or aj is used to identify a sensor alias.
With 4 bytes, it is possible to have 232 possible aliases. The source address
of existing protocols’ header field can be exploited, whenever possible. In
another case, for example using REST, URLs with same domain but different
paths could correspond to different aliases.

2) Trigger uniformization - General case: When fi(x)
evaluates to 1, this outcome appears on only one alias, say a,
for the duration that it stays high. The next time the evaluation
fi(x) shifts from 0 to 1, it is again maintained on one only
alias, say b where b 6= a. This is so unless the number of aliases
for fi is 1. As such, if we assume that the data distributions
captured across multiple sensors are reliable and they can send
data to a service provider, the above approach maximizes the
entropy of inferring the sensor behind source of the trigger.
This is so as the number of aliases, on which fi can appear,
is proportional to the probability that fi evaluates to 1. We
consider two cases of trigger uniformization, starting from the
most expensive, but most effective, down to a less costly one.

3) Trigger uniformization: Case 1 - one sensor alias sup-
porting one function only: In this scenario, as shown in figure
8, one sensor alias is related to only one function while the
latter is related to multiple sensor aliases. The number of
sensor aliases to which fi is related is based on the p(fi = 1)∗
maximum possible sensor aliases. This approach allows for
an application, requiring multiple evaluated functions, where
more than one can be TRUE at anytime, from a ‘physical’
sensor. While the potential physical sources of the triggers



are hidden, this technique is quite expensive when used in a
sensor environment that uses wireless broadcast. The algorithm
is given below.

algorithm (case 1): uniformize and encrypt(x, F, SK)
for all functions in F

if evaluate(f [i], x) == 1:
j = select alias with i randomly(i)
ivij = rand()
Bj [sk[i][j].cx] = (evaluate(f [i], x) = 1) ⊕ ivij [0] ⊕ ivij [1] ⊕ . . .
Bj [sk[i][j].ivx] = ivij
increment i
broadcast Bj

one
physical
sensor

many
sensor
aliases
(m)

one
function
(fi) per
alias

expected
probability
of sj to
trigger

S
1
m

j = 1..m

s1
s2
s3
...
sl
...
sm

fa
fa
fa
...
fb
...
fn

i = 1..n

1Fig. 8. Ideal trigger uniformization process: each time a function, say fx,
holds true, it potentially appears on a ‘different’ sensor, using aliasing. The
number of occurrences of fx depends on its probability to be TRUE. As such,
the expected probability for sx to be the source of the trigger is uniformized
to 1

m
, thereby maximizing entropy.

4) Trigger uniformization: Case 2 - one sensor alias sup-
porting multiple functions: In this case, one broadcast dissem-
inate the outcome of several functions. If the functions check
for the sensor reading in mutually exclusive range, then the
algorithm in case 1 is slightly modified (as shown below; but
can be further optimized) to fulfill this requirement; otherwise,
a set cover approximation solution can be applied to minimize
the number of broadcast. While it may be a slightly less
effective uniformization process, one broadcast allows service
providers of non-triggered events to know that the sensor is
alive. This is the scheme implemented in Section VI.

algorithm (case 2): uniformize and encrypt(x, F, SK)
for all functions in F

if evaluate(f [i], x) == 1:
j = select random alias supporting i(i)
break

for all functions in F
ivij = rand()
Bj [sk[i][j].cx] =evaluate(f [i], x) ⊕ ivij [0] ⊕ ivij [1] ⊕ . . .
Bj [sk[i][j].ivx] = ivij
increment i

broadcast Bj

Using the above algorithm, by selecting the proper alias
based on x, the sensor reading, trigger uniformization is
possible. Moreover, one instance of fi(x) requires at least 3
bits, one for the encrypted fi(x) bit outcome and at least two
bits for the iv. Other encryption methods can also be applied
to hide the outcome of fi(x). For example, if AES scheme is
used instead, the required update is as shown:

Bj [sk[i][j].cx] = enc AES(evaluate(f [i], x), AES sk[i][j], ivij )

As the combinations of functions required by service
providers are unknown in advance, the encryption/decryption
of each specific function is associated with one particular AES
key, say AES skij . Thus, the use of AES can be highly
expensive as one instance of fi(x) requires 128 bits.

