
Codecast: Supporting Data Driven In-Network
Processing for Low-Power Wireless Sensor Networks

Paper 65
ABSTRACT
�is paper presents Codecast, a many-to-many communica-
tion protocol for low-power sensor networks that provides
high throughput and reliable data sharing from multiple
sources to multiple destinations of a network.

Codecast uses physical layer capture on concurrent trans-
missions for high spatial reuse and a network-assisted net-
work coding for high throughput as the core techniques. Our
extensive evaluation in two large-scale testbed deployments
(Indriya and Flocklab) shows that Codecast provides up to
4x the throughput of Chaos and 1.8x the throughput of LWB
for many-to-many data communication.

Finally, we demonstrate the utility of Codecast through
a distributed channel selection mechanism and a link state
based routing protocol.
ACM Reference format:
Paper 65. 2018. Codecast: Supporting Data Driven In-Network Pro-
cessing for Low-Power Wireless Sensor Networks. In Proceedings
of ACM conference, Porto, Portugal, April 2018 (IPSN’18), 12 pages.
DOI: 10.475/123 4

1 INTRODUCTION
With over a decade of e�ort put towards improving commu-
nication protocols for the low-power sensor network, the
research has reached a point where we can �nd very e�cient
approaches of designing typical sensor network protocols.
However, quite o�en each protocol is optimized for a speci�c
communication pa�ern. For instance, while a data collection
protocol like CTP [19] is designed to handle many-to-one
tra�c pa�ern, data dissemination protocols like Splash [8] is
designed for one-to-many. If an application demands a high
throughput point-to-point bulk data transfer, P3 [9] instead
of either CTP or Splash would be a be�er choice.

While existing protocols allow e�cient data transfer for
the interaction pa�erns that they have been designed for,
they are not �exible enough to cater to the needs of appli-
cations that demand more complex interactions. One such
requirement is to support in-network processing that in-
volves substantial data exchanges among many nodes. Such
interaction can enable di�erent nodes to take coordinated
actions based on common information. For instance, there

IPSN’18, Porto, Portugal
2018. 123-4567-24-567/08/06. . . $15.00
DOI: 10.475/123 4

exists an entire class of protocols for data collection that
relies on hopping over multiple channels [1, 7], in-network
aggregation [15], and collaborative in-network processing
[30] that would bene�t from e�cient, high throughput many-
to-many communications.

However, to the best of our knowledge, there is no pro-
tocol that is designed to disseminate signi�cant amount of
data from many sources to many destinations reliably and ef-
�ciently. Existing many-to-many communications are imple-
mented based on workarounds such as (1) LWB [16], where
a centralized controller disseminates a transmission sched-
ule to the network nodes and then each node with an as-
signed transmission schedule disseminates its own data to
the other nodes in its dedicated time slot, or (2) a reversed
LWB approach, where a centralized controller disseminates
a transmission schedule to the network nodes like previously.
However, each node with an assigned transmission schedule
now acts as a Sink and initiate data collection using CTP
[19], [43], etc.

�ese approaches are centralized and can be unreliable
due to the use of a single gateway. �e protocols can also
be extremely slow if contention-based protocols (e.g. CTP)
are used. On the other hand, Chaos [27] and A2[3] are more
distributed in nature but are designed to support agreement
protocols (such as leader election or two-phase commit).
�ese protocols are not designed for sharing/disseminating
large amount of data and more complex interactions.

To address the above limitations, we present Codecast,
a high throughput many-to-many communication protocol
that can reliably disseminate data from many source nodes to
many destination nodes. In order to achieve high throughput
through allowing multiple nodes to transmit di�erent data
packets at the same time, Codecast leverages synchronous
transmissions and capture e�ect to increase the likelihood
of multiple successful packet receptions of di�erent data
packets by di�erent nodes.

Our design of Codecast incorporates two key components
to improve performance. First, it uses a network coding
scheme that generates codewords that utilizes feedback to
cra� specialized codewords to improve rate of data distribu-
tion. Second, it incorporates a transmission decision logic to
achieve higher spatial reuse during uncoordinated synchro-
nous transmissions from many senders.

To summarize, we make the following contributions in
this paper:

IPSN’18, April 2018, Porto, Portugal Paper 65

• As standard network coding with known distribu-
tions like Robust Soliton [31] do not well work, we
design an improved network coding degree distribu-
tion that leverages local feedback to select “be�er”
codewords.
• We incorporate feedback to improve spatial reuse

and allows a faster spread of ”new” information
through the network from many sources to many
destinations.
• We have implemented Codecast on Contiki and show

that it is reliable and provides much higher through-
put over existing solutions for many-to-many data
communication.
• We demonstrate the utility of Codecast through two

applications (1) distributed channel selection and (2)
link state routing. Both applications require sharing
of information among a subset or all the nodes.

