
Design and Application of a Many-to-One
Communication Protocol

Sudipta Saha
Indian Institute of Technology Bhubaneswar

saha sudipta@ymail.com

Mun Choon Chan
National University of Singapore

chanmc@comp.nus.edu.sg

Abstract—In this paper, we address the fundamental problem
of improving the performance of many-to-one and many-to-many
communications. Our approach is Time Division Multiple Access
(TDMA) based but addresses the limitations of existing TDMA
implementations in a novel way. In a nutshell, we combine packets
from many senders into a single large packet transmission by
exploiting capture effect achieved through fine grained power
control at the level of segments within a single packet. We
applied our technique to the design of a one-hop, many-to-one
communication protocol, SyncMerge, and a multi-hop, many-to-
many communication protocol, ByteCast. Our evaluation shows
that SyncMerge is able to achieve 2 to 15 times improvement over
traditional many-to-one communication schemes. In addition,
ByteCast is able to disseminate 1 byte of data from every node
to all other nodes in about 600 ms with 99.5% reliability on a 90
node testbed. Compared to the state-of-the-art protocols such as
LWB and Chaos, ByteCast is able to reduce the radio-on time
by up to 90% while achieving similar reliability.

I. INTRODUCTION

In many applications, many-to-one communication,
whereby multiple nodes simultaneously try to communicate
to a single node, is needed. For example, to do a quick
neighbor discovery, a node broadcasts a probe message asking
all its neighbors to respond. Similarly, in receiver initiated
MAC protocols [18], [6], a receiver node broadcasts a probe
message to inform potential senders about its willingness
to accept data. In other applications such as data collection
[11], convergecast [19], [12], data aggregation/sharing [14],
such simultaneous many-to-one communication is a common
requirement.

The challenge in supporting efficient many-to-one commu-
nication is in the need to coordinate transmissions from many
nearby nodes with the minimum overhead. Even with carrier
sensing (CSMA), these simultaneous transmissions collide at
the initiator node. Subsequently, because of multiple back-offs
and re-transmissions of packets, either it takes a very long time
for all the source nodes to succeed in communicating their
data to the initiator, or they may ultimately decide to give
up and try later, if the maximum number of re-transmissions
allowed is already reached. This naturally wastes a lot of time
and energy in both initiator as well as source. The situation
becomes worse as the number of simultaneous transmissions
increases. An alternative to CSMA is to have the initiator
node polling the source nodes one at a time using unicast
communication to avoid collision. However, even such polling
can take substantial time to complete as the initiator has to

send probe packet one at a time to all the source nodes
individually. Both approaches are thus inefficient in their own
ways.

In this work, we introduce a novel solution for simul-
taneous many-to-one communication where multiple source
nodes, instead of contending with each other for the channel,
cooperatively transmit their data only in their respective time-
slots within the transmission of a single packet. We achieve
this by using a fine grained byte level power control technique.
The proposed approach, which we term SyncMerge, thus,
naturally avoids all the channel contentions among the source
nodes. The overheads of transmitting a single packet, e.g., the
preamble, header, trailer etc. are also minimized as they are
shared by transmissions from multiple sources.

Based on an efficiently designed one-hop many-to-one com-
munication protocol, more complex communication protocols
can be designed. In particular, we present the design of a
many-to-many communication protocol, ByteCast, for distri-
bution of small amount of data in wireless sensor networks.
We achieve this by appropriately arranging units of SyncMerge
operations in a cascading fashion starting from a single initia-
tor node in a network.

Although the basic concepts behind SyncMerge and Byte-
Cast are general, in this work we implement them for low
power wireless sensor network.

In summary, the contributions of this work are as follow -
1) We present the design of SyncMerge, a highly efficient

scheme to support one-hop, many-to-one communica-
tion. The key innovation behind SyncMerge is the use of
byte-level power control so that it is possible for multiple
source nodes to transmit different data in a single packet
transmission using fine-grained intra-packet TDMA.

2) We fully implemented SyncMerge in TelosB motes
using Contiki operating system. TesloB and Contiki are
the popular device and operating system, respectively,
for low power wireless sensor networks. Our evaluation
shows that SyncMerge achieves an improvement of at
least 2 to 15 times in terms of radio-on time over
traditional many-to-one communication schemes based
on polling or channel sensing.

3) We present the design of ByteCast, a multi-hop, many-
to-many communication protocol. ByteCast theoretically
reduces the number of steps required to do all-to-all data
sharing to the order of the diameter of the network.

4) We fully implement ByteCast on TelosB motes using
Contiki. We tested ByteCast on Indriya [2] (using 90
nodes), and show that ByteCast can disseminate more
than 99% of the data within 600 millisecond. In com-
parison to the state-of-the-art protocols such as LWB
and Chaos, ByteCast can reduce the radio-on time up to
50% depending on the data size and number of source
nodes.

The paper is organized as follows. We first present related
work in section II. In sections III and IV, we present the design
and implementation of SyncMerge and ByteCast, respectively.
The evaluations are presented in section V. In section VI we
discuss implementation limitations and potential improvement
of the protocols. Finally, we conclude in section VII.

II. RELATED WORK AND BACKGROUND

Many-to-one communication is a core communication pat-
tern in various wireless communication protocols and appli-
cations. In data collection protocols [11], [12], many nodes
transmit information to a single node. Similarly in operations
such as gathering topological information from a single node
[20], collecting the information of the surroundings by a
mobile node in a mobile network, fast collection of data
through mobile sink [15] bulk collection of data and many
others, many-to-one communication forms a key pattern.

