
Raptor: Scalable Rule Placement over Multiple Path
in Software Defined Networks

Pravein Govindan Kannan, Mun Choon Chan, Richard T.B. Ma and Ee-Chien Chang
School of Computing, National University of Singapore

Abstract—Software Defined Networking (SDN) enables flexible
management of networks through policies that are stored as a
set of rules in ternary content-addressable memory (TCAM)
in the switches. With increasing Cloud and Network Function
Virtualization (NFV) demands, the number of network policies
required will also increase accordingly. As the TCAM memory
capacity available in the switches is limited, any rule placement
algorithm must be highly scalable to accommodate a large
number of policies in the network. In this paper, we propose
Raptor, a scalable rule placement scheme that supports multi-
path routing as well as immediate failure-recovery to a backup
path without policy violation. The requirement is that any path
which a flow may take should see the same set of policy rules
and the challenge is to do this efficiently. We model our problem
as an Integer Linear Program to maximize the sharing of
rules, followed by heuristic based graph partition for the final
placement of rules so as to preserve the rules’ priority orderings.
Our evaluation shows that Raptor can achieve savings of up to
98% in TCAM usage or support 250% more policies compared
to existing works.

I. INTRODUCTION

Software Defined Networking (SDN) has revolutionized
network programming/configuration by providing an abstract
view of the network, thus providing an easier way to express
policies. Policies are a set of high-level formal statements
that define how packets are processed in a network. Prior
works have demonstrated powerful abstractions for expressing
network policies. The network policies are typically translated
into prioritized {Match,Action} rules that are stored in the
ternary content-addressable memory (TCAM) available on
switches in the network.

A typical TCAM in a switch can store a few thousand
entries/rules [1] However, with the continuing growth of cloud
and network virtualization functions [2], the demand for more
and more policies (up to a few hundred thousands to few
millions [3]) will increase. Furthermore, as TCAM processing
is power-hungry, even with the existing TCAM sizes, it could
take up to 60% of the total power consumed by a network
switch [4]. Hence, efficient use of TCAM is not only needed
because it is a limited resource, but also for reducing power
consumption and heat generation [5].

Existing works [6] [7] [3] have looked at placement of rules/
policies by distributing over a single path. However, when
a link over the allocated path fails/congested (quite frequent
in Data-centers [8]), the associated rules need to be installed
on the fallback path before switching over. This dynamic re-
provisioning and placement of rules increase the recovery time

as the latency to re-calculate, install and activate these rules
can be significant [9], [10].

In order to reduce or even eliminate such failover latency,
multi-paths are exploited [11]–[15]. The use of multi-path is
very common and crucial in traffic engineering to perform load
balancing and congestion minimization [16] for meeting the
network demands. Existing approaches either (1) duplicate the
rules over all possible paths which is inherently expensive [14],
or (2) use multi-path only for traffic management and do not
duplicate the rules along the path for fast-reroute [11], [12].
As load balancing in high-speed networks demand operation at
line-rate, dynamic/re-active migration of rules is not practical.

In this paper, we propose Raptor: a rule allocation scheme
that caters to fast-failover/multi-path routing without rule
migrations. The key characteristic of our approach is that the
set of associated rules are installed on all the paths allocated
for traffic between two end hosts. Hence, if one of the paths
fails (or is congested), switching over to the other remaining
paths can be done quickly. However, catering to multiple paths
could lead to excessive replication of rules across multiple
paths. Hence, careful placement of rules is needed so that the
amount of replication can be reduced.

In order to minimize replication of rules, we leverage
rule-sharing, where a single rule’s position of placement
is determined such that a rule can be shared by multiple
paths across the network thus reducing replication. A key
observation exploited in our work is that there is a substantial
amount of shared rules/policies. Prior studies [17] [1] have
shown the existence of substantial wild-card rules which may
be partitioned into various parts of the network

Raptor consists of the following key modules :
1 Diffuse: We formulate the problem as an Integer program-
ming problem that tries to maximize rule sharing.The solution,
however, does not necessary preserve rule ordering.

2 Connect: Based on the placement generated by Diffuse, we
use a graph partition algorithm to distribute the rules to ensure
that the ordering between rules is respected.

Evaluation shows that even when only a single path is used,
our approach requires 25% to 97% (83.4% average) less rules
in the network compare to OBS. The performance gap is even
bigger when the number of paths per flow increases. If 2 or
4 paths are required per flow, the reduction is 55% to 98%
(86.8% average) respectively.

The reduction in TCAM usage can come at a price of
increase in network traffic compared to rule-placement on



ingress switches. When the objective is to only reduce TCAM
usage, the average increase in traffic is 22%. However, in the
case whereby the increase in traffic overhead is minimum (less
than 0.1%), Raptor is also able to reduce TCAM usage by 42%
to 93.7% (75.3% average).

The paper is organized as follows: Section II discusses
the works that are closely related to Raptor. Section III
explains the basics of the algorithm. Section IV discusses the
algorithms involved in our placement scheme. We perform
evaluations on our system in Section V. Section VI discusses
some aspects of our work and we conclude in Section VII.

