
Throughput Estimation for Short Lived TCP Cubic Flows

Girisha De Silva, Mun Choon Chan and Wei Tsang Ooi
School of Computing, National University of Singapore

{girisha,chanmc,ooiwt}@comp.nus.edu.sg

ABSTRACT
Mobile devices are increasingly becoming the dominant device for
Internet access. The network throughput achieved by a mobile de-
vice directly affects the performance and user experience. Through-
put measurement techniques thus play an important role in predict-
ing expected performance. Measurement techniques that require
the transfer of large amounts of data can provide higher accuracy
but incur large overhead. Further, since most mobile cellular plans
impose usage quota, the overhead of such measurements over cel-
lular networks can become quite high. Smaller data transfers have
also been used to measure the throughput. Due to the conserva-
tive TCP slow start behaviour, however, these measurements often
underestimate the achievable throughput. Considering these weak-
nesses in existing throughput measurement techniques, we propose
a throughput estimation technique for TCP Cubic that uses 1 MB
of data transfer to predict the throughput for prevalent large trans-
fer sizes in mobile traffic such as 5 MB, 10 MB and 20 MB. Our
evaluation shows that our approach can achieve high accuracy with
low overhead, in predicting the achievable throughput.

CCS Concepts
•Networks→ Network performance modeling; Network mea-
surement; Mobile networks;

Keywords
Network Measurements, TCP Cubic, Throughput, Mobile Devices,
Cellular Networks

1. INTRODUCTION
Mobile devices have overtaken desktops as the dominant device

for Internet access [1, 2]. Therefore, the throughput a mobile device
can achieve via different wireless technologies directly affects the
performance and in turn the user experience.

Mobile device technologies are making massive advancements
in terms of performance and features they provide. The wireless ac-
cess technologies these devices use are also making massive strides
in terms of the throughput they provide. For example, a recent

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MOBIQUITOUS ’16, November 28-December 01, 2016, Hiroshima, Japan
c© 2016 ACM. ISBN 978-1-4503-4750-1/16/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2994374.2994391

study [3] reports that the median throughput for 4G LTE is 13 and
6 Mbps for downlink and uplink, respectively, and that these rates
exceed the rates of WiFi and 3G. With these advancements, the
traffic generated by mobile devices are also ever increasing. For
example, a study conducted by ABI research in 2012 mentioned
that the average smart phone app size is around 23 MB [4]. Apart
from mobile apps, store and forward video services such as Vine
and Instagram have also become popular. A study by Juniper states
that these video files are 16 times larger than a photo and the esti-
mate for a Instagram video is around 9.6 MB [5].

With the emergence of larger data transfers on mobile devices,
estimating the throughput the mobile device can achieve via wire-
less access technologies is important towards providing the users
with insights into the performance of their devices. Currently, two
common ways of measuring the bandwidth are (1) transmit a large
amount of data, say a few hundred MB to get a “stable” long term
value, e.g., SpeedTest1; or (2) use a small amount of data, say
1 MB. Although transferring a large file will likely provide a more
accurate result, the measurement overhead is high, needing close to
100 MB (see Section 3). Cellular data plans, however, often come
with data caps. Three to four measurements of 100 MB each easily
consume a significant portion of a 2 GB monthly data plan2. On the
other hand, using a smaller data size to approximate the bandwidth
directly would result in underestimating the available bandwidth by
a great margin because of the transport level (TCP) behavior.

In this work, we aim to provide measurement results on LTE/WiFi
bandwidth as well as highlighting the limitations of existing band-
width measurements tools. Our contributions are: (1) provide mea-
surement results of LTE and WiFi throughput over 10 different
countries; (2) highlight the inaccuracy of using only a small amount
of data to estimate bandwidth without taking into account the un-
derlying TCP behavior; and (3) present a model for bandwidth es-
timation that works with small amount of data.

Our model is applicable to TCP Cubic. TCP Cubic is the current
default TCP algorithm used by the Linux kernel [6]. A large chunk
of publicly accessible servers in the Internet runs Linux. A mea-
surement study carried out by W3Cook in May 2015 estimates that
out of the top 1 millions websites (Alexa Rankings), 96% runs on
the Linux operating system [7].

Our model is designed for data transfer sizes between 1 MB to
20 MB, the typical transfer sizes for applications such as app down-
load and store-and-forward video. Our evaluation shows that the
average error for bandwidth estimation using only 1 MB without
taking into account the TCP behavior varies from 50% to 80% for
transfer sizes of 5 MB to 20 MB. On the other hand our model has
average errors of 8% to 11% for transfer sizes of 5 MB to 20 MB.

1http://www.speedtest.net/
2current default data cap for major telcos in Singapore

227

Table 1: Categorization of throughput measurement techniques in
existing works

Throughput Measurement Techniques
Large Data Transfer Small Data Transfer

[8, 9, 10, 11, 12] [13, 14, 12]

The rest of the paper is organized as follows. Section 2 describes
the previous research work related to modeling of TCP flows and
also touches on previous throughput measurement studies in mobile
networks. In Section 3, we present a detailed measurement study,
in which we highlight the limitations of using smaller data sizes
for measurements as well as highlight the high data overhead of
applications such as SpeedTest. Section 4 describes our TCP Cubic
modeling and throughput estimation technique in detail. Finally, in
Section 5 we evaluate our throughput estimation technique.

2. RELATED WORK

2.1 Throughput Measurements
Many prior studies [8, 9, 10, 11, 12, 13, 14] have presented mea-

surements of the delay and the available throughput in cellular and
WiFi networks. The throughput is measured by either saturating the
available channel capacity or by measuring the throughput achieved
for smaller data transfers in the range of 1-2 MB. These studies also
differ on the transport layer they used to carry out the measurement
studies. Refer to Table 1 for a classification of different measure-
ment techniques.