Existing approaches for efficient many-to-one communi-
cation are either based on collision avoidance [10], [16] or
collision resolution [13], [17]. Our approach employs a special
multi-packet reception [13] based strategy. We also combine it
with intra-packet TDMA to avoid collision. TDMA has been
already used in many works but the smallest granularity is
at the level of a single packet per single node. In this paper
for the first time we show that TDMA can be used even at
the level of bytes inside a single packet. Thus, the proposed
strategy in this work is a hybrid one based on both collision
resolution as well as collision avoidance.

Researchers have attempted to exploit the capabilities avail-
able in the low level radio hardware. For example, the work
[9] uses the unmodulated carrier wave and the RSSI sampling
mechanism in a radio to alarm the whole network. Variation of
transmission power has also been explored in many research at
either inter-packet level [12], [3] to increase spatial reuse or on
long unmodulated carrier wave to mimic different interference
patterns [1]. However, in our work for the first time we use
per-byte power control within a IEEE 802.15.4 physical layer
protocol data unit which provides a way to allow simultaneous
transmissions of different data from different senders through
intra-packet TDMA.

Ferrari et al. presented Glossy [8] - a protocol that supports
efficient flooding of small packets and time synchronization. A
key idea exploited in Glossy is the technique of synchronous
transmission whereby with sufficiently well synchronized tim-
ing, it is possible to transmit the same data from multiple
different nodes at the same time and the data can be correctly
decoded in the receiving radio. One of the main contributions
is the technique to achieve one-hop time synchronization at the

sub-microsecond level. Various protocols have been proposed
based on the Glossy-based flooding (one-to-many). Low Power
Wireless Bus (LWB) [7] repeatedly applies the basic one-
to-many flooding mechanism to perform other communica-
tion patterns such as many-to-one and many-to-many. Splash
[3] combines synchronous transmission based flooding with
pipeline transmissions over multiple channels to perform data
dissemination. Finally, Chaos [14] exploits capture effect along
with Glossy to do many-to-many communication with data
aggregation.

While our proposed protocols exploit synchronous trans-
mission based flooding, we also utilize fine-grained byte-
level power control so that TDMA based mechanism can be
incorporated into the protocols such that different data can be
transmitted by different nodes within the time scale of a single
data packet.

III. SYNCMERGE (MANY-TO-ONE)

In this section, we first present the design of the one-hop
many-to-one protocol called SyncMerge.

2

1

6

4

3 5

1

2 6

4

3 5

Initiator transmits an

INIT packet
(a) Source nodes synchronously

transmit their REP packets
(b)

Initiator Initiator

Fig. 1. Many-to-one communication.

REP packet from source 1

A single packet is

perceived by the

initiator node

Source 4 captures only

during the transmission

of this segment

Same header from

different source nodes

 Each of the segments is the

result of capture effect by the

corresponding source node Trailer, ignored by initiator

The

Initiator

node

(a)

(b)

Result of

constructive interference

or capture effect

One
segment

CRC LEN …… CRC CRC …… Generic segment

structure
Generic

header structure

REP packet from source 2

REP packet from source 3

REP packet from source 4

Fig. 2. Formation of the REP packet in SyncMerge.

A. Design

In SyncMerge, there is one initiator node who initiates the
process and multiple source nodes, who want to send their
data to the initiator node. Conceptually, the steps of a single
unit of many-to-one communication are as follows.

1) The initiator broadcasts a packet expressing its intention
to receive data. For clarity in the description, we call this
the INIT packet.

2) On reception of the INIT packet, the source nodes reply
to the initiator node with their respective packets. We
call these collectively as the REP packets.

3) Depending on the status of the reception of the REP
packets, the initiator sends acknowledgement (ACK) to
the source nodes.

The primary challenge in supporting this interaction effi-
ciently is in the second step, whereby there are simultaneous
transmissions from multiple source nodes. We rethink this
basic problem and design a synchronous transmission based
solution for efficient (one-hop) many-to-one communication,
which we term as SyncMerge. This basic many-to-one inter-
action (INIT and REP) is shown in figure 1. The first step
(sending INIT packet) and the third step (sending ACK packet)
are the same as described previously. The key difference is in
step 2. On completion of the reception of the INIT packet, the
transmissions from the various source nodes are coordinated
by a combination of TDMA and fine-grained power control.

Our technique works as follows. The transmission period
of a single data packet is divided into fixed length slots
comprising of transmission time of one or more bytes. We
refer to the bytes transmitted in a single slot as a segment in the
REP packet. We assume that transmission power can be varied
to transmit either at the highest transmission power or the
lowest (zero if possible) transmission power. Each source node
makes the decision to transmit either at the highest or lowest
transmission power at each of these fine-grained intervals.

Regarding the transmission of a particular segment of a
packet, the design of the protocol ensures that there are only
two possible outcomes:

1) The content transmitted by all the sources are the same.
By ensuring that the transmissions are time synchronized
based on a Glossy-like mechanism [8], the initiator node
will be able to receive the data with high reliability.

2) The contents transmitted by the sources are different.
Since the contents are different, synchronous transmis-
sions will not provide reliable reception as in the previ-
ous case. Instead, in each segment’s transmission, only
one source node will transmit at the highest transmission
power, while all other source nodes transmit at the
lowest transmission power. As a result, due to capture
effect, transmission from only one source node will be
received by the initiator during the respective time slots.