II. RELATED WORK

The most common placement of firewall policies are on the
ingress/edge switches [18]. However, restricting the rule to
only ingress switches cannot scale to support a larger number
of policies. DIFANE [19] implements the policies by parti-
tioning them to the authority switches. The ingress switches
redirect the first packet to dedicated authority switches, while
caching the rule for future use. vCRIB [3] works on offloading
the rules by similar partitioning method from virtual switches
to physical switches along the path optimizing the CPU mem-
ory of the virtual switches and minimizing traffic overhead
due to offloading of rules to physical switches. Palette [6]
optimizes the placement of rules given a set of end-point
policies by partitioning of the rule graph (constructed by
dependency relations) and placing them over the flow-path
using Rainbow Path coloring. One Big Switch [7] performs
placement of rules by abstracting the network as a single
switch and performing placement of rules based on the single
path specified for the flow. For each path, rules are grouped in
a way to minimize overhead and placed on the switches along
the path. Huang et al. [20] optimize the rule placement based
on the QoS constraints. They consider rule multiplexing where
a set of rules apply to a single flow taking multiple paths.
However, they do not perform rule sharing across multiple
flows. Raptor differs from the above rule placement algorithms
in the following ways :
• Performs rule sharing in cases where a rule might be

applicable to the traffic between multiple endpoints in the
network.
• Optimizes the placement considering multiple paths for

a particular flows according to the given routing-policy to
support fast-reroute and load balancing.
• Partitions the rule-set without causing major overhead (rely-

ing on rule ordering to preserve policy semantics).

III. OVERVIEW

We model the network as a collection of three components
as in Figure 1, namely: end hosts {H1,H2...Hm}, switches
and links. The end hosts are typically servers or VMs running
on top of servers. The switches are further classified into edge
switches and core switches. The edge switches {E1,E2..Ek}(k
¡= m) connect the (end) hosts to other entities in the network.
The core switches {S1,S2..Sj} are connected to either the edge
switches or to the other core switches.
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S3

Fig. 1: A network topology for a scenario.

Endpoint Policy: Similar to the assumptions made in OBS
[7], we differentiate between policies that determine packet
processing (endpoint policies) and policies that determine
routing (routing policies). An endpoint policy is a prioritized
set of rules which dictate the action taken for each packet
entering the network. The policy can be roughly categorized
into different categories that stipulate access-control, statistics,
QoS provisioning (queues) and other packet re-write actions
(e.g. NAT,VLAN, etc). Endpoint policies are applied to all
ingress packets before moving through the network switches
to the destinations. On the other hand, routing policies dictate
the route/path taken by a packet belonging to a flow from one
edge switch to the other. The objective is driven by traffic
engineering goals, including reduction of loss and latency.
Between each host pairs, there are a set of well-defined
(chosen) unique paths which the packets can be routed to.

Network policies are typically translated into the appro-
priate {Priority,Match,Action} rules that are stored on
the TCAM available on switches in the network in the top-
down order of priority. As a host is connected to the network
through an edge switch, a rule associated with a host-pair
is also associated with a pair of edge switches (En, Em).
A rule that applies to a single edge switch-pair is called a
non-shared rule. A rule that is associated with multiple edge
pairs is a shared rule. Typically, this rule may contain wild-
cards which makes it applicable to multiple flows originating
from different end hosts. An example of a shared rule is
{Match:src ipv4=*, tcp port:22; Action=deny}. This rule is
applicable to packets originating from any host in the network.
For shared rules, the (default) ingress placement approach
would result in replicating these rules on all the applicable
edge switches.

Path Coverage: We define Path Coverage as an indicator
function if a switch s lies in a path i:

δi(s) =

{
0 if s /∈ i
1 if s ∈ i

For example, in Figure 1 there are two paths between E1

and E3. We represent the path i1 = {E1,S1,S3,E3} and,
i2 = {E1,S2,S3,E3}. Hence, δi1 (E3) = 1, and δi2 (E3) = 1.
Similarly, δi1 (S1) = 1 and δi2 (S1) = 0. We intend to place the
endpoint rules in such a way that, regardless of which path (i1
or i2) is taken, a packet should adhere to the same endpoint
policy.

TABLE I: Sample end point policies
ID Src Dest Action

1 H1(00) and tcp-
port:80

H3(10) and tcp-
port:80 Drop

2 H2(01) H3,H4 (1*) and tcp-
port:443 Drop

3 All(**) H4(11) Add VLAN 2

4 All(**) All(**) and tcp-
port:22 Drop



A. A Motivation Scenario

We discuss a scenario in a campus/ data center network
using the network topology as shown in Figure 1. Consider
four hosts {H1(00),H2(01),H3(10),H4(11)} connected to the
network via edge switches {E1,E2,E3,E4}. Let us consider a
set of rules (endpoint policies) to be applied to the network as
shown in Table I. To support load balancing and quick failure
recovery, we route packet via two paths between each edge-
switch pair.
• Rule 1 is a non-shared rule applicable only to the traffic

between H1 and H3 and, edge (switch) pair is e = (E1, E3).
The candidate path set (Ie) contains {i1,i2}.To ensure rule-
enforcement on both paths with minimal replication, it is ideal
to place the rule in switches which are present in both paths,
i.e. E1, S3 or E3 otherwise, we would need replication of the
rule to enforce on other path.
• Rule 2 is a shared rule applicable to all packets from H2 to
H3 and H2 to H4. Hence, effectively, it involves edge E2 to
{E3,E4}. Ideal Placement of this rule is E2(ingress edge) or
S3, which is shared by all paths from H2 to H3/H4.
• Rule 3 is applicable to all packets directed towards Host