Yin Xu et al. [8] reported throughput measurements of cellular
network providers in Singapore in which they used UDP flows to
saturate the downlink mobile channel. On the other hand, the au-
thors of [9] used TCP downlink and uplink flows to saturate the
networks to measure the capacity of 3G networks while also mea-
suring the effect on saturated TCP flows when constant bit rate ap-
plications such as voice or video calls are added to the network.
Apart from [8, 9], many other measurement studies [10, 11, 12]
also incorporate large data transfers and/or saturation of the data
channel to infer the throughput of cellular/WiFi networks.

In order to saturate the link, the data sizes used range from few
hundred MB to 1-2 GB (worst case) which is a large overhead given
the relative small data quota for most cellular data plans that are
typically in the range of a few GBs.

Studies such as [13, 14] used smaller data transfers to measure
the throughput in mobile devices. Shuo Deng et al. [13] developed
a mobile application that uses a 1 MB data transfer to measure the
throughput on WiFi and cellular networks to enable the user to se-
lect the better network at a given time. Baranasuriya et al. [14]
conducted a global cellular measurement study to evaluate the ef-
fectiveness of their bottleneck detector tool. They measured the
TCP throughput of each of the network paths they studied with
a data cap of 1 MB. Yung-Chih Chen et al. [12] used both small
transfers and large transfers for their wireless multipath TCP per-
formance evaluation.

In all the above measurements, they do not take into account the
behavior of the underlying transport layer. Our measurements show
that due to the conservative nature of TCP in the initial phase, usage
of a small transfer size such as 1 MB significantly underestimate the
achievable throughput for large transfers.

2.2 TCP Throughput Modeling
One of the earliest works in modeling TCP throughput can be

found in [15]. The analytical model proposed is for TCP Reno

and it models the steady state throughput of a TCP Reno flow tak-
ing into account loss and (average) round trip time (RTT). Another
popular TCP variant deployed is TCP Cubic, the default choice for
Linux based system. TCP Cubic uses slow start and a cubic func-
tion during the congestion avoidance phase. An analytical model
for the steady state throughput of a single TCP Cubic flow can be
found in [16]. A Markovian model is incorporated in modeling
the TCP Cubic flow, assuming that the RTT is constant and the
packet loss rate is Poisson. Another analytical model proposed for
TCP Cubic steady state throughput can be found in [17]. Unlike
the model proposed in [16] the analytical model in [17] takes into
account changes in RTT values by estimating the average RTT us-
ing the sojurn time of M/GI/1 queues. Both the solutions [16, 17]
model the steady state of TCP Cubic with packet losses and was
evaluated using network simulators.

A model for short lived TCP flows by taking into account the
slow start phase has been introduced by Marco Mellia et al. [18].
In their model, however, the short lived TCP flow never exits the
slow start phase. [19, 20] also model short lived TCP flows. In
these works, the modeling is done for TCP Reno. To the best of our
knowledge, there are no throughput estimators for short TCP Cubic
flows that incorporates the behavior of the HyStart [21] slow start
algorithm. Refer to Table 2 for a classification of TCP throughput
modeling.

Table 2: Categorization of TCP throughput modeling. Steady state
models are based only on the congestion avoidance phase. Short
lived flows model slow start and/or congestion avoidance

Throughput Models for TCP Flows
Steady State Short Lived
[15, 17, 16] [18, 19, 20]

Our work is different in that we are looking at throughput estima-
tion that uses only a small amount of data (1 MB) but can be used
to estimate the achievable throughput for much larger data transfers
such as 5 MB, 10 MB, and 20 MB.

3. MEASUREMENT STUDY

3.1 Measurement Tool
We carried out a measurement study using a tool built in the form

of an Android application. The user interface of our application is
shown in Figure 1.

The application’s main functionality is to run a throughput mea-
surement and a delay measurement. The work flow of the applica-
tion is as follows:

1. The user selects whether to run the measurement over WiFi
or Cellular.

2. Enter in a short descriptive tag about the location (e.g., Home,
Office)

3. Pick the measurement type

(a) Delay Measurement

(b) Throughput Measurement (Labeled as Data on Figure 1)

i. Pick a data size to measure throughput

4. Press start and wait for the measurement completion

228

Step 1

Step 2

Step 3(a) or 3(b)

Step 3(b)(i)

Step 4

Figure 1: The main UI of the Android Application used for mea-
surement

3.1.1 Measurement Types
Delay Measurement: The mobile application establishes a TCP

connection with the designated server and sends 64 bytes that is
echoed back to the client by the server. The client keeps track of
the total round trip time (tRTT) to send and then receive 64 bytes.
(Refer Figure 2a)

Throughput Measurement: Once the user selects a data size,
the mobile application establishes a TCP connection with the server.
The selected data size is then sent (uploaded) to the server. Once
the server receives all the data, it sends a one byte ack to the client.
The total time that elapsed from uploading the data to receiving the
one byte ack is recorded by the client as the upload time (tu).

As soon as the one byte ack is sent, the server sends the selected
amount of bytes to the client. The client then starts a timer as soon
as the first byte(s) are received from the server and stops it after all
the bytes have been received. This timer value is considered as the
download time (td). The client keeps track of the total amount of
data received during the td time period. (Refer Figure 2b)

3.1.2 Measurement Setup
For the purpose of delay and throughput measurements, we have

selected a server running an instance of Ubuntu 64 bit (Kernel ver.
2.6.32). The server resides in Dallas, Texas, USA and two Java
server programs listened on port 80 and port 443 respectively. The
client application connects to port 443 for delay experiments and
connects to port 80 for throughput measurements.