Figure 2 shows a graphical illustration of the formation of
the REP packet. The reception of the INIT packet is used
as a synchronization time point among the contending source
nodes. The INIT packet from the initiator also contains a
scheduling information for the source nodes. On completion
of the reception of the INIT packet all the source nodes
start to synchronously transmit the REP packet. In the REP
packet, the header is common for all source nodes. Because of
synchronous transmission and capture effect, all source nodes’

transmissions can be perceived as a “single packet” transmis-
sion by the initiator. Thus, the initial processing such as the
calibration time of the radio, transmission of preamble for time
synchronization, transmission of Start Field Delimiter (SFD)
to indicate the start of the packet, transmission of the length
field as well as even the two bytes of trailer information etc.,
all can be done in parallel in all the source nodes. The initiator
node also needs to receive and process these common parts
only once. This reduces significantly the required overhead.
The rest of the packet is divided in equal sized data segments.
A source node uses the highest transmission power possible
only while transmitting its own data-segment, i.e., those bytes
that fall in its respective transmission time slot as it understood
from the schedule encoded in the INIT packet. For all other
slots, it transmits at the lowest power.

B. Implementation

We implement SyncMerge on Contiki [5] and TelosB motes
which have CC2420 chip as the 802.15.4 radio transceiver
and MSP430 microcontroller. However, to use synchronous
transmission, we write our own miniature radio driver similar
to the one used in Glossy [8].

Feasibility and portability: Programmable radio
transceivers offer mechanisms for controllable variation
of transmission power by writing to some internal register.
In CC2420 radio, the available maximum and the minimum
power level options are 0 dBm and -55 dBm, respectively.
At the minimum power level, the signal is identifiable only
if two motes are placed side by side with a distance less
than around 6 cm [1]. To change the transmission power
dynamically, we change the content of the power control
register in the radio on-the-fly during the transmission of
the packet. In principle intra-packet power control can be
supported by any hardware setup if the microcontroller can
write the radio power control register multiple times within
the transmission time of a packet. In our case with 250 Kbps
over-the-air data rate, time to transmit a byte takes around 32
microseconds. On the other hand, MSP430 microcontroller
of TelosB set at 3.9 GHz, takes around 22 microsecond to
send the command to CC2420 radio over SPI to write the
radio power control register. Since byte transmission time is
higher than transmission power setting time, in principle it
is possible to change transmission power level on a per-byte
granularity in this setup.

Packet structure: The first segment of every packet is the
header. The first field of header is the length field. The header
is considered to be an independent component and needs its
own CRC to indicate its validity. Figure 2 shows these two
essential parts of the header. The rest of the fields in the header
depend on the specific requirements. In our implementation,
the packets contain two more fields - (i) one-byte packet type
field, since there are three types of packets involved, e.g., INIT,
REP and ACK and (ii) protocol specific two-byte common data
field which we reserve for any future use.

Structure of INIT Packet: INIT packet also contains a 5
byte header. The purpose of the INIT packet is to provide a

schedule to the source nodes. This schedule can be an explicit
or implicit schedule. An explicit schedule contains a list of
node identifiers. If a default/implicit schedule is to be used,
the nodes need to have prior knowledge of the schedule. Given
a short index, they can derive the set of the node identity
numbers as well as the specific order of transmissions.

Structure of a segment in a REP packet: A segment,
transmitted by a single source node, can be as small as 1 byte.
But since we need to make the segments fully independent of
each other, we need to add at least one byte of CRC with each
segment. Further, to perform byte level power control, we need
to set the radio power control register at the exact time. But,
since byte transmission time and register writing time do not
match exactly, we need to pad the extra intervals with NOP
operations. In our case, at 3.9 GHz clock frequency of the
microcontroller one byte time is 124.8 clock cycles. So, to pad
a full byte we need to consume either 125 or 124 cycles. This
mismatch creates a timing problem and hence to be safe we
use one guard byte at each boundary of a segment. We use the
simplest possible segment structure consisting of three parts -
(a) one (leading) guard byte , (b) followed by data segment and
(c) one (trailing) guard byte. Since, both the guard bytes are
vulnerable to error, we store the calculated CRC in both of the
guard bytes and rely on the correct reception of at least one
of the guard bytes for validation. The number of data byte
in a segment can be one or more depending on how many
nodes we want to put in a single largest size packet. Figure
2 shows this generic segment structure. With these overhead,
a 128 byte data packet can accommodate up to 40 segments
from 40 different source nodes.

Structure of the ACK packet: The purpose of the ACK
packet is to convey the status of the reception of the segments
from each of the source nodes. We use bit values in few bytes
to denote whether the corresponding segment was received
properly.

We will present the evaluation of SyncMerge in section V-A
and discuss issues with the limitation of power control on
existing devices in section VI

IV. BYTECAST: MANY-TO-MANY COMMUNICATIONS

A. Design of ByteCast

In this section, we present the design of a multi-hop
protocol to support many-to-many data communication, called
ByteCast. Many-to-many communication can be considered
as a combination of many-to-one communications. Hence, we
design ByteCast on the basis of SyncMerge but with a couple
of changes to improve efficiency. First, instead of the 3 stages
(INIT/REP/ACK) used in SyncMerge, in ByteCast we use only
two stages - SEND and RECV. As indicated by the names, in
the SEND stage a node transmits while in the RECV stage a
node receives. On completion of a SEND stage, RECV stage
starts and similarly on completion of a RECV stage, SEND
stage starts. Second, we use only one packet type, which can
be considered as a combination of the three packets/stages of
SyncMerge “merged” into a single packet.

Packet Structure: The layout of a packet in ByteCast
is similar to the REP packet in SyncMerge. However, since
there is no separate INIT packet, the transmission schedule
(or the mapping of node ids to time slots/segments) needs
to be conveyed in a very concise way. As a result, only
default/implicit schedule can be used. This is achieved by
putting a schedule index in the header of every packet. For
example, if the index is 1, transmissions are for nodes with id
1 to 30, and if index is 2, transmissions are for nodes with id
31 to 60 and so on.