Our evaluation shows that Codecast signi�cantly outper-
forms Chaos and LWB for many-to-many data communi-
cation in terms of achievable throughput on two wireless
sensor network testbeds. In particular, Codecast o�ers up
to 4 times and up to 1.8 times the throughput of Chaos and
LWB respectively. �e main bene�t of Codecast lies in its
ability to be a generic wireless communication protocol that
can handle multiple types of tra�c pa�erns.

�e rest of the paper is organized as follow. Section 2
introduces some of the related works. �e motivation and
detailed design of Codecast is presented in Section 3. Sec-
tion 4 evaluates Codecast for many-to-many communication
followed by some of the applications presented in section 5.
Finally, we conclude in Section 6.

2 RELATEDWORK
During the last decade, we have seen dramatic improvements
in the performance of low-power sensor network protocols.
We can now build numerous applications having diverse
requirements like reliable and high throughput over-the-
air programming of remote deployments [8, 18, 20, 22, 32],
robust and energy-e�cient data collection [1, 7, 12, 13, 19, 28,
35, 43], etc. However, the ability to share information among
many nodes using a generic many-to-many communication
in low-power sensor networks has been long overlooked.
�ere are two possible approaches to achieve many-to-many
communication.

(1) Data dissemination driven: �is approach is taken
by LWB [16]. A centralized controller distributes transmis-
sion schedules to the nodes of the network. Each node then
performs Glossy-based data dissemination to all the nodes
during its own dedicated transmission slot.

(2) Data collection driven: �is approach is the reverse
of LWB. A centralized scheduler like previously distributes
the transmission schedule to every network node. Each node

then acts as Sink and initiate data collection using CTP [19],
RPL [43], etc.

�ese naı̈ve approaches are limited by the reliability of the
performance of the underlying data collection and dissemina-
tion protocols. Also, because of the dependency on a central
scheduler, these schemes su�er from a single point of failure.
Failure to receive the transmission schedule causes complete
data loss. Moreover, while the data dissemination driven
approach have reliability issues due to the well known scala-
bility problem of synchronous transmissions, data collection
driven scheme o�ers extremely low throughput because of
the use of underlying CSMA/CA and the overhead of main-
taining uplink routes for every node acting as a sink.

Chaos [27] and A2[3] are more distributed in nature but
are designed to support agreement protocols (such as leader
election or two-phase commit) and are not designed for shar-
ing/disseminating larger amount of data and more complex
interactions. Chaos performs data dissemination in parallel
by integrating an aggregate function (MAX, MIN, COUNT,
etc.) into synchronous transmission schedules. Because of
the limit on the number of information that they can �t into
a maximum sized 802.14.5 packet to exchange, they are se-
verely limited by the maximum throughput that they can
o�er.

Codecast, on the contrary, provides a more general ap-
proach to support many-to-many communication. It does
so by introducing a new feedback driven network coding
(NANC) into synchronous transmission schedules. �e scheme
enables extremely reliable and high throughput many-to-
many data sharing. We demonstrate the utility of Codecast
through two applications, a distributed channel selection
algorithm and a link-state based routing scheme.

3 DESIGN
�is section motivates the need for Codecast using a toy
example and then describes in detail the key components of
its design.

3.1 Codecast - Motivation
We �rst illustrate the advantages of Codecast through a sim-
ple example. Consider the 6 node grid network topology
shown in Figure 1. �e application needs to perform chan-
nel selection that demands many-to-many data sharing to
achieve network-wide consensus. Nodes are supposed to use
the two channels based on the channel estimates of nodes A
and F. Hence, nodes A and F have to share their preferred
channels D1 and D2 with the entire network.
Simple Multicast: Using multicast and allowing two si-

multaneous transmissions by nodes A and F in the �rst trans-
mission round, it takes a total of 5 rounds of transmissions
to distribute the information to all the 6 nodes as shown in
the top row of Figure 1.