H4. Hence, it is ideal to place this rule in S3 or E4, which is
shared by all possible paths from all the hosts to H4.
• Rule 4 is applicable to all possible combination of host pairs.
This rule ideally has to be placed in S3 and E1 or E2. In this
case, we cannot avoid replicating this rule, since there no one
common switch covering all paths.

The total number of rules needed in the network is 5 if we
consider rule-sharing between different edge pairs. Without
rule sharing, and by just allocating the rules in the ingress
of flow, 9 rules are needed. OBS/ Palette will incur more
than or equal to 9 rules, since they remove rule dependencies
by slicing the flow-space between rules. This simple example
illustrates the savings possible through sharing of rules among
different paths. The challenge lies in maximizing sharing while
preserving rule priorities.

IV. ALGORITHM / MODEL

Given the network topology, the selected paths between
edge pairs Ie (routing policies), the endpoint policies (priori-
tized rule sets) and the rule (TCAM) capacity of the switches,
the objective is to find an optimal placement of rules in the
switches with the following constraints: 1) All the routable
paths between edge-pair should enforce the same endpoint
policy and, 2) The number of rules in a switch should not
exceed the switch’s TCAM capacity.

We model the rule placement problem as an Integer Linear
Program(ILP), considering the placement every rule. However,
the rules need ordering based on priority. We show that
this cannot be incorporated in the ILP without significantly
increasing the complexity of the solver. Hence, we propose
Raptor, which comprises two parts :
1) Diffuse: We identify the optimal placement of only the
shared rules in the network wthout rule-ordering guarantees.
This phase gives us the placement of the shared rules, where
the sharing is maximized.
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Fig. 2: Overview of Raptor.
TABLE II: Notations used in the optimization model

Notation Description
S Set of OpenFlow switches.
E Set of edge switches.
P Set of shared rules.
e A pair of Edge Switches.
Re Set of shared/non-shared rules for an edge pair e.
Cs TCAM Capacity of Switch s.
Eρ List of edge Pairs to which a rule ρ applies to.
Ie Set of Candidate Paths between an Edge Pair e.
Se Set of Candidate Switches between an Edge Pair e.
Le List of edges of the rulegraph for edge pair e.
Oi

u,v Ordering between switch u and switch v.
δi(s) The path coverage of Switch s for Path i in Ie.
Dρ,e Switch allocation for rule ρ for Edge Pair e by diffuse.
χ Direction of Placement, either Forward or Reverse.
Tρ,s Traffic Overhead induced by rule ρ on switch s.

2) Connect: This phase takes the placement of shared rules
from the diffuse phase, and tries to incorporate the priority
constraints using dependency heuristics.

The general overview of Raptor is shown in Figure 2.

A. Diffuse

We formulate our problem in order to maximize the sharing
of rules. Non-shared rules are not considered in the model
because : 1) It is restricted to only one edge pair and hence,
there is no scope for sharing across multiple end points. 2) It
can be flexibly placed along path(s) as long as priority ordering
is preserved. We express the objective function as a boolean
allocation matrix denoted by X = (xρ,s) to minimize the total
number of rules incurred where xρ,s = 1 indicates that rule ρ
is placed in Switch s and xρ,s = 0, if ρ is not placed in s.

Minimize
∑
ρ∈P
s∈S

xρ,s (1)

Subject to,
∀s ∈ S :

∑
ρ∈P

xρ,s ≤ Cs (2)

∀ρ ∈ P,∀e ∈ Eρ,∀i ∈ Ie :
∑
s∈Se

δi(s).xρ,s > 0 (3)

Equation 2 accounts for the TCAM rule capacity of the
switch. It is generally, good to limit the capacity of each
switch to a fixed number of endpoint rules it can hold, so that
it can accommodate forwarding rules too. The latest switch
architecture [21], [22] support multiple flow-tables/ pipeline
which facilitates the endpoint and forwarding/ routing rules



to be placed in separate tables. Equation 3 makes sure that a
rule is either placed on a switch which covers all paths in Ie
or multiple switches covering each path in Ie. The value of
Ie is provided as input to our ILP Model. Generally, Ie can
be decided by the underlying routing module to load-balance
traffic.