Initial Step: In the initial phase, each node only knows its
own data. ByteCast begins when the initiator transmits the first
packet with the chosen schedule index in the header.

Subsequent Steps (RECV/Receive): When a node receives
a packet, it first checks the schedule index. If its node id is
included in the implicit schedule it puts its own content in the
next SEND stage. However, in all cases it records the data in
all the valid segments present in the received packet.

Subsequent Steps (SEND/Transmit): In a SEND stage,
each node transmits only those segments that it has received
and accumulated so far from all earlier RECV stages under
the current schedule. It also transmits its own segment if its
id falls in the current schedule. For all other data segments it
switches its radio transmission power to the lowest possible
value.

For example, let us consider that the schedule index is 1
(i.e., nodes with id 1 to 30) and a node has received data
segments from nodes 5 and 15 so far. Let us further assume
that in the current RECV stage it gets data segments from
nodes 1 and 10. Thus, in the next SEND stage, it will transmit
data segments of nodes 1, 5, 10 and 15. Note that a node
includes its own data segment in this SEND stage only if the
id of the node falls in the current schedule.

One can observe that if at least one node received the data
segments from a node X , X will find its data segments in
the packet to be received in the next slot. Thus, a received
packet also serves the purpose of an ACK for the nodes.
Furthermore, data from multiple nodes are distributed within
a single packet transmission. This process continues upto a
predetermined number of transmissions. This duration depends
on the size and diameter of the network.

Behavior of ByteCast: We analyze the time complexity of
ByteCast through a simple model. Assume that the nodes are
organized into logical layers through their SEND and RECV
stages. Since we use a single packet size, the time to complete
a SEND stage is equal to that of a RECV stage. This is in
turn equal to the over-the-air transmission time of the packet
through the radio. For the transmission started at the initiator,
it takes (L-1) such time slots to reach a node L hops away
from the initiator by propagating through the network. Thus,
layer L nodes start their SEND stage at time slot L. On their
first RECV stage they receive data segments from many nodes.
But they cannot receive data from the nodes in the same layer.
They need to wait their data to propagate to the initiator and
get “reflect” back down to layer L. This takes another 2(L -
1) time slots. Thus, for the nodes at layer L to get data from

all the nodes at the same layer it takes 3(L - 1) time slots.
Figure 3 illustrates this process for a node at layer 5.

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7

t =1

t =2

t =3

t =4

t =5

t =6

t =7

t =8

t =9

t =10

t =11

t =12

t =14

t =13

t =16

t =15

Nodes in

Layer 5

receive the

first packet

Data

received by

Initiator from

Layer 5

Layer 5 nodes

receive each

others’ data and

from Layers above

Two more

copies are

received at

Layer 5

Fig. 3. Analysis of time requirement of ByteCast to complete upto layer 5.

B. Implementation Details

We use the largest possible packet size (128 bytes) available
in the CC2420 radio. Implicit global schedules are used where
every node reserves a segment. Segment size is globally fixed
to the minimum required value of 3 bytes (see section III).
Packet header size is fixed to the minimum possible size, i.e.,
3 bytes - one byte length, one byte schedule index, and a CRC
byte. We do not use the 33 bytes at the end of a packet so
that there is time left for processing and other calculations.
So, 128 - 3 - 33 - 2 (for trailer) = 90 bytes are available to be
used for the data segments. Thus, we can fit 90

3 = 30 different
segments in a single packet.

A single schedule will not be sufficient when the network
is large. For larger network, we use multiple schedules and
identify a schedule by an id. Nodes put their data in the
packet in the right segment if and only if its id belongs to the
current implicit schedule. To cover all the nodes in a system
with N nodes, the number of schedules (i.e., independent
runs) required in ByteCast is dNM e, where M is the maximum
number of nodes that can be accommodated in a single data
packet.

Note that in an iteration of ByteCast with a specific schedule
index, even those nodes which do not fall in the schedule
participate in the process. If a node is not part of the schedule,
it does not contribute data but needs to transmit data it has
received from other nodes. This is required to make sure that
the process does not stop due to insufficient connectivity.

V. EVALUATION

In the evaluation, we first present the results for SyncMerge
in section V-A followed by ByteCast in section V-B.

Metrics: We measure the total radio-on time and reliability.
Reliability is computed as the ratio of data received by nodes
to the total amount of data to be disseminated to all nodes.

A. SyncMerge

We compare the performance of SyncMerge to existing
asynchronous communication based techniques. We performed

a controlled experiment using TelosB motes and Contiki
operating system. A total of 11 TelosB motes were arranged
on a table - 10 acting as the source nodes and 1 acting as
the initiator. Note that saving energy is an inevitable issue
in the operating systems for the motes used in low power
wireless sensor networks. Radio transceiver is typically the
highest power consuming module in a mote. In synchronous
transmission based technique, although the radio is kept
always on, the whole protocol is arranged in such a way
that it is completed in a very compact fashion with a fixed
and small time requirement for all the nodes in the system.
On the other hand, in asynchronous communication based
technique, the energy saving is achieved through low duty
cycling of the radio module. Contiki implements duty cycling
through its RDC (radio-duty-cycling) layer in the network
stack by periodically checking the channel at a certain rate for
any possible transmission. RDC layer also efficiently handles
possible communication problems due to the duty cycling of
the radio.

For our experiments, we use the default Contiki setting
where the ContikiMAC [4] and CSMA are used as the RDC
and MAC layer protocols respectively. Note that although in
asynchronous communication based protocols use of radio
duty cycling saves energy, it reduces the chance of successful
communications between motes. In order to minimize the
effect of duty cycling as much as possible, we set a high (128
times per second) channel checking rate in Contiki.