For every throughput and delay measurement, we used the same
server in Dallas irrespective of which country we were doing the
measurement from. The client application (see Section 3.1) always
runs on an Android mobile device with the exception of when cellu-
lar data was collected in India. Out of the 476 cellular throughput
samples (refer Table 3) collected in India, 464 samples were col-
lected using a 4G dongle connected to a Windows 7 laptop. A Java
based client program was used in this instance. In this measure-

tRTT

SYN

SYN+ACK

ACK
64 bytes

64 bytes

ECHO REQ

ECHO REPLY

Client Server

(a) Delay Measurement

tu

SYN

SYN+ACK

ACK

1 byte ACK

td

Data upload

Data download

Client Server

(b) Throughput Measure-
ment

Figure 2: The two experiments carried out for measuring the delay
and throughput in cellular and WiFi networks

ment study, we do not differentiate between the cellular technolo-
gies such as LTE, HSPA, 3G, or GSM.

3.2 Measurement Results
We have collected throughput measurement data from 10 differ-

ent countries. In total, we have collected 8273 WiFi throughput
samples and 3797 cellular throughput samples. Refer to Table 3
for a summary of the measurements collected.

Table 3: Number of total WiFi and Cellular throughput measure-
ments carried out in different geographic regions. The last column
represents the number of unique cities the measurements covered
in each respective country

Country/Region WiFi Cellular Cities
Singapore 7666 2252 1
USA 62 104 5
South Korea 117 56 2
Sri Lanka 277 547 2
India 57 476 2
Australia - 248 2
England 51 53 1
Taiwan 25 55 1
Hong Kong 18 - 1
Thailand - 6 1

3.2.1 WiFi vs. Cellular Throughput
Figures 3a and 3b show the CDF for both WiFi and cellular up-

load (uplink) and download (downlink) throughput measurements
for all the data sizes collected in countries listed in Table 3. In the
case of downlink throughput (Figure 3b), cellular networks outper-
form WiFi 95% of the time. The 90th percentile for Cellular and
WiFi throughput are 4.7 Mbps and 2.5 Mbps, respectively. Cellular
networks outperform WiFi 75% of the time for uplink throughput
(see Figure 3a), and the 90th percentile for cellular and WiFi is 2.69
Mbps and 1.76 Mbps, respectively.

229

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

C
D

F

Throughput (Mbps)

All WiFi Uploads
All Cell Uploads

(a) Cellular vs. WiFi Upload Throughput

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

C
D

F

Throughput (Mbps)

All WiFi Downloads
All Cell Downloads

(b) Cellular vs. WiFi Download Throughput

Figure 3: Cellular vs. WiFi upload and download throughput measurements for all transfer sizes

Previous studies have reported that LTE networks outperform
WiFi networks [3, 13] in terms of downlink and uplink through-
put. In our measurement study, out of the 3797 cellular throughput
samples collected, 2648 samples are from LTE networks (70% of
the data). Our results are consistent with previous findings.

3.2.2 Throughput: Small Transfers vs. Large Trans-
fers

Figure 4 shows the measured uplink and downlink throughput
distribution for all countries mentioned in Table 3. In these figures,
the measured throughputs are shown for small (1 MB) and large (≥
10 MB)

In the case of cellular and WiFi, it can be seen that the uplink
and downlink throughput measurements using larger data transfers
shows significantly higher values compared to measurements using
only 1 MB data transfers. The measured average for cellular and
WiFi uplink throughput when 1 MB of data was used was 1.81 and
1.41 Mbps, respectively. Further, when 1 MB of data was used to
measure the downlink throughput the average values were 2.65 and
1.62 Mbps for cellular and WiFi, respectively.

In contrast, when transfer sizes larger than or equal to 10 MB
were used for measuring the throughput, the average uplink through-
puts for cellular and WiFi are 7.97 and 6.15 Mbps; the average
downlink throughputs are 10.24 and 5.65 Mbps. The throughputs
of large transfers are thus significantly higher than 1 MB transfers
by 340% and 286% for cellular uplink and downlink respectively.
For WiFi, the average throughput values for large transfers are sig-
nificantly higher than 1 MB transfers by 330% and 249% for uplink
and downlink respectively.

There is a clear difference between the measured throughput val-
ues obtained with smaller data transfers and larger data transfers.
While, it is expected that measurements using only 1 MB tends
to underestimate the achievable throughput, the large difference in
results brings to question the utility of using only a small amount
of data transfer to estimate achievable throughput. The main rea-
son behind this large deviation is the behaviour of the congestion
control algorithm of a TCP flow. The congestion control algorithm
of a TCP flow controls the amount of data it can send at a given
time, which in turn directly affects the throughput a TCP flow could
achieve. The main emphasis of the congestion control algorithm is
to probe the available bandwidth in the network while being fair to
the existing flows. The algorithm initially enters a phase named the
slow start phase where the amount of segments it sends grows ex-
ponentially every RTT. Although the growth is exponential during
the slow start phase, the TCP flow will initially send small number
of segments in order to be conservative when probing the available

bandwidth. Once the slow start phase ends, the TCP flow will en-
ter a congestion avoidance phase where it will still keep probing
for the available bandwidth using a window growth function that
depends on the TCP variant that is being used.

If smaller data transfers are used for measuring the throughput,
most often these flows might not have achieved the total available
bandwidth due to the initial conservative approach of the TCP con-
gestion control algorithm. Thus, a large data transfer is often used
to get a better estimate of the available bandwidth.

3.3 SpeedTest Results
We have also carried out measurements using the SpeedTest ap-

plication downloaded from the Google Play Store (Android)3 and
the Apple App Store (iOS)4. After the measurements were con-
ducted, we checked the total data usage of the app using the phones
inbuilt software that keeps track of the data usage by individual
applications. The reported total usage for two distinct Android de-
vices were 92 MB (see Figure 5a) and 125 MB. In case of iOS
the total data usage for two different iPhones were 72.1 MB (see
Figure 5b) and 82.4 MB respectively.