1) Priority Consideration: We derive a model to incorpo-
rate ordering between dependent rules with varying priorities
to explain the complexity. For each edge-pair e, we construct
a dependency rule-graph Ge with the rules Re (both shared
and non-shared rules) applicable for e. Two rules p and q are
dependent if a packet header matches both the rules. If two
rules p and q are dependent and p.priority ≥ q.priority, we
place a directed edge lp,q from p to q in the graph Ge. Let Le

be the set of all directed edges for e.
We define Ordering Oi

u,v between switch u and v corre-
sponding to a path i as below :

Oi
u,v =

{
1 if u precedes v (or) u=v in path i
0 if v precedes u in path i

We formulate the priority constraint for each edge pair as
below :
∀e ∈ E,∀i ∈ Ie,∀lp,q ∈ Le :

∑
u,v∈Se

xp,u.xq,v.O
i
u,v > 0

This constraint makes sure that if two rules p and q are
dependent(lp,q ∈ Le) and p.priority > q.priority, then p
would be placed in a switch which is same as or precedes
the placement switch of q. The number of constraints needed
to specify the rule ordering is thus up to IeR

2
eS

2
e , where Ie

is the total number of paths, P is the rule sets applicable
to ingress/egress pair e, and Se is the candidate switches
applicable to e.

For increasing number of rules Re (at least ten of thou-
sands), R2

e can easily exceed a billion even for a medium
size network. Even if there exists efficient heuristics to solve
the ILP, considering ordering constraints will significantly
increase the computation time. Hence, we relax the priority
ordering constraints and try to find an approximate solution in
the diffuse phase and then ”correct” the solution for priority
ordering as a next step.

The allocation given by Diffuse are the vantage points to
place the shared rules in order to maximize their sharing.
Based on this solution, in the Connect phase, the final al-
location that respects all the constraints including the rule
ordering is generated. By doing this, we do not converge
to the most optimal solution (6%-10% sub-optimal solution).
However, our experiments showed that we are still able to
achieve significant savings.

B. Connect

In the connect phase, using the output from the Diffuse
phase as the reference point, rules are placed along the given
paths in order to satisfy ordering constraints.

The overall algorithm is composed of the following steps.
1. Rule Graph Construction: For each edge-switch pair,

we form a rule-graph similar to the procedure described in
Section IV-A1.

2. Identify Independent Rule-Sets: We identify indepen-
dent rule sets (disconnected sub-graphs) in the rule graph
constructed in Step 1. These independent rule sets can be
moved along a given path, without affecting the other rules
because they are not dependent on other rules.

3. Placement Initialization: For each edge-switch pair, a
pivot switch is chosen. The pivot switch is chosen to be one
with most-allocated shared rules in the Diffuse phase. The set
of pivots chosen has to cover all paths in Ie. If there is no
shared rule, the ingress switch is chosen as the pivot.

Once a pivot is chosen, the initial placement is to put the
entire rule set of the edge pair on the associated pivot switch.
Since, the entire rule set is present in one switch (pivot), the
priority semantics (or rule ordering) are maintained for that
edge pair. However, the TCAM capacity may be violated.

4. Graph Partition: In this step, the specific rules are of-
floaded from the pivot switches such that the priority orderings
are respected, TCAM constraints are not violated and rules
duplication can be reduced. For ease of presentation, we label
the rules belonging to the edge pair with different colors based
on the position of the switch:

1) A shared rule is labeled white if it has been allocated
to the pivot switch(es) in the Diffuse phase.

2) A shared rule is labeled red if it has not been allocated
to the pivot switch(es) in the Diffuse phase.

3) A non-shared rule is labeled blue. Note that these rules
are not considered in the Diffuse phase because as non-
shared rules.

In the heuristics, the white rules placed on the pivot switches
are not moved. Only the red and blue rules are considered for
relocation. Red rules are moved first because these rules are
shared and their placements should be done so that sharing
can be maximized. On the other hand, blue rules have no
impact on sharing. Their placements are constrained by their
relationship with red/white rules and TCAM availability.

Movement of Red Rules The placement from the Diffuse
phase indicates the “ideal” placement for the red rules in
order to maximize rule sharing. However, moving a red rule
is feasible only if the priority ordering is satisfied with respect
to the white rule and availability of TCAM space.

Let DR,e be the position(s) of a red rule R with respect to
an Edge pair e in the Diffuse phase. We iterate through the
individual red rules and identify whether it shares an edge with
a white rule or another red rule. Based on the dependency, and
its correctness of the position, it is relocated to DR,e.

For example, if a red rule R is dependent on the white rule
W (i.e. R→W exists), then DR,e must precede pivot switch
in-order to relocate R to DR,e and vice-versa. However, when
a red rule R is inter-dependent on two or more white rules
(W→R→W), then R will remain at pivot. In addition, when a
red-rule is converted to a white rule, it will satisfy the priority
ordering for the current edge-pair. However, this particular
movement may not hold priority semantics true for other edge-
pairs which the red rule applies to. Hence, in cases whereby
such a movement causes a priority violation, we slice the flow-
space of the red-rule such that it is applicable only for the
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Fig. 3: Overall algorithm flow of connect.
current edge pair. Now since the red-rule R is no longer a
shared-rule, it will be colored to blue, and will be handled as
in the next section.