We compare SyncMerge to two baseline approaches. The
first approach is based on polling where the initiator polls
every source and collects data one-by-one. In the second
approach, the initiator sends a single broadcast request and
the source nodes start sending their data at the same time.
Coordination among different source nodes were performed
through CSMA/CA. In case of transmission error, up to three
retransmission attempts were performed. The payload size was
set to one byte in the baseline schemes while SyncMerge used
a three-byte segment for each source node with a common
five-byte header.

We measure the total radio-on time in all the experiments.
For the initiator this is the total radio-on time until it receives
data from all the source nodes and completes the transmission
of the ACK. For a source node, this is the time between
the source node hearing the polling/unicast message from
initiator to the end of successfully communicating its data to
the initiator.

Figure 4 shows the comparison of radio-on time. Each data
point is the average over 2000 runs. From the results, it can
be seen that SyncMerge always takes a fixed amount of radio-
on time in the nodes. This is around 6.2 millisecond. The
reliability was about 98.4%. On the other hand, the radio-
on time of the other protocols are higher. The reduction in
radio-on time in SyncMerge is at least 2 to 15 times in the
source and the initiator, respectively. It can be also noticed
from the results that in the initiator the polling based method
takes larger time in comparison to the combined request based
method. This is because in polling the initiator has to poll

0

50

100

150

200

250

300

R
a

d
io

−
o

n
 t

im
e

(i
n

 m
ill

is
e

c
o

n
d

)

Polling the sources one−by−one

Combined request by the initiator

SyncMerge

6.17

51.60

6.26
13.14

99.10

238.77

SourceInitiator

Fig. 4. Comparison of radio-on time.

each of the 10 motes individually using unicast facility in
Contiki, while in combined request one broadcast message
is sent and all the source motes try to respond together. Note
that, since all the motes do duty cycling of their radio, there
is a chance that a source mote misses the initial broadcast
from the initiator. To make a fair comparison we repeated
the experiment many times and considered only those cases
where the initial broadcast from the initiator was received by
all the sources. 2000 such cases were extracted for preparing
the result. The reliability was about 98.6%.

It is to be noted that the current implementation supports
up to 40 simultaneous source nodes. Thus, the reduction in
radio-on time, relative to the traditional techniques, would be
even larger if the number of source nodes increases beyond
10.

B. ByteCast

We implemented ByteCast in Contiki operating system for
TelosB motes. We tested it in the Indriya testbed which at
present has 90 active TelosB motes spanned over three floors.
In this section we first report detailed performance evaluation
of ByteCast in Indriya. Then we report the comparison of
ByteCast with two state-of-the-art protocols LWB and Chaos
in the same settings. In all evaluations, ByteCast attempts to
distribute n byte(s) from each of the 90 nodes to the other 89
nodes. The default value of n is 1, unless stated otherwise.

In this evaluation, we first used ByteCast to count the total
number of nodes in the testbed. Indriya initially supported up
to 140 nodes and the node ids range from 1 to 140. However,
the testbed currently has only 90 active nodes. We assume that
the identifiers of the active nodes are not known in advance but
we know the range of node ids (1 to 140). As up to 30 nodes
can be the sources in a single iteration of ByteCast, we need 5
iterations to cover all 140 identifiers. During the execution of
ByteCast, each node inserts its data (identifier value) into the
segment allocated by the transmission schedule. At the end of
the experiment (after 5 iterations), each active node knows the
identifiers of all the other active nodes.

Figure 5 shows the average along with the 90th and 10th

percentile results over 1000 runs of the execution of ByteCast
on Indriya. Since ByteCast does not need any specialized

bootstrapping phase, for each execution we picked up a new
initiator from some random sequence. The result shows that
in less than 500 ms the protocol achieves around 97.5%
reliability. However to achieve 99.5% reliability, it needs to
spend another 500 ms. Overall, we observe variations in
reliability in the result. We will provide more explanation on
this variability in Section VI.

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

Time (in ms)

A
v
e

ra
g

e
 r

e
lia

b
ili

ty
 [

in
 %

]

Simulation

Fig. 5. Percentage of nodes receiving 1 byte data from all the other nodes
in Indriya through ByteCast, averaged over 1000 runs and all the nodes.

Finally, note that the transmission schedule used in this
experiment is inefficient since not all segments are used. If the
transmission schedule is compact, only three iterations will be
needed and there will be a 40% reduction in time (5 iterations
to 3 iterations). Hence, the time needed for 99.5% reliability
is 600 ms instead.

1) Comparison with LWB: Low Power Wireless Bus
(LWB) is a Glossy based protocol designed to emulate opera-
tions of a “bus” protocol. In LWB, a node uses Glossy based
flooding mechanism to transmit its data to all the nodes in the
network. In each “flood”, only one piece of data from a single
source can be disseminated to all the network. Furthermore, in
order to improve reliability and for allowing retransmissions,
each time slot in LWB needs to be sufficiently long. The
factors affecting the slot length are the maximum hop in
the network, number of retransmissions and the length of
the packet. For example, it has been found that on Indriya,
considering a small 4 byte packet, slot length should be at
least 15 ms. Note that for higher data size, the slot length
needs to increase. For example, for a 32 byte data, the slot
length should be at least 40 ms. In our evaluation, we used
the default slot time in the Glossy code distribution, which is
20 ms.