D. Decryption

Given that fi matches a service provider’s requirement, the
decryption algorithm, decrypt, shown below provides level of
desired utility while (1) preserving the sensor reading, x, and
(2) hiding the real trigger’s source behind numerous aliases.

∀i, j : fi(x)← decrypt(Bj , skij)

xi ← g(fi(x), fi)

h : aj → sensorm

g, h : utility functions
A : set of aliases
M : set of sensors’ real identity

Trusted parties, for example a family doctor, have F with
which a function g allows them to get x or a reference to
x, say xi, as the related function can be a simple condition
expressed over x. They also have a function h and A to enable
the mapping from aliases to actual sensors’ identity/type in M .

algorithm: decrypt(Bj , skij )
for all functions referenced by sk[∗][j]
cij = Bj [sk[i][j].cx]
iv = Bj [sk[i][j].ivx]
f [i] = cij ⊕ ivij [0] ⊕ . . .

E. Disseminated data with privacy-preserving property

The disseminated data exhibits the desired privacy-
preserving objective with the following properties:

1) Resistance to eavesdropping attacks: The scheme is
resistant to eavesdroppers as the entropy is maximized with
each bit of the broadcast being equally likely to be 0 or 1
irrespective of the functions outcome, sensors’ type or reading.

2) Resistance to collusion attacks: Each colluding attacker
knows only the outcome of an unknown set of functions
over a set of unidentified sensors. The maximum information
gained remains at most one bit with respect to the sen-
sor’s identity/type and its respective reading. This is so as
H(S, V )−H(S, V |T ) ≤ 1.

3) Resistance to inference attacks: Inference attacks are
hard as the the probability that the trigger is caused by all
possible sensors, irrespective of their values, is made equally
likely with the trigger uniformization approach. Moreover, the
entropy is expected to increase significantly as the number of
sensor aliases can significantly outnumber the physical sensors.

VI. IMPLEMENTATION AND EVALUATION ON A
RESOURCE-LIMITED PLATFORM

A. Setup

The proposed scheme has been implemented on a Telos
Rev B, with an MSP430 microcontroller of 8 MHz with a



programmable flash memory of 48 KBytes and RAM of 10
KBytes. Rime broadcast was used for message exchanges
between two motes, where one basically implemented the
‘setup’, ‘keygen’ and ‘uniformize and encrypt’ functions while
the other one implemented the ‘decrypt’ function.

In this experiment, the ‘setup’ generates the list of func-
tions, where each one is made up of two simple conditions
that defines a range for the sensor value. All data of the
payload were manipulated in the binary form and the size of
the iv is two random bits to encrypt each respective outcome.
The power measurements were done with a power monitor
operating at a frequency of 5 kHz.

B. Time and energy requirements

1) One-off functions: Table II shows the time taken and
energy consumed to execute the setup & keygen functions.
These are one-off operations. The energy consumption of
a broadcast, using rime in Contiki, a periodic function to
broadcast the payload of the specified size, is shown as a
reference to have an idea about the energy requirements of
the proposed functions, in table II and figure 9.

2) Recurring functions: The energy consumption for en-
cryption and decryption is shown in table III and figure 10. As
defined for the possible alternative to complete the encryption
process in section V, part of the encryption process was
swapped with AES, using the hardware implementation on
TelosB, to show the difference in energy consumption. The
current drawn for most processing was 2.19 mA while that
including the hardware-level AES encryption method is 2.54
mA.

C. Space requirements

Table II shows the maximum possible functions and aliases
with respect to the payload size and memory size respectively
using the TelosB mote. For most combinations, the maximum
RAM usage of 10 KB was reached while the ROM usage was
about 28 KB, including the OS functions. The latter alone
uses 5 KB and 21 KB of RAM and ROM respectively. It is to
be noted that the maximum number of aliases, shown, is not
applicable when substituting for AES sub-function. Moreover,
when AES is used, the maximum number of functions in a 512
bits payload would be only 4 as shown in figure 9. This is so
as one key is associated with an instance of fi(x) to enable a
flexible distribution of keys with respect to the desired set of
functions.