Movement of Blue Rules The rationale behind moving the
blue rules is to utilize the TCAM space of other switches along
the path, and also to maintain the rule ordering semantics
with respect to re-located red rules. We consider blue rules
as a dependency graph (creating a blue cluster), and check
their dependencies with a red/white rule(s). Based on their
dependency, the placement is restricted to a particular region
in the path. For each blue cluster B, let p denote the set
containing the positions of red/white rules from which there
are incoming edges to B (W→B and R→B) and let n denote
the set containing the positions of red/white rules that share
an outgoing edge from B (B→W and B→W). Then the blue
cluster B is constrained to the switches between positions
{Max(p), Min(n)} for its allocation/ movement. Max(p)
returns the switch that is farthest from the ingress switch in
the list p, and Min(p) return the switch that is nearest to
ingress switch in list p.

For each blue cluster, after identifying the region of move-
ment, we place them on switch(es) such that : 1) internal de-
pendencies within the blue rule group are correct and 2) mini-
mize the replication of blue rules when placing them for multi-
path. We implement a greedy algorithm(AllocateBlue) for the
allocation of blue rules within a region. Algorithm 1 shows
the pseudocode of AllocateBlue(RuleList, start, end, Ie),
where {start,end} is the range of the switches for allocation
of RuleList L derived using it’s dependency after topological
sorting the dependency graph.

The algorithm takes several rounds and during each round,
the initial position Q and direction of placement χ is chosen
based on the below conditions:

1) If Cumulative vacancy of switches after Q ¿ L.size
Then ; Direction of placement χ is forward.

2) If Cumulative vacancy of switches before Q ¿ L.size
Then ; Direction of placement χ is reverse.

3) If both the above conditions satisfy, Select Direction
where cumulative vacancy is highest.

The cumulative vacancy is checked to guarantee feasibility
for the rules movement, once a position Q is chosen. The
initial position is chosen top down from the switch list (con-
taining candidate switches Se) which is sorted in decreasing
order of the number of paths it covers in Ie. This is done
to give preference to switches which cover more paths, and
thus reduce the need for replication of the rule(s). Algorithm
1 shows the pseudo code of the AllocateBlue algorithm.

In the event of failure to allocate a rule due to capacity
constraints, the current partitioning is discarded and the esti-
mation of pivot (and re-coloring) is repeated again with the
rest of the switches. We try to allocate until all pivots are

Algorithm 1 Allocation for each Blue Cluster

function ALLOCATEBLUE(RuleList, start, end, Ie)
Q,χ ← Estimate Initial Position & Direction of Allocation
if Q is null then

return false
end if
if (χ == Forward) then

Allocate Decreasing order of priority till vacancy in P .
else

Allocate Increasing order of priority till vacancy in P .
end if
for Each i ∈ Ie do

if (δi(Q) == 0) then
AllocateBlue(AllocList, start, end, i)

end if
end for
if (RuleList != Empty) then

if (χ == Forward) then
AllocateBlue(RuleList,Q, end, Ie)

else
AllocateBlue(RuleList, start,Q, Ie)

end if
end if
return true

end function

exhausted. If it is impossible to allocate with all pivots we
terminate our algorithm. Since, we start with the pivot position
which maximizes the sharing of rules, we tend to align towards
the optimal solution at best-effort. The overall flow of connect
phase for each edge pair is depicted in Figure 3.

In order to maintain the one-switch abstraction, we apply
an 1-bit tag (T-bit) to the packets which have been matched
of a rule, so that it doesn’t get matched by a dependent rule
down the path. Hence, we add a Highest priority rule in each
switch, which matches on the T-bit to allow the packet pass
down the path stated by the routing policy.

Remark: Note that priority preservation is always guar-
anteed if the Connect phase completes successfully. This is
because for each edge-pair, we check the dependency relation
of each (red/blue) rule. The movement of red/blue rules is
performed with respect to priority dependency with white
rules(at pivot) and the priority dependencies of the white
rules are preserved since they are on the same switch. If
the Connect phase terminates without violating the TCAM
constraint, priority ordering is preserved for each edge-pair,
and thus for all network policies.

C. An Example Scenario
We illustrate an example of the connect phase in Figure 4

consisting of five rules applicable for edge pair e (S1,S6) along
two paths as in Ie with variable TCAM capacity(C) per switch.
Rules 1, 4 and 5 are shared rules, and the rest are non-shared
rules. Let rules 4, 5 be allocated to S6 by Diffuse, and rule 1
be allocated to S1. Rules 2 and 3 do not have any allocation
yet because they are non-shared rules.
1) The pivot is chosen as S6 because it is allocated the highest
number of shared rules by Diffuse. Now, the rules are colored
accordingly (4 and 5 as white, 1 as red and the rest as blue).
2) We perform the movement of Red rules. Red rule 1 respects
it’s priority relation with white rule 5, by moving it to it’s ideal
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position (S1). At the same time, this movement also guarantees
feasibility of allocation (TCAM Space) for it and dependent
blue rules.
3) The blue rules are moved as a cluster (rule 2 and 3
combined). Since the blue rule cluster has an incoming edge
from red rule 1 and outgoing edge to white rule 5, the feasible
region of movement is {S1,S6}. We run the AllocateBlue
algorithm for the blue rule graph, which selects S6 as the
Initial Position Q, and places the rules in reverse direction.
This would place rule 5 at S6 and rule 4 at S3 and S5.
This is the best allocation with least replication in order to
provision policies for both paths in Ie. This way, The final
rule placement is generated.