Codecast IPSN’18, April 2018, Porto, Portugal

A: {D1} C: {D
2

}

D: {D
1

} E: {D
2

}

B: {D
1

}

F: {D2}

Tdeg1

D2

D1

D1

D2 Tdeg1

A: {D1} C: {D
2

}

D: {D1D2} E: {D2}

B: {D1D2}

F: {D2}

D2

D2D2 Tdeg1

A: {D1D2} C: {D
1

D2}

D: {D1D2} E: {D
1

D2}

B: {D1D2}

F: {D2}

D1⊕D2 D1⊕D2

D1⊕D2

Tdeg2

A: {D1D2} C: {D1D2}

D: {D1D2} E: {D1D2}

B: {D1D2}

F: {D
1

D2}

D1⊕D2

D1⊕D2

Tdeg2

D2

D2

A: {D1} C: {D
1

D2}

D: {D1} E: {D
1

D2}

B: {D1}

F: {D2}

D1

D1D1

Tdeg1

A: {D1} C: {D1D2}

D: {D1} E: {D1D2}

B: {D1}

F: {D
1

D2}

D1

Tdeg1

A: {D1} C: {D1D2}

D: {D1D2} E: {D1D2}

B: {D1D2}

F: {D1D2}

D2

D2D2 Tdeg1

A: {D1D2} C: {D1D2}

D: {D1D2} E: {D1D2}

B: {D1D2}

F: {D1D2}

Tdeg1

A: {D1} C: {D
1

D2}

D: {D1D2} E: {D2}

B: {D1}

F: {D2}

D2

D1

Tdeg1

Tdeg1

A: {D1D2} C: {D1D2}

D: {D1D2} E: {D
1

D2}

B: {D1D2}

F: {D
1

D2}

D1⊕D2

D1⊕D2

D1⊕D2

D1⊕D2
Tdeg2

Tdeg2

Simple Multicast

Network Coding

Codecast

Figure 1: Comparison of di�erent dissemination strategies

Network Coding: �e middle row of Figure 1 shows
the transmissions needed to complete the required task by
leveraging network coding. It reduces the rounds needed by
1 as only 4 rounds of transmissions are now enough.

Codecast: �e bo�om row of Figure 1 shows the transmis-
sions needed to complete the required task using Codecast.
Just 3 rounds of transmissions are needed, that is 1 less than
the use of network coding and 2 less than the use of simple
multicast.

�e key di�erence between the use of network coding
and Codecast is that the later allows both nodes C and E to
transmit at the same time even though both nodes are within
the transmission range of each other. Such simultaneous
transmissions improve spatial reuse and thus speeds up data
exchange signi�cantly.

3.2 Codecast in a Nutshell
Codecast can be thought of as a service that initiates data
communication periodically or whenever an application
needs by triggering a wake-up call. Once the nodes enter
the Codecast round, they start performing transmission and
reception synchronously in alternating slots as depicted in
Figure 2.

Operations during a Codecast round are tightly synchro-
nized and organized into slots. Implementation of the syn-
chronous operations are similar to Chaos [27] and is based
on Glossy [17]. �e protocol begins when a set of nodes
want to share its data with others - periodic channel assess-
ment, periodic routing update, ba�ery status noti�cation,
sensor reading exchange, etc. A dedicated node starts the

Interrupt
Delay

Codecast Round Codecast Round

Codecast Period

TX RX TX RX TX RX TX RX

RX

Max allowed processing time

TX
Wait
Loop

TX
Decision

EncodeDecode

Application

TX RXWait for RX

TX

Interrupt
Delay

RX TX
Wait
Loop

TX
Decision

EncodeDecode

Capture

Node 1

Node 2

Node 3

Figure 2: Overview of Codecast in action

data sharing process by broadcasting the information that it
has.

In each slot, a node is either in reception or transmis-
sion mode. With every packet reception, each node checks
whether some new information has been learned. If new
information is learned, the node chooses to transmit with
some probability. Instead of contending with the neighboring
nodes to acquire the channel and then transmi�ing, nodes
in Codecast choose to transmit simultaneously in a tightly
synchronized manner. Despite the fact that each node is
transmi�ing di�erent data over the same broadcast medium
and that the packets are likely to collide and get corrupted,
capture e�ect allows for successful packet receptions as long

IPSN’18, April 2018, Porto, Portugal Paper 65

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30F
re

q
u
e
n
c
y
 D

is
tr

ib
u
ti
o
n

Degree

Soliton

(a) Soliton

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30F
re

q
u
e
n
c
y
 D

is
tr

ib
u
ti
o
n

Degree

RobustSoliton

(b) Robust Soliton

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30F
re

q
u
e
n
c
y
 D

is
tr

ib
u
ti
o
n

Degree

GrowthCode

(c) Growth Code

Figure 3: Comparison of various distribution for n = 30 with c = 0.1,δ = 0.1 for Soliton, Robust Soliton and Growth
Code.

as some transmissions dominate over other relatively weak
transmissions at the receivers [2, 14, 40].

Over time, nodes learn more and more data over multi-
hops. However, note that when nodes learn enough data, the
Coupon Collector’s Problem sets in, slowing the rate at which
nodes learn new data for every newly received packet.

�e challenge is thus to design a protocol that answers
the following key questions:

• What kind of information should be included in the
packet to be transmi�ed?
• When should a node transmit or receive?

We discuss in detail the various components of Codecast
and its implementation in the rest of this section. As the
decision on whether to transmit, receive or terminate de-
pends on the contents of information received in any round,
we will �rst present the details of the information encoding
process (Section 3.3). �is is followed by Section 3.4 that
decides when does a node transmit or receive.