For flooding by a single source, ByteCast is similar to
Glossy. The difference comes when there are multiple sources
willing to disseminate different data at the same time. In our
approach, with the use of byte-based dynamic power control,
one can think of ByteCast as execution of multiple versions
of Glossy flood within a single time slot. This merging brings
a lot of savings by removing the requirement of defining
boundaries between two consecutive floods. On the contrary,
in LWB, each independent Glossy flood has to be separated
safely so that they do not overlap. The packet size used by
ByteCast depends on the number of source nodes that are

distributing data to all other nodes. For example, if there are
10 nodes, each distributing 1 byte to all other nodes, the packet
size used is 35 bytes. In this 35 byte packet, there is a 3 byte
header, 10 × 3 = 30 bytes of data segments from 10 nodes,
and 2 bytes of trailer. Recall that there is a 2 byte overhead
per node in the segment data portion, with one byte needed
for CRC and one byte needed to handle clock drift.

We compare the radio-on time required by LWB and Byte-
Cast to distribute data sizes of 1 to 8 bytes from many nodes
to many nodes in Indriya. For simplicity, we do not include
the overhead for channel allocation and setup time of LWB.
For an experiment comprising of N nodes as source nodes,
we randomly pick N nodes in Indriya and chose a random
initiator in each run. Figure 6 shows the result. We plot the
radio-on time required by LWB using a slot time of 20 ms.

0 20 40 60 80
0

400

800

1200

1600

2000

Number of nodes

R
ad

io
−o

n
tim

e
(in

 m
s)

ByteCast, 8 byte

ByteCast, 4 byte

LWB,Slot = 20 ms,
1 byte

ByteCast, 1 byte

Simulation, 1 byte

Simulation, 32 byte

Fig. 6. Comparison of radio-on time in ByteCast and LWB for different data
sizes and different number of nodes acting as source nodes.

As expected, the radio-on time for both protocols increases
linearly with the number of source nodes. By running multiple
distributions within a single packet transmission, ByteCast
outperforms LWB for small data sizes from 1 to 7 bytes
per node in Indriya for different number of nodes. However,
LWB performs better than ByteCast for distribution of 8 bytes
or more per node if a 20 ms time slot can be used. This
is unexpected since ByteCast performs multiple distributions
within a single packet transmission. But this happens due to
certain issues regarding the implementation of the proposed
schemes. These are discussed in details in the next section.

Finally, one big advantage of ByteCast over LWB is that
ByteCast does not need any bootstraping phase. In contrast
to that, LWB needs a huge time to prepare and update the
schedule. ByteCast does this work implicitly in a transparent
fashion within the main protocol itself.

2) Comparison with Chaos: Chaos is a protocol designed
mainly for in-network aggregation of data. It is the first work
which uses capture effect to perform an efficient many-to-
many interaction among the nodes in a network. There are
some similarities between Chaos and ByteCast, e.g., both are
based on synchronous transmission and both exploit capture
effect. However, there are also importance differences. In this
section, we will first highlight the differences and then evaluate
our approach in comparison to Chaos.

Although Chaos is designed for efficient data-aggregation,
it can be modified to perform many-to-many data-sharing. For
Chaos to do many-to-many data sharing, the payload has to be
divided into N chunks where each chunk is assigned to one
node. The size of a chunk corresponds to the size of data to be
disseminated by each node. For the purpose of data sharing,
the merge operation in Chaos becomes a union operation.
Thus, both the packet structure and the merge operation are
similar to ByteCast. The fundamental differences between
Chaos and ByteCast are as follows. First, Chaos uses packet
level capture effect while ByteCast exploits capture effect at
the level of segments of a packet. Second, Chaos depends on
capture effect in an unplanned and unorganized fashion. The
actual behavior thus, depends on both the topology/shape of
the network as well as the set of nodes transmitting simulta-
neously in every step. On the other hand, in ByteCast, nodes
transmit or receive in discrete and scheduled time slots. By
following a common schedule, ByteCast exploits cooperation
among the nodes instead of competing to capture the channel
as is done in Chaos. Therefore, in ByteCast, once started from
the initiator, the wave reaches very quickly to all the nodes
and hence each node gets the chance to put their data in
proper segment. Due to this organized behavior one can easily
understand the time complexity of ByteCast. In contrast, in
practice it is hard to analyze the timing behavior of Chaos.

We illustrate this difference in Figure 7, where it is shown
that in case of a small network having 4 nodes, ByteCast takes
only 3 slot time to do all-to-all data sharing, whereas Chaos
in the same setting will take 6 slot time to complete. The
difference will be even higher for higher number of nodes.

In ByteCast, to disseminate 1 byte of data, we need to
transmit 3 times more information from each node. This is
a large overhead compared to Chaos. In the 802.15.4 radio,
using a 128 byte packet, we can only fit information from
30 nodes into a single packet while Chaos can support up
to 108 nodes after reserving space for the headers. However,
this overhead becomes smaller when we need to transmit
more data from each node. In particular, once the total data
size (number of sources multiplied by data size per node)
along with the required header size exceed the maximum
packet length, Chaos will need to perform multiple rounds of
dissemination. It may also consider less number of nodes in
a single iteration with higher data size per node. In any case,
the total number of iterations will increase. On the other hand,
increase in the total data size will only increase ByteCast’s
dissemination time gradually, by using the right combination
of packet sizes and more schedules.