(a) Android (b) iPhone

Figure 5: Statistics reported by SpeedTest on Android and iOS. The
application reports the delay, uplink and downlink throughput and
also the amount of data used for a single measurement

Mobile cellular plans are usually capped by the service providers.
From our experiments, a single SpeedTest experiment could poten-
tially (based on our results) cost up to 4% of the total data available
in a 2 GB monthly data plan, thus incurring a significant overhead

3https://goo.gl/gtXLBc
4https://goo.gl/WUXJQx

230

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

C
D

F

Throughput (Mbps)

Cell Uploads (size=1MB)
Cell Uploads (size>=10MB)

(a) Cellular Upload Throughput

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

C
D

F

Throughput (Mbps)

Cell Downloads (size=1MB)
Cell Downloads (size>=10MB)

(b) Cellular Download Throughput

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

C
D

F

Throughput (Mbps)

WiFi Uploads (size=1MB)
WiFi Uploads (size>=10MB)

(c) WiFi Upload Throughput

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

C
D

F

Throughput (Mbps)

WiFi Downloads (size=1MB)
WiFi Downloads (size>=10MB)

(d) WiFi Download Throughput

Figure 4: Throughput measurements for small (size = 1 MB) data transfers and large (size ≥ 10 MB) data transfers in WiFi and Cellular
Networks

for bandwidth measurements.

3.4 Data Download Experiment
In this measurement, we look at how the throughput measure-

ments vary when different data transfer sizes are used. The mea-
surement is performed in the following. A client program running
on an Android phone downloads 20 MB of data from the server.
The program keeps track of the time it has received 1 MB, 5 MB, 10
MB, and 20 MB. Table 4 shows the throughput measurements for
three such download sessions. One can observe that the through-
put increases when the amount of data transferred increases. In
particular, if one simply downloads 1 MB and uses the observed
throughput to estimate the throughput for large data sizes, the error
is large, ranging from 20% to 85%.

When averaged over 20 such experiments, the average deviation
for throughputs between the pairs (1 MB, 5 MB), (1 MB, 10 MB),
and (1 MB, 20 MB) are 54%, 67% and 77%, respectively.

This observation motivates us to ask the following question. Is
it possible to have a more accurate estimate of the throughput for
higher data transfer sizes (≥ 5 MB) and yet only use a 1 MB data
transfer in order to reduce the measurement overhead? In order
to achieve this objective, we present in the next section, a simple
model for throughput estimation for short lived TCP Cubic flows.

4. MODELLING TCP CUBIC
TCP Cubic has been the default TCP variant supported in the

Linux kernel since version 2.6.13 [6]. TCP Cubic, which consists
of a cubic window growth function, was introduced to achieve bet-

Table 4: Measured throughput values for 1, 5, 10, and 20 MB when
downloading 20 MB of data. For each download session, the table
also states the deviation (d) if the throughput for 5, 10, and 20 MB
were based on the throughput measured for 1 MB

Throughput (Mbps)
1 MB 5 MB (d) 10 MB (d) 20 MB (d)

Session 1 5.51 14.37 (62%) 18.21 (70%) 21.48 (74%)
Session 2 1.69 4.34 (61%) 7.07 (76%) 11.55 (85%)
Session 3 3.79 4.71 (20%) 5.75 (34%) 8.36 (55%)

ter performance over networks with higher bandwidth and longer
delays. In this section, we provide a brief overview of TCP Cubic.
More information can be found in [6, 21].

4.1 TCP Cubic

4.1.1 Slow Start
The standard slow start phase of TCP uses an exponential con-

gestion window growth scheme, i.e., doubling the window every
round trip time. As the exponential growth of the congestion win-
dow could result in a large number of packet losses, a hybrid slow
start scheme is introduced in TCP Cubic.

The hybrid slow start scheme HyStart [21] uses the same ex-
ponential window growth during slow start with the exception of
dynamically setting the slow start threshold (ssthresh). The setting
of the dynamic ssthresh value is based on two main mechanisms

231

running in parallel. The first mechanism uses an ACK train gen-
erated from the TCP receiver to estimate whether the forward path
is congested and the other mechanism uses RTT delay samples to
gauge whether the flow has reached the capacity of the forward
path. If any one of the two mechanisms detects that the exponential
slow start growth needs to end, then ssthresh is set to the current
window size and TCP Cubic enters the congestion avoidance phase
where it follows a cubic window growth function.

4.1.2 Congestion Avoidance
The congestion avoidance phase in TCP Cubic calculates the

congestion window, W (t), every RTT using Equation 1 where Wmax

is the congestion window when the last loss occurred, t is the elapsed
time since the last loss event, K is time it takes the congestion
window to increase from the last reduction to Wmax if no further
packet loss happens and C is the cubic parameter.

W (t) = C(t−K)3 +Wmax (1)

As the congestion window growth is based on a cubic function,
the window growth has two distinct regions: 1) the concave region
(W (t) < Wmax); 2) the convex region (W (t) > Wmax). Ini-
tially the congestion window grows rapidly in the concave region
but slows down and plateaus at Wmax. If no further loss occurs,
the congestion window growth function will next enter the convex
region where initially the congestion window growth is slow when
the congestion window value is near Wmax but the growth rate will
increase with the congestion window value moving further away
from Wmax.

Wmax is the value in which the last packet loss occurred and a
packet loss event most often signifies that a TCP flow has reached
the current available capacity. Thus the concave region of the cubic
function grows the window rapidly, but slows down and becomes
cautious when the congestion window value approaches Wmax. If
no further loss occurs around Wmax, there is more available ca-
pacity for the TCP flow and the convex region will rapidly start to
increase the congestion window to find the new Wmax value i.e.,
capacity of the channel after being cautious near Wmax.