D. Dynamic Policy Updates

Network Policies may change from time to time. A policy
change may result in an addition of a new rule, removal of an
existing rule or update of an existing rule.

1) Addition of new rule: First, we must check which end-
points (edge switches) the new rule p applies to. There are
two cases:

(a) Rule Applies to Single Edge Pair: If the rule p applies
to only packets flowing across a single edge pair (non-shared
rule), the rule is added to the rule graph of the edge pair. Once
added, the rule is considered as a blue-rule, which is allocated
as per the procedure mentioned in the previous section.

(b) Rule Applies to Multiple Edge Pairs: If the rule p
applies to packets flowing across multiple edge pairs (shared
rule), then we apply the diffuse algorithm to this rule, and
identify the best initial placement. Once the initial placement
is obtained, this rule is added to the existing rule graph for
each edge pair. If the dependency conditions hold true, the
new policy is allocated to the position stipulated by Diffuse.
If any condition fails to be satisfied, we need to break down
the rule into individual blue rules and handle it as in Case (1)
for each edge pair.If the rule has no feasible placement due
to TCAM constraint, we need to run the allocation algorithm
(connect) by choosing the pivot position again for the edge
pair which failed to given an allocation.

2) Removal of a rule: The rule can simply be removed
from all the positions of replication using cookie as identifier
of the rule. The rule is then removed from the rule graph of
the applicable edge pairs similarly to keep it consistent for
future updates.

E. Traffic Overhead

One side-effect of spreading the rules along the path as
Raptor is increase of traffic overhead, due to movement of
ACL/ QoS rules further down the path. Thus, packets are
forwarded inside the network and are dropped later along
the path.The amount of traffic overhead incurred can be
incorporated into the objective of the ILP Model(Diffuse). We
define the overall overhead incurred due to the placement of an
overhead inducing rule ρ (deny, rate-limiting rules) on switch
s as : Tρ,s = ∀e ∈ E,∀i ∈ Ie :

∑
u,v∈Se

τ iρ.h
i
s (4)

where, τ iρ is the traffic weight matching rule ρ on a path i
and, his is the hop-count of switch s from the ingress switch
of a path. For non-overhead inducing rules (accept, modifying
rules), Tρ,s = 0. We modify the objective function of the ILP
Formulation in Diffuse phase (Equation 1 from section IV-A)
as follows to include traffic overhead variables :

Min :
∑
ρ∈P
s∈S

((Tρ,s.γ) + 1).xρ,s (5)

where γ is a tuning parameter which can be set to any value
between 0 and 1. A value close to 1, will make sure the
model gives importance to reducing traffic overhead, and a
value close to 0, will make sure the model gives importance
to reducing overall rules incurred.

V. EVALUATION

We have implemented Raptor in Java, and used Gurobi [23]
as the Integer Linear Program (ILP) solver. Additionally, we
integrated Raptor with the ACL module of the Floodlight [24]
controller. We used the Floodlight’s feature of accessing pairs
to determine which edge switch an end-host is connected to.
This information is used to determine if a particular IP-prefix
in a rule is associated with a single switch (non-shared rule)
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Fig. 5: Average Overhead (ORules) in various topologies with low overlapping rules(policies) and High overlapping rules.

pair or multiple switches (shared rule). We evaluate Raptor
over 4 network topologies: 1) Fat-Tree with 80 nodes, 2)
Structured Networks with 100 nodes based on GTM-ITM
[25], 3) Stanford Backbone Network (25 nodes) [26] and,
4) Abilene [27] (39 nodes).

The policies are generated by ClassBench [28] with twelve
different ACL seeds. We classify the policy sets into two
variants: 1) less rules overlap (<7% shared rules) and, 2)
more rules overlap (∼20% shared rules). We vary the size
of the policy sets starting from 10K and increase the size till
a feasible solution cannot be found for the given algorithm
and network topology.

We compare Raptor against the two rule allocation schemes.
(1) Ingress [18] places rules at the edge switches. This

scheme does not create additional rules due to splitting/slicing
but will fail if the TCAM space on the ingress switches are
exhausted.

(2) OBS [7] is an existing rule placement algorithm pro-
posed by Kang et al. We do not consider Palette [6] for
our evaluation because it performs equal or worse than OBS
[7]. Also, we do not compare with DIFANE [19] since their
objective is to minimize controller overhead using specific
high TCAM capacity authoritative switches.

The multiple path versions of our scheme will be labeled as
Raptor-k, where k is the number of paths available between
a given end host pair. These k paths are link/ edge distinct
and computed using the Suurballe’s algorithm [29]. Traffic
overhead minimization version of Raptor will be labeled as
Raptor-k(γ = 1). Recall that, with a high γ = 1, the diffuse
model tries to minimize the traffic overhead over number of
rules generated. About 50% of the policy-set is set to contain
overhead-inducing rules. For comparison, we extend the OBS
algorithm to support k > 1 paths and is called OBS-k. In
the OBS-k allocation, each rule should appear in the k paths
at least once. The TCAM table size on each switch is set to
3500 rules. The metric used in the evaluation is the percentage
increase in the number of switch rules incurred to install the
policies in the network computed as ORules = (Res/Pol −
1) ∗ 100, where Res is the number of rules generated by the
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given algorithm and, Pol is the number of rules specified in
the given policy set.