3.3 Network Coded Data Distribution
In this section, we begin with a brief introduction to the
basic of fountain codes and some existing degree distribu-
tions before presenting our variant of network coding that is
optimized to improve throughput in a completely distributed
many-to-many data sharing se�ing.

3.3.1 Fountain Codes Basics. Network Coding has been
adopted in wireless sensor network for improving network’s
throughput and e�ciency [10, 26]. Due to the resource con-
straints on the nodes, light-weight fountain codes (rateless
codes) like Luby Transform codes (LT codes) [31], Random
Linear codes (RL codes) [21], Raptor codes [39] and Online
codes [33] are preferred because of their e�cient encoding
and decoding algorithms. �e main idea behind network
coding is to divide a data D into n symbols {D1,D2, ...,Dn}
which are then used to generate an in�nite stream of en-
coded codewords {Y1,Y2, ...}. �e encoding algorithm used
to generate eachYi codeword involves an application of XOR
operation over d randomly selected symbols (1 ≤ d ≤ n)
based on a chosen degree distribution (Section 3.3.2). It is

referred to as the degree of the encoded codeword. A trans-
mi�ing node distributes a stream of Yi codewords. At the
receiver’s end, the node is able to recover the original data D
upon receivingm (m ≥ n) encoded codewords and perform-
ing simple decoding using Gaussian Elimination or Belief
Propagation algorithms. Due to the robust and simplistic en-
coding and decoding algorithms of LT codes [32], we chose
it in our implementation of Codecast. We implement an op-
timized “On the Fly Gaussian Elimination for LT Codes” [4]
that takes less than 10ms on TelosB motes for up to N = 30.

3.3.2 Degree Distribution. Selecting a proper degree dis-
tribution is critical to achieve high throughput. �e desired
property of a degree distribution is to be able to retrieve
the original data D with high probability P using a mini-
mal number of encoded codewordsm. Ideally, n codewords
should be enough to recover all the n symbols. However, in
practice, a li�le more than n codewords are required. Soliton
distribution and its improved variant called the Robust Soli-
ton distribution are the default and the most commonly used
distributions. However, these distributions work be�er when
all the data is available at a single source [25] and is thus
more useful for application involving data dissemination
[10]. In applications where the data is distributed through-
out the network, the default Robust Soliton distribution does
not work well. For instance, by following the Robust Soliton
distribution, a node might decide to encode a codeword of a
certain degree d ≥ 1 when it has not decoded even a single
symbol yet.

Growth Code [25] proposes an alternative degree distribu-
tion that requires a lower number of codewords to recover all
the n symbols. It also speeds up the rate at which the nodes
learn new symbols. �e basic idea of Growth Code is that
the transmi�er should generate codewords with consistently
increasing degree. Initially, when a node has recovered only
a few symbols, it should encode low degree codewords to
transmit. As time progresses, higher degree codewords are
generated to improve the chances of the receivers to decode
more and more symbols. Figure 3 compares the degree dis-
tributions for the three di�erent distributions.

Codecast IPSN’18, April 2018, Porto, Portugal

Node BNode A

#a = 15 #b = 14

#k = 12

#n = 30

(#a-#k) = 3 (#b-#k) = 2

Figure 4: Decoding progress at a stage when node A
and B have decoded a subset of the total data

One key drawback of these distributions is that they are
optimized for scenarios where all the data is available on
a single source. However, in applications where the data
is initially distributed across many nodes, degree selection
based on the above distributions do not perform well.

Let us understand the problem through a two node exam-
ple illustrated in Figure 4. Assume that a node A has decoded
a = 15 symbols while node B has recovered b = 14 symbols
out of the n = 30 symbols so far. Also, since both the nodes
are neighbors, it is quite likely that many of the recovered
symbols are common. Let us assume that k = 12 symbols
are common between the two. Also, node A is trying to help
node B to recover the missing symbols by sharing a degree
d codeword. Node B can recover the missing symbol if and
only if out of the d degree codeword encoded by A, exactly
1 symbol is missing at node B. Figure 5 plots the probability
with which node B can decode an additional symbol when it
receives codewords of di�erent degrees from node A. Look-
ing at the degree distributions, one can see that by following
growth code, node A would encode a degree 1 codeword,
while Soliton and Robust Soliton distribution might encode
a degree 1 to 10 codeword, with 2 and 10 being the likely
options respectively. From Figure 5 it is evident that the
most optimal codeword is of degree 5. �is enables node B
to decode a new information with a decoding probability of
0.4945. Growth code, Soliton, and Robust Soliton distribu-
tions, on the contrary, yield low decoding probabilities of
0.2, 0.34, and 0.22 respectively.

3.3.3 Network-Assisted Network Coding (NANC). We de-
sign a