One exception to the cubic growth rate is performed when W (t)
is found to be growing slower than TCP Reno. When this occurs,
TCP Cubic is set to work in the "TCP friendly region" whereby the
window size is set to be the same as TCP Reno.

4.2 Modelling Short TCP Cubic Flows
In this section, we present our model of a single short lived TCP

Cubic flow which we will use in our throughput estimation later. In
order to be useful, the model derived should be able to perform the
following. Given (measurable) quantities such as estimated round
trip time, data size transfer (X), and data transfer time, the model
provides an estimate of the time it takes to transfer Y (where Y >
X) bytes.

The model assumes that the TCP Cubic flow begins from the
slow start phase and then enters the congestion avoidance phase
after some number of rounds have passed using the HyStart algo-
rithm [21]. In this model, we assume that RTT is constant and there
is no packet loss.

Figure 6 represents a typical window growth scenario for a TCP
Cubic flow with no loss. The initial window size for the TCP flow
is W0 and the flow is in slow start phase until the xth transmission
round. The congestion window value when TCP Cubic quits slow
start is Ws.

Initially, the slow start phase in TCP Cubic transmits W0 seg-
ments. Once the first ACK is received, the congestion window is
increased by 1. Since the congestion window was increased by 1

init (W0)

ssthresh (Ws)

W

1 x T

C
o
n
g
e
s
ti
o
n
 W

in
d
o
w

 (
in

 s
e
g
e
m

e
n
ts

)

Transmission round

Figure 6: TCP Cubic: Slow Start + Congestion Avoidance

and one packet has already being ACKed, the congestion control
algorithm can now transmit two packets. Thus, during the slow
start phase for every ACK received, two more packets are trans-
mitted. Moreover, the total number of ACKs received when the
congestion window is Ws can be expressed as (Ws −W0). Since
each ACK triggers two transmissions, the total number of segments
transmitted during the slow start phase can be expressed as 2.

2(Ws −W0) +W0 (2)

Once the TCP Cubic flow exits the slow start phase, it enters the
congestion avoidance phase which uses the cubic equation given
in Equation 1 to increase its window size every RTT. The window
growth function given in Equation 1 can be simplified as W (t) =
C(t)3+Ws. This simplification is derived from the source code of
TCP Cubic [22] and it can be intuitively explained as follows. Af-
ter slow start, TCP Cubic sets the current ssthresh (Ws) as Wmax

and the cubic function is in the convex region (i.e., the cubic func-
tion has already plateaued at Ws). Further, since the function has
already reached the plateau (Wmax), K = 0.

Using this simplification, the total number of segments transmit-
ted till the T th transmission round during congestion avoidance can
be expressed using Equation 3.

(Ws + C(RTT)3) + (Ws + C(2RTT)3)

+ ...+ (Ws + C((T − x)RTT)3) (3)

Since, 13 + 23 + 33 + ... + n3 = n2(n+1)2

4
, we can further

simplify Equation 3 to the following:

(T − x)Ws +
C(T − x)2(T − x+ 1)2RTT 3

4
(4)

Assuming that there is no packet loss, the total number of seg-
ments, N , transmitted during T transmission rounds can be ex-
pressed in Equation 5 using Equations 2 and 4.

(2+T−x)Ws−W0+
C(T − x)2(T − x+ 1)2RTT 3

4
= N

(5)

Assuming that RTT is constant, given the total time (total_time)
to receive N segments, the total number of rounds, T , can be de-
rived from T = total_time/RTT . Further, the number of trans-
mitted segments, N , can be derived by N = total_data_sent/MSS,
where MSS is the maximum segment size.

232

Note that there are two more unknown variables left in Equa-
tion 5, the values for the transmission round (x) and the congestion
window value (Ws) when the TCP Cubic flow quits slow start. In
Section 4.2.1, we describe a simple iterative method which derives
the values for x and Ws using Equation 5.

4.2.1 Throughput prediction for short TCP Cubic
flows

Algorithm 1, the HyStart solver, is an iterative solver for Equa-
tion 5. The solver takes in as input the total time (total_time) for
completion of the data transfer, the round trip time between the two
communication nodes (RTT) and the amount of data transferred
(data).

The algorithm first derives the total number of rounds (T) to
transfer the data. Since we assume that RTT is constant, the to-
tal number of rounds is derived by dividing the total time by the
RTT. Once the total number of rounds are known, the solver iter-
ates through valid Ws values and uses Equation 5 to calculate the
total number of segments transferred. The first instance of Ws that
yields the total number of segments larger than or equal to to the
total segments transferred (N) is returned as the solution. The to-
tal segments transferred, (N), is derived by dividing the total data
transferred by the maximum segment size (MSS).

Algorithm 1 HyStart Solver

Input:
RTT ← round trip time
data← the total transfer size
total_time← total time for the data transfer
Output:
Ws ← ssthresh

1: C ← cubic constant
2: MSS ← maximum segment size
3: W0 ← initial TCP window (constant)

4: Ws = null
5: N = ddata/MSSe
6: T = (total_time)/RTT

7: for r = 1; r++; while r ≤ T do
8: for w = 2r−1W0; r++; while r < 2xW0 do
9: ss_seg = 2w −W0

10: ca_seg = (T − r)w + C(T − r)2(T − r +
1)2(RTT)3(1/4)

11: if w > N then
12: break
13: end if

14: total_seg = ss_seg + ca_seg

15: if total_seg ≥ N then
16: Ws = w
17: return Ws

18: end if

19: end for
20: end for

Once the slow start threshold Ws is derived using the HyStart
solver (see Algorithm 1), throughput for a given size can be calcu-

lated using the estimator algorithm given in Algorithm 2.
The estimator algorithm (see Algorithm 2) models the behaviour

of a TCP Cubic flow consisting of a slow start phase and a conges-
tion avoidance phase. The algorithm takes in as input the size for
which the throughput needs to be estimated, the RTT between the
communication end points, and the slow start threshold (ssthresh
Ws). Using the given input size, the algorithm calculates the to-
tal segments needed to be transferred. Further, the total number
of segments transferred in the slow start phase and the number
of rounds the slow start phase operated is calculated based on the
ssthresh value provided. Since the total number of segments to be
transferred is known, the algorithm iterates through the congestion
avoidance phase until the necessary number of segments have been
transferred.