The evaluation for ByteCast and Chaos is shown in figure
8. Note that in the Chaos paper [14], the authors report that in
Indriya with 139 nodes, it took around 432 ms for Chaos to
converge data aggregation with a 100 byte payload. We find
that the Chaos program, with necessary modification for data
sharing on Indriya, takes almost twice time to converge for full
payload size. This can be explained by the fact that the number
of nodes available on Indriya has gone down from 139 to 90,
significantly reducing the average node density and shape of

1

2

3

4

1

2

3

4

1

1

1

2 1

2

3

4

2

1

1

1

1

1

1

2

2

1

2

3

4

2

1

1

1

2

2

3 1

2

3

4

2

1

1

1

2

2

3

3

3

1

2

3

4

2

1

1

1

2

2

3

3

3

4

1

2

3

4

1

1

1

1

2

3

4

1

1

1

2 3 4 1

2

3

4

1

1

1

2 3 4

3

3

4

42

2

1

3

2

4

Tx

Layer 1

Layer 2

Topology
(a)(b)

(c)

Layer 1

Layer 2

Layer 2

Layer 1

SyncMerge based all-to-all data sharing in ByteCast

Chaos based all-to-all data sharing

Tx : Transmits

Cx : Transmits and

captures

Rx : Receives

1

2

3

4

1

2

3

4

4 4 4

4

Rx

Rx

Rx

Rx

Cx

Tx

Tx

Tx

Rx

Rx

Rx

Rx

Cx

Tx

Rx Tx

Rx

Rx

Rx

Rx

Cx

Tx

Rx

Rx

Rx

Rx

Rx

Tx

Tx

Tx

Rx

Rx

Rx

Tx Tx

3

Fig. 7. Comparison of the time requirement between Chaos and SyncMerge based ByteCast to attain full coverage in all-to-all communication in a 4-node
network. The topology is provided in part (a). Part (b) shows the step-by-step execution of ByteCast and the data segments acquired in each of the four nodes,
whereas part (c) shows the same when Chaos is appropriately modified to do the same task. Each block shows the status of the nodes after the transmission
and subsequent reception of a packet.

the network. Second, there may also have been substantial
changes in the environment including possible interference
in the channel chosen (channel 26). The evaluation results
presented in figure 8 is based on running both the protocols
on the same testbed one after another to minimize changes in
the environment. The average reliability values of Chaos and
ByteCast are 99.21% and 99.51% respectively.

The results clearly show that ByteCast has much smaller
dissemination time than Chaos. The amount of improvement
increases with larger data sizes (per node). For disseminating
data of size 1 byte to 12 bytes among 90 nodes, the reduction
in the radio-on time varies from about 30% to 70%. When the
number of sources is varied from 10 to 90, the reduction in
the radio-on time in disseminating 1 byte of data to all of the
90 nodes varies from about 30% to 50%.

1 2 4 6 8 10 12
0

2000

4000

6000

8000

10000

12000

Number of bytes shared by each node

R
a

d
io

−
o

n
 t

im
e

 (
in

 m
ill

is
e

c
o

n
d

)

10 20 30 40 50 60
0

200

400

600

Number of nodes sharing 1 byte each

 ByteCast

Chaos

Simulation

ByteCast

Chaos

Simulation

(b)(a)

Fig. 8. Comparison of the radio-on time in SyncMerge based ByteCast and
Chaos to achieve almost similar (above 99%) coverage for different data sizes
and different number of nodes in Indriya.

VI. DISCUSSION AND POTENTIAL IMPROVEMENT

The ability to perform fine-grained dynamic power control
is a prerequisite for both SyncMerge and ByteCast. When one
source node transmits its segment, other source nodes should
preferably not interfere at all.

However there are two major issues regarding the imple-
mentation of the proposed scheme. The first is the requirement
of time synchronization at the level of packet segments among
the nodes during the transmission of a packet. This is very
difficult to achieve without any hardware support. We take a
software based approach for this purpose using the MSP430
internal DCO clock. But it fails several times due to the
well-known problems of DCO, and as a result the segments
transmitted from different nodes partially overlap with each
other.

The other less severe issue is that in the CC2420 radio,
the minimum power level option available is not negligible
(highest and lowest power are at 0 dBm and -55 dBm,
respectively). One possible solution is to turn off the radio
immediately after the transmission of a segment. However,
in the current radio hardware, turning the unit off involves
stopping the crystal oscillator. Once the crystal oscillator is
turned off, it takes some amount of time to turn it on and this
duration may also vary in an indeterminate fashion. Hence,
turning the radio on and off repetitively on short time scale
results in loss of synchronization.

The lack of perfect packet-segment level time synchroniza-
tion as well as the inability to reduce transmission power
to a sufficiently low level cause undesirable impact on the
protocol efficiency. In particular, we found that the overall
connectivity among the nodes reduces. To understand how this
happens, we perform two sets of experiments on Indriya. In
the first experiment, we measure the PRR of all the links in an
usual setting where every node is assigned a slot to transmit
a small packet while the others are supposed to listen. At
the end of the experiment, every node calculates the PRR of
the links to their neighbors based on the logs of successful
packet receptions and the number of allocated time slots. In
the second experiment, we run the basic SyncMerge protocol
from each node sequentially for several rounds. The schedules
were prepared in such a way that every node gets a chance
to convey one segment of data to the initiator. At the end

of the experiment, every node calculates how many times it
could successfully receive the segment from its neighbors. This
quantity has a quite similar meaning as PRR. To differentiate
the metric, we call it sPRR. In both the experiments a packet
was transmitted every 20 ms and each experiment lasted for
around 5 hours. We collected measurements for both PRR and
sPRR in Indriya with 90 active nodes.

To quantify the change in connectivity, we define the notion
of the degree of a node as the number of links associated with
it whose PRR and sPRR is higher than 0.9, for the first and the
second experiment, respectively. The average degree based on
PRR was found to be 9.1, while the same based on sPRR was
found to be 3.2. We believe that this large drop in connectivity
explains the lower than expected performance of SyncMerge
and ByteCast observed in Section V.

We try to gauge the performance of SyncMerge and Byte-
Cast if perfect segment level time synchronization and true
zero power transmission were possible. In order to do so, we
try to “virtually” remove the effect of the undesirable low
power transmissions and assume perfect segment level time
synchronization by simulating these protocols on the network
topology consisting of only the links with PRR ≥ 0.9. While
these simulations may not be sufficiently accurate, it provides
an estimate of the possible performance achievable.