Each data point shown in the evaluation is the average of 6
runs (6 different ACL seeds). We refer to Raptor-k(γ = 0) as
just Raptor-k throughout this section for simplicity.

A. Overhead Comparison

We evaluate the efficiency of the various algorithms by
looking at the overhead ORules for the 4 different topologies
and 2 sets (low and high overlap) of rules. The results for the
low and high overlap rule sets are shown in Figure 5(a) to (d)
and Figure 5(e) to (h) respectively.

When the percentage of shared rule is small, the Ingress
algorithm is very efficient and can be accommodated on the
edge switches. Note that due to the shared rules, the overhead
is still not zero since the shared rules need to be replicated.
The Ingress allocation fails to scale beyond 60K rules for all
topologies. For all cases, Raptor-1 has the lowest overhead and
can support the largest number of rules. The overall savings of
Raptor compared to OBS-1 is 25% to 97% (83.4% on average)
with a higher saving when rule-overlaps are higher. In terms of
topology, the improvement of Raptor over the other algorithms
is lower in the Stanford and Abilene network because the
networks are smaller and the topologies more restrictive (OBS’
overhead is low with less no. of hops).

When the number of paths is increased from 1 to 2, the
incremental increase in overhead is relatively small for Raptor.
Over all cases, the increase ranges from 0% to 19% for low
overlap and 0.1% to 24% for high overlap. Even though
Raptor-2 needs to allocate policies/ rules along two paths, it is
able to outperform OBS-1 and OBS-2. This is because Raptor
is able to reduce the overhead by placing the shared rules on



switches in overlapping paths. On the other hand, when OBS is
required to support two paths (OBS-2), the overhead (ORules)
increases by nearly 100% in many of the cases. This is because
the sharing of rules across paths is not taken into effect in
OBS. OBS does not specifically have a trend in the rules
overhead upon increase in policy-set because it’s LP Solver
accepts any solution that is feasible. In the case of Raptor, we
see a consistent increase in the overhead with larger policy-
sets because the sharing is reduced as the TCAM space in
the optimal locations have been exhausted. Overall, Raptor-2
achieves 55% to 98% (86.8% on average) reduction over OBS-
2. A direct consequence of this saving can be observed by the
ability of Raptor-1 and Raptor-2 to support more rule sets
than the other schemes. The results in Figure 5 also show the
range of rule set sizes that the different algorithms are able to
support. Raptor-1 is able to accommodate 30% to 70% more
rules over OBS-1, and Raptor-2 is able to accommodate 25%
to 125% more rules over OBS-2. Finally, Raptor-2 supports
100% to 250% more rules compared to the Ingress allocation.

With Raptor-2(γ = 1, minimize traffic overhead), we see
an increase in rules overhead compared to Raptor-2 as the
algorithm tries to place the traffic overhead inducing rules
towards ingress. Nevertheless, the TCAM usage is still lower
than the Ingress allocation. We will discuss the efficiency of
traffic overhead minimization further in subsection V-D.

B. Increasing Number of Paths Available

In this section, we vary the number of paths to be supported
from 1 to 4 between each end hosts and observe the percentage
rule overhead incurred. Due to the need to have sufficient
link/edge distinct paths, this evaluation only uses the Fat Tree
topology. The results for Raptor-1, Raptor-2 and Raptor-4
are shown in Figure 6. The figure shows the Cumulative
Distribution Function (CDF) of ORules over 60 different
policy sets. We observe that, while the overhead increases with
more paths, the increment is relatively small. This is because
Raptor is able to exploit the multi-path characteristics of the
topology (nodes overlapping on multiple paths) for the ideal
placement of rules. For the rule sets with low overlap, the
80th percentile overhead values for Raptor-1 and Raptor-4
are 4% and 20% respectively. Similarly, for the rule sets with
high overlap, the 80th percentile overhead values for Raptor-
1 and Raptor-4 are 19% and 30% respectively. Raptor does
not induce any changes in the latency/ throughput of the flow,
because we do not deviate from the actual path. The flows still
use the same path, except the policies are applied at various
points in the path.

C. Running Time

We measure the running time for Raptor to compute a
feasible allocation. We group our results according to the
policy sets of two variants : a) Policy sets with less over-
lapping/shared rules, and b) Policy sets with high overlap-
ping/shared rules. Figures 7(a) and Figure 7(c) show the
average running times for various policy set sizes for the
Fat-Tree topology. For policy sets with less shared rules,

computation completes in less than a minute even for up
to 120K rules. For policy sets with more shared rules, the
computation time increases to up to 2.5 minutes for 120K
rules.To understand the computation time better, we break
down the running time into three major components:

1) Diffuse (ILP Solver)
2) Connect (Rule graph construction & Rule set Identifica-

tion) : Steps 1-3 in Section IV-B.
3) Connect (Graph partition & Rules movement) : Step 4

in Section IV-B.
Figures 7(b) and 7(d) show the ratio of time taken by

each component with respect to the total running time. We
note that rule graph construction and rule set identification
constitute the major part of the running time at around 80-90%
in most of the cases. The complexity of graph construction
is O(EP 2), where P is the number of rules for each edge
pair in E. In practice, the entire computation only needs to be
executed infrequently. For policy updates that involve only a
small number of the rules, the computation is much faster. In
particular, addition of a new rule is O(P), and removal of a
node is O(1). We show the distribution of update latency over
about 250K updates in Figure 8. We calculate the time taken by
Raptor to determine the location/placement of the newly added
rule to the set of existing rules. The number of existing rules is
varied from 100K to 150K. We observe that the computation
takes less than 9ms for 99% of the policy updates and is less
than 20ms in all cases. Hence, the algorithm is fast enough to
process at least ∼110 updates /sec.

D. Minimizing Traffic Overhead

We measure the overall traffic incurred by our placement
scheme in this subsection. We assume that traffic is uniformly
distributed among the flows. We perform our measurement on
the complete topologies and policysets. We run four variants of
Raptor : 1) γ = 0 (Only consider rule minimization), 2) γ =
0.25 and 3) γ = 0.5 and γ = 1 (Minimize traffic overhead).
We measure traffic overhead in terms of percentage of the path
covered by a traffic matching a certain rule.

We plot our average traffic overhead incurred per rule (only
overhead inducing rule) with a uniform traffic distribution in
Figure 9. In cases of high overlap, Raptor (γ = 0) induces
traffic overhead of 22.4% per rule, which means on an average
every overhead inducing rule induces the restricted traffic to
come through 22.4% of the entire path. However, with Raptor
(γ = 1) the traffic overhead drops to 0.04%. In cases of
low overlap rule set, Raptor (γ = 0) induces traffic overhead
of 12%. The trend in decrease of traffic overhead is clearly
evident with the increase in γ to 1.

Finally, we note that Raptor allows user to trade-off traffic
overhead for TCAM usage. In the case where traffic overhead
is negligible (0.04%), TCAM usage reduction of 42% to 93.7%
(75.3% on average) can still be achieved.

VI. DISCUSSION

Raptor currently performs best to handle link-failure sce-
narios, since it looks to co-locate flows on common nodes



 0

 50

 100

 150

 200

 250

 20  40  60  80  100  120

To
ta

l R
un

ni
ng

 T
im

e(
in

 s
ec

)

Policy Set Size(in K rules)

 0

 0.2

 0.4

 0.6

 0.8

 1

 20  40  60  80  100  120

P
er

ce
nt

ag
e 

of
 T

ot
al

 R
un

ni
ng

 T
im

e

Policy Set Size(in K rules)

Diffuse
Connect(Policy Graph Construction)

Connect(Graph Partition)

 0

 50

 100

 150

 200

 250

 20  40  60  80  100  120

To
ta

l R
un

ni
ng

 T
im

e(
in

 s
ec

)

Policy Set Size(in K rules)

 0

 0.2

 0.4

 0.6

 0.8

 1

 20  40  60  80  100  120

P
er

ce
nt

ag
e 

of
 T

ot
al

 R
un

ni
ng

 T
im

e

Policy Set Size(in K rules)

Diffuse
Connect(Policy Graph Construction)

Connect(Graph Partition)

a. Running Time(low overlap) b. Ratio(low overlap) c. Running time(high overlap). d. Ratio(high overlap).
Fig. 7: Running Time analysis of Raptor.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12  14  16  18  20

C
D

F

Update Latency (in msec(s))
Fig. 8: Running time distribution of updates

 0

 0.2

 0.4

 0.6

 0.8

 1

Low Overlap High Overlap

P
er

ce
nt

ag
e 

of
 P

at
h 

C
ov

er
ed

Raptor (γ = 0)
Raptor (γ = 0.25)

Raptor (γ = 0.5)
Raptor (γ = 1)

Fig. 9: Traffic Overhead due to γ variants of Raptor
between various paths. In order to handle switch-failures, the
paths provided to Raptor needs to be node-disjoint. The impact
of such a requirement is that rules will need to be replicated.
Hence, at the discretion of network-programmer the paths for
selective flows could be node-disjoint or link-disjoint.

Raptor looks into the placement of the rules. In order
to achieve reduction in the given input rule set, we could
additionally use rule compression to group redundant/ similar
rules to shared rules. We added a compression module before
the diffuse algorithm. We observed a maximum reduction in
the Total Overhead(ORules) by up-to 3% for low-overlapping
rules, and up-to 24% for high-overlapping rules.

VII. CONCLUSION

We have presented an efficient/ scalable rule placement
algorithm, Raptor to optimize the placement for multi-path/
fast re-route traffic in Software Defined Networks. We have
achieved this by leveraging the sharing of rules across end-
points of the network. We formulate our problem as an
Integer Linear program(ILP), and finally, apply heuristics to
maximize the sharing, and adhere to priority ordering. We have
build Raptor prototype and also integrated it with Floodlight
controller. Our Evaluation of Raptor with various topologies
and rule sets generate by ClassBench [28] has demonstrated
great savings in the TCAM space of the switches while
achieving the ability to support multi-path.
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