Note that the size of the congestion window is limited by the
receiver buffer size. This buffer limit is device and network spe-
cific [23].

With Algorithms 1 and 2, given the estimated RTT, a small trans-
fer data size of say 1 MB and the transfer time, we are able to esti-
mate the transfer time for larger data sizes. As Algorithm 1 iterates
over the number of rounds and Algorithm 2 iterates over the num-
ber of segments transferred, the computation overheads for both
algorithms are minimum.

Algorithm 2 Throughput Estimator

Input:
size← size for throughput prediction
RTT ← round trip time
Ws ← ssthresh
Output:
eT ← estimated throughput

1: clamped← False
2: C ← cubic constant
3: MSS ← maximum segment size
4: W0 ← initial TCP window
5: cw_clamp← cong. window clamp

6: t = 1
7: eT = 0
8: ca_seg = 0
9: total_seg = dsize/MSSe

10: ss_seg = 2Ws −W0

11: x = blog2(Ws/W0) + 1c

12: while True do
13: if not clamped then
14: cwnd = Ws + C(tRTT)3

15: if cwnd ≥ cw_clamp then
16: cwnd = cw_clamp
17: clamped = True
18: end if
19: end if
20: ca_seg = ca_seg + cwnd
21: if ca_seg + ss_sg ≥ total_seg then
22: eT = size/(RTT (t+ x))
23: return eT
24: end if
25: t = t+ 1
26: end while

233

5. EVALUATION

5.1 Evaluation Setup

SYN

SYN+ACK

ACK

t1MB

Request

Data download

Client Server

t10MB

t20MB

Figure 7: The experiment for evaluating the throughput estimation
model

We used an Amazon AWS EC2 instance running an Ubuntu 64
bit Linux (Kernel ver. 3.13) as the server. The server was placed in
the west coast of USA and it consisted of two Java server programs
that were listening on port 80 and 443 respectively. Further, the
server also consisted of a modified version5 of TCP_PROBE [24]
that was logging the TCP state for flows connecting to port 80. We
used TCP_PROBE mainly to log (monitor) the congestion window
evolution when the server is transmitting data to a client connected
on port 80. The server also ran the default version of TCP Cubic
that comes with the Linux kernel version 3.13.

The client, an Android application, initially carries out two de-
lay measurements by connecting to port 443 on the server. The de-
lay measurement is identical to the one described in Section 3.1.1.
Once the two delay measurements are carried out the client then
sends a request to the server on port 80 that triggers the server to
send 20 MB of data. Just as the download throughput experiment
described in Section 3.1.1, the client starts a timer once the first
byte(s) are received from the server. Further, the client keeps track
of the bytes being received so that the it can track the time to re-
ceive 1 MB, 5 MB, and 10 MB in a 20 MB download (see Figure 7).
The end of the download triggers the client to carry out three more
delay measurements on port 443. For all 20 MB download sessions
we used a LG Nexus 5 running Android version 6.0.1 (Marshmal-
low). The receiver buffer size for 4G LTE networks for this mobile
device was 1048576 bytes. This value is specified in the init.rc file
that can be found in the mobile device [23]. Based on this buffer
size we estimated the congestion window growth to be clamped
when it hits the value of 800. Further, using a TCP dump trace,
we estimated the maximum segment size (MSS) between the client
and server to be 1388 bytes.
5https://goo.gl/K3YOro

Once a single download session is completed, we first average
the five delay samples and use this value as the round trip time
(RTT) between the client and the server for the session. Further,
we derive the total number of transmission rounds to transfer the
first 1 MB of data by dividing the total time to receive the first
1 MB (out of 20 MB) of data by the estimated RTT. With these
values, we used the HyStart solver (Algorithm 1) to estimate the
congestion window value, in which the TCP flow quits slow start
(ssthresh). Finally, using the estimated sshthresh value we esti-
mated the throughput for 5 MB, 10 MB, and 20 MB using the
Throughput Estimator (Algorithm 2).

5.2 Results
We collected 58 samples of 20 MB download sessions using a

4G LTE connection in Singapore. For each sample collected, the
measured throughput values for 1, 5, 10, and 20 MB downloads
were recorded. We then estimated the throughput values for 5, 10,
and 20 MB downloads using the proposed throughput estimator.

For each size, 5, 10, and 20 MB, we calculate the error when es-
timating the throughput via the proposed estimator and also when
using the 1 MB throughput measurement as the estimator. The re-
sults are shown in Figure 8.

 0

 20

 40

 60

 80

 100

5 MB 10 MB 20 MB

A
v
g
.
E

rr
o
r

R
a
te

(%
)

Based on 1 MB Throughput
Model Estimation

Figure 8: Average error rate when estimating the throughput via
the proposed estimator and when using the measurement obtained
for a 1 MB data transfer. The error bars represent the 90th and the
10th percentiles

The average errors when using the 1 MB measurement as the
estimated values are 53.77% (10th percentile: 37.88%, 90th per-
centile: 62.22%), 69.38% (10th percentile: 58.11%, 90th percentile:
76.76%) and 79.95% (10th percentile: 70.41%, 90th percentile: 85.76%)
for 5, 10 and 20 MB respectively. On the other hand, the average
errors for the values obtained from the throughput estimator are
8.41% (10th percentile: 0.71%, 90th percentile: 31.5%) 10.01%
(10th percentile: 0.41%, 90th percentile: 38.45%) and 11.39% (10th

percentile: 0.43%, 90th percentile: 37.41%) for 5, 10 and 20 MB
respectively.