Figure 5 also shows a plot of the simulation result in dashed
line. The simulation result shows that ByteCast can achieve
100% reliability in Indriya within 270 ms. The simulation
results comparing LWB and ByteCast are shown in Figure 6.
It can be seen from the results that the simulated performance
of ByteCast is much better than LWB even for data size as
large as 32 bytes. This result is much closer to the expected
performance achievable given the amount of parallelism that
ByteCast allows. Finally, the simulation results comparing
Chaos and ByteCast are shown in Figure 8. These results show
that improvement of 84% to 90% over Chaos is possible.

VII. CONCLUSION

In this work, we have designed and implemented
SyncMerge, a novel many-to-one communication protocol.
SyncMerge can be used as a base component in the design of
many other protocols. It opens up a new direction of research
where one can think of how complex network operations
can be redesigned by dividing the task into multiple units of
SyncMerge in parallel and in appropriate sequence. In this
paper we showed one such approach through ByteCast. Other
applications such as fast all-to-all routing, routing tree con-
struction in dynamic networks, convergecast, quick topology
discovery, etc., can get hugely benefited by SyncMerge. On
the other hand, the base protocol SyncMerge itself can be
improved further. Application of some better segment level
time synchronization technique during transmission should be
the immediate step. However, to achieve this, special support
from hardware might be necessary. One possible way can be to
use some suitable external crystal oscillator. Moreover, having
options in the radio to transmit in even lower power can also

help to improve the performance of SyncMerge. We plan to
take all these issues as part of our future work in this direction.

ACKNOWLEDGMENT

This research is partially supported by the Singapore Min-
istry of Education Tier 1 grant, T1 251RES1609.

REFERENCES

[1] C. A. Boano, T. Voigt, C. Noda, K. Römer, and M. Zúñiga. Jamlab:
Augmenting sensornet testbeds with realistic and controlled interference
generation. In Proceedings of IPSN, pages 175–186. IEEE, 2011.

[2] M. Doddavenkatappa, M. C. Chan, and A. L. Ananda. Indriya:
A low-cost, 3d wireless sensor network testbed. In Proceedings of
TRIDENTCOM, 2011.

[3] M. Doddavenkatappa, M. C. Chan, and B. Leong. Splash: Fast data
dissemination with constructive interference in wireless sensor networks.
In Proceedings of USENIX NSDI, pages 269–282, 2013.

[4] A. Dunkels. The contikimac radio duty cycling protocol. 2011.
[5] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a lightweight and

flexible operating system for tiny networked sensors. In Proceedings of
Local Computer Networks, pages 455–462, 2004.

[6] P. Dutta, S. Dawson-Haggerty, Y. Chen, C.-J. M. Liang, and A. Terzis.
Design and evaluation of a versatile and efficient receiver-initiated link
layer for low-power wireless. In Proceedings of SenSys, pages 1–14,
New York, NY, USA, 2010. ACM.

[7] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele. Low-power
wireless bus. In Proceedings of SenSys, pages 1–14, 2012.

[8] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh. Efficient network
flooding and time synchronization with glossy. In Proceedings of IPSN,
pages 73–84, April 2011.

[9] R. Flury and R. Wattenhofer. Slotted programming for sensor networks.
In Proceedings of IPSN, pages 24–34. ACM, 2010.

[10] M. Garetto, T. Salonidis, and E. W. Knightly. Modeling per-flow
throughput and capturing starvation in csma multi-hop wireless net-
works. IEEE/ACM ToN, 16(4):864–877, 2008.

[11] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis. Collection
tree protocol. In Proceedings of SenSys, pages 1–14. ACM, 2009.

[12] O. Incel, A. Ghosh, B. Krishnamachari, and K. Chintalapudi. Fast data
collection in tree-based wireless sensor networks. IEEE Transactions
on Mobile Computing, 11(1):86–99, Jan 2012.

[13] L. Kong and X. Liu. mzig: Enabling multi-packet reception in zigbee.
In Proceedings of MobiCom, pages 552–565. ACM, 2015.

[14] O. Landsiedel, F. Ferrari, and M. Zimmerling. Chaos: Versatile and
efficient all-to-all data sharing and in-network processing at scale. In
Proceedings of SenSys, pages 1:1–1:14. ACM, 2013.

[15] Z. Li, M. Li, J. Wang, and Z. Cao. Ubiquitous data collection for mobile
users in wireless sensor networks. In Proceedings of IEEE INFOCOM,
pages 2246–2254, 2011.

[16] F. Österlind, L. Mottola, T. Voigt, N. Tsiftes, and A. Dunkels. Straw-
man: resolving collisions in bursty low-power wireless networks. In
Proceedings of the IPSN, pages 161–172. ACM, 2012.

[17] P. Patel and J. Holtzman. Analysis of a simple successive interference
cancellation scheme in a ds/cdma system. IEEE JSAC, 12(5):796–807,
1994.

[18] Y. Sun, O. Gurewitz, and D. B. Johnson. Ri-mac: A receiver-initiated
asynchronous duty cycle mac protocol for dynamic traffic loads in
wireless sensor networks. In Proceedings of SenSys, pages 1–14. ACM,
2008.

[19] H. Zhang, A. Arora, Y. ri Choi, and M. G. Gouda. Reliable bursty
convergecast in wireless sensor networks. Computer Communications,
30(13):2560 – 2576, 2007.

[20] M. Zhang, M. C. Chan, and A. L. Ananda. Connectivity monitoring in
wireless sensor networks. Pervasive and Mobile Computing, 6(1):112–
127, 2010.