TABLE II. MAXIMUM POSSIBLE FUNCTIONS AND ALIASES WITH
ENERGY CONSUMPTION FOR ONE-OFF OPERATIONS

payload
size
(bits)

max
functions
as per
payload
size

max
aliases
with all
functions

frequency of execution
one-off periodic

total (setup &
keygen)

rime broadcast
as a reference

sec mJ mJ
8 2 200 0.24 1.6 5.1

16 5 87 0.32 2.08 5.07
32 10 43 0.39 2.57 5.17
64 21 20 0.57 3.72 5.34
128 42 10 0.90 5.93 5.64
256 85 5 1.59 10.43 6.07
512 170 2 2.67 17.54 6.62

TABLE III. ENERGY CONSUMPTION - ENCRYPTION & DECRYPTION

number of
functions

algorithms
uniformization and
encryption

uniformization
and encryption
with AES
sub-function

decryption

ms µJ ms µJ ms µJ
1 0.97 6.37 2.12 16.15 0.41 2.69
2 0.98 6.44 2.13 16.23 0.79 5.19
5 1.58 10.38 3.39 25.83 1.12 7.36

10 2.37 15.57 6.23 47.47 1.43 9.4
21 4.17 27.40 12.63 96.24 2.58 16.95
42 7.96 52.30 24.92 189.89 5.11 33.57
85 15.25 100.19 50.09 381.69 10.34 67.93
170 30.1 197.76 99.58 758.80 20.61 135.41
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respect to payload size
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D. Expected performance of existing FE techniques on re-
source constrained devices

In this section, we evaluate the performance of existing
FE techniques like KP-ABE and CP-ABE. The outcome of
each function fi is encrypted under a particular attribute for
a flexible distribution, given that the requirements of service
providers is not always known in advance. In order to perform
this comparison, we ported our code to a desktop version.
The FE code available at [9] was used. The experiments were
performed on a virtual machine running Ubuntu 64-bit with 4
CPU cores of 3.4 GHz each and 4 GB of RAM. Moreover,
in order to to estimate the time taken when using each of



the schemes, the value of the ‘user’ variable from the ‘time’
command in Linux was used.

The results shown in table IV are with respect to 170
attributes (mapped to case of 170 fi in our proposed scheme),
one per fi. The expected performance on TelosB was com-
puted using linear extrapolation. It is clear that the existing FE
techniques are not practical on low-end sensor devices, even
when the evaluation of fi was excluded from the existing FE
techniques. Similarly, the lightweight ABE scheme proposed

TABLE IV. PERFORMANCE COMPARISONS WITH EXISTING FE
TECHNIQUES

CP-ABE KP-ABE proposed scheme: native
setup &
keygen

encryption
(exclud-
ing
evalua-
tion of
fi)

setup &
keygen

encryption
(exclud-
ing
evalua-
tion of
fi)

setup &
keygen

uniformization
and en-
cryption
(in-
cluding
evalua-
tion of
fi)

time taken, with Ubuntu 64 on VM, in seconds
28.95 27.08 25.31 24.53 0.000994 0.000262

time taken, with Contiki OS on TelosB, in seconds
values as computed with linear extrapolation values as measured

104,380.21 97,618.25 91,238.21 88,451.73 2.67 0.03

by [24] encryption process is expected to take approximately
4000 seconds on a TelosB mote, while this amount is expected
to be twice for decryption process. This is computed on the
basis that their encryption process takes approximately 1

66
times the operations of CP-ABE, that consisted of encryption,
decryption and bilinear mapping.

VII. CONCLUSION

Using the proposed trust information model, service
providers do not gain additional information about the end-
user when the outcome of the triggered event is in the public
domain. Inferences, that can be made, are based on data that
are publicly available. This has also been demonstrated with
low mutual information between a trigger and the connected
sensors with their respective possible triggering values. On
top of that, the concept of trigger uniformization increases the
uncertainty with which a sensor can cause a trigger. Finally,
unlike existing FE techniques, our proposed scheme involves
no expensive operation. We have also shown through our
implementation and evaluation that the proposed scheme can
be implemented on resource constrained devices as it is energy
efficient and has low memory requirement.
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