Based on the TCP_PROBE logs, 41 samples out of the 58 col-
lected have no congestion window reduction due to packet loss in
the congestion avoidance phase. The average errors for these 41
samples are given in Table 5. A comparison between the estimated
congestion window evolution and the logged congestion window
evolution for a single download session can be found in Figure 9a.
In these cases, it can be seen that the proposed model is accurate.
The estimated throughput estimation errors for the scenario in Fig-
ure 9a are 1.61%, 1.84%, and 0.52% for 5, 10, and 20 MB respec-
tively.

There are 13 cases (out of 58) with time-out and fast recovery
events. The average errors are given in Table 6. One scenario where

234

Table 5: Average error rates for the proposed estimator and when
using the 1 MB measurement as throughput. Contains samples that
had no reduction in the congestion window (due to packet loss)
during the congestion avoidance phase. The values in brackets rep-
resents the standard deviation (std)

Download Size Error Rate: Estimator Error Rate: 1 MB
5 MB 3.22% (std:2.93%) 54.87% (std:8.59%)

10 MB 2.42% (std:2.35%) 71.28% (std:7.22%)
20 MB 2.02% (std:1.69%) 82.14% (std:5.06%)

a fast recovery event occurred is shown in Figure 9b. In this case,
the errors for the estimated throughput values for 5, 10, and 20 MB
are 0.7%, 10.72%, and 35.38%, respectively. If the 1 MB through-
put measurement is used as the estimator instead, the error for the
20 MB download is as high as 80%.

Table 6: Average error rates for the proposed estimator and when
using the 1 MB measurement as throughput. Contains samples
which had packet loss. The values in brackets represents the stan-
dard deviation (std)

Download Size Error Rate: Estimator Error Rate: 1 MB
5 MB 20.91% (std:14.79%) 51.11% (std:13.38%)

10 MB 28.30% (std:15.40%) 64.79% (std:11.55%)
20 MB 33.99% (std:15.97%) 74.67% (std:7.96%)

We observed that in a small number of cases, the entire 1MB
was transferred in the slow start phase. A sample congestion win-
dow evolution for this scenario can be found in Figure 9c. In our
model, we will simply assume that the ssthresh occurs at the 1MB
transfer. In these cases, the transfer size of 1MB is simply too small
to provide sufficient information even for our model to estimate the
transition point between slow start and cubic growth. For these 4
cases, the average error rates are 35%, 41%, and 34.5% for 5, 10,
and 20 MB respectively when the proposed estimator is used. If the
1 MB throughput is used instead, the average errors are as high as
60.66%, 69.25%, and 74.1% for 5, 10, and 20 MB, respectively.

Figure 10 shows the scatter plots of the measured vs. the es-
timated throughput values using the proposed estimator and the 1
MB based throughput estimator. We observe that the proposed es-
timator performs well for throughput values up to about 13 Mbps.
Beyond that, throughput estimates plateau at around 15 Mbps, show-
ing the limits of using only 1 MB for measurements. From Fig-
ure 4, 15 Mbps is the 90th percentile for both cellular upload and
download. On the other hand, estimation error is high if 1 MB
data transfer throughput is used to estimate higher throughput. In
fact, the throughput estimates plateau around 5 Mbps. From Fig-
ure 4, 5 Mbps is the 30th percentile for cellular upload and 20th per-
centile for cellular download. Note that the estimated throughput
by our estimator shown in Figure 10a is clustered around 4.5 Mbps,
7 Mbps and 12 Mbps. These values corresponds to the achievable
throughput values when 5, 10 and 20 MB are downloaded.

5.3 Discussion
The Throughput Estimator (Algorithm 2), assumes that the round

trip time (RTT) between the two communication end points to be
constant. We have observed an instance in which there are sub-
stantial changes in the RTT during the data transfer. Hence, even
though there was no drop in the congestion window growth (i.e.,
no loss indication in the TCP_PROBE log), the errors are high as
56%, 176%, and 289% for 5, 10, and 20 MB respectively. We re-

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

E
s
ti
m

a
te

d
 T

h
ro

u
g

h
p

u
t

(M
b

p
s
)

Measured Throughput (Mbps)

5 MB
10 MB
20 MB

(a) Estimated vs. Measusred Throughput (Pro-
posed estimator)

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

E
s
ti
m

a
te

d
 T

h
ro

u
g

h
p

u
t

(M
b

p
s
)

Measured Throughput (Mbps)

5 MB
10 MB
20 MB

(b) Estimated vs. Measusred Throughput (Use
of 1 MB throughput)

Figure 10: Scatter Plots: Estimated Throughput vs. Measured
Throughput

moved this single sample from our evaluation. Another instance
where our estimator does not perform well is where the congestion
avoidance phase in TCP Cubic operates in the TCP friendly region.
Our model does not take into account the TCP friendliness and in
these cases, substantially underestimates the throughput. Finally,
our estimator will likely not provide good estimates for very large
transfers as we do not take into account packet loss. Even though
losses in LTE networks have been observed to be small in our mea-
surements with transfers of up to 20MB, as the data transfer sizes
become even larger, the likelihood of more packet loss increases.
The evaluation was conducted only in cellular networks. As men-
tioned before, usage of cellular networks are usually capped by the
service providers and therefore using existing throughput estima-
tors such as SpeedTest often consumes a large percentage of the
data plan quota. Thus, the main emphasis of our throughput es-
timation scheme is to provide reliable estimates for throughput in
cellular networks by using a small amount of data. On the other
hand, WiFi networks usually do not come with data caps and there-
fore tests such as SpeedTest can be used.

6. CONCLUSION
In this work, we have identified several issues related to the com-

mon throughput measurement techniques used in mobile devices.
We have backed up our claim by conducting a detailed measure-
ment study of cellular and WiFi throughput values in 10 different
countries. Considering the issues in current measurement tech-
niques, we have proposed a throughput estimator by modeling short
lived TCP Cubic flows. Our proposed technique only requires min-
imal amount of data transfer and yet can estimate the achievable
throughput with high accuracy.

235

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 2 4 6 8 10 12 14

S
e

g
m

e
n

ts
 (

c
w

n
d

,
s
s
th

re
s
h

)

time (seconds)

TCP Probe Log
Model Prediction

(a) No fast recovery/time out event in con-
gestion avoidance

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 2 4 6 8 10 12 14 16 18 20

S
e

g
m

e
n

ts
 (

c
w

n
d

,
s
s
th

re
s
h

)

time (seconds)

TCP Probe Log
Model Prediction

(b) A fast recovery event triggered around
the 9th second

 0

 100

 200

 300

 400

 500

 600

 700

 0 2 4 6 8 10 12

S
e

g
m

e
n

ts
 (

c
w

n
d

,
s
s
th

re
s
h

)

time (seconds)

TCP Probe Log
Model Prediction

(c) Slow start preveliant for more than 1
MB of data transfer

Figure 9: Estimated congestion window evolution vs. the logged congestion window evolution

Acknowledgments
This research is supported by the National Research Foundation,
Prime Minister’s Office, Singapore under its International Research
Centre in Singapore Funding Initiative. We would also like to thank
Amazon.com, Inc. for selecting us as one of the recipients of the
AWS Cloud Credits for Research Program.

7. REFERENCES
[1] comScore Inc. Major mobile milestones in may: Apps now

drive half of all time spent on digital. http://goo.gl/oKHY3L.
Accessed: 2016-07-06.

[2] Google AdWords blog. Inside AdWords: Building for the
next moment. https://goo.gl/D6OBKJ. Accessed:
2016-07-06.

[3] J. Huang, F. Qian, A. Gerber, Z.M. Mao, S. Sen, and
O. Spatscheck. A close examination of performance and
power characteristics of 4G LTE networks. ACM MobiSys
’12.

[4] ABI Research. Average Size of Mobile Games for iOS
increased by a whopping 42% between march and
september. https://goo.gl/1wDLRH. Accessed: 2016-06-14.

[5] Computerworld. Instagram, Vine short videos causing
explosion on wireless networks. http://goo.gl/I9wpIj.
Accessed: 2016-06-14.

[6] S. Ha, I. Rhee, and L. Xu. CUBIC: A new TCP-friendly
high-speed TCP variant. ACM SIGOPS Operating Systems
Review, 2008.

[7] W3Cook. OS Usage Trends and Market Share.
http://goo.gl/Qk22r9. Accessed: 2016-07-06.

[8] Y. Xu, Z. Wang, W.K. Leong, and B. Leong. An end-to-end
measurement study of modern cellular data networks.
Springer PMC ’14.

[9] W.L. Tan, F. Lam, and W.C. Lau. An empirical study on 3G
network capacity and performance. IEEE INFOCOM ’07.

[10] J. Sommers and P. Barford. Cell vs. WiFi: On the
performance of metro area mobile connections. ACM IMC
’12.

[11] X. Liu, A. Sridharan, S. Machiraju, M. Seshadri, and
H. Zang. Experiences in a 3G network: Interplay between
the wireless channel and applications. ACM MobiCom ’08.

[12] Y. Chen, Y. Lim, R.J. Gibbens, E.M. Nahum, R. Khalili, and
D. Towsley. A measurement-based study of multipath TCP
performance over wireless networks. ACM IMC ’13.

[13] S. Deng, R. Netravali, A. Sivaraman, and H. Balakrishnan.
WiFi, LTE, or both?: Measuring multi-homed wireless
internet performance. ACM IMC ’14.

[14] N. Baranasuriya, V. Navda, V.N. Padmanabhan, and
S. Gilbert. Qprobe: Locating the bottleneck in cellular
communication. ACM CoNEXT ’15.

[15] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling
TCP throughput: A simple model and its empirical
validation. ACM SIGCOMM Computer Communication
Review, 1998.

[16] W. Bao, V.W.S Wong, and V. Leung. A model for steady
state throughput of TCP CUBIC. IEEE GLOBECOM ’10.

[17] S. Poojary and V. Sharma. Analytical model for congestion
control and throughput with TCP CUBIC connections. IEEE
GLOBECOM ’11.

[18] M. Mellia, H. Zhang, and I. Stoica. TCP model for short
lived flows. IEEE Communications Letters, 2002.

[19] D. Zheng, G.Y. Lazarou, and R. Hu. A stochastic model for
short-lived TCP flows. IEEE ICC ’03.

[20] K. Zhou, K.L. Yeung, and V.O.K. Li. Throughput modeling
of TCP with slow-start and fast recovery. IEEE
GLOBECOM ’05.

[21] S. Ha and I. Rhee. Taming the elephants: New TCP slow
start. Elsevier Computer Networks, 2011.

[22] Linus Torvalds. linux/tcp_cubic.c at master. torvalds/linux.
github. https://goo.gl/35oPwD. Accessed: 2016-05-07.

[23] H. Jiang, Y. Wang, K. Lee, and I. Rhee. Tackling bufferbloat
in 3G/4G networks. ACM IMC ’12.

[24] Linus Torvalds. linux/tcp_probe.c at master. torvalds/linux.
github. https://goo.gl/LZG73v. Accessed: 2016-05-07.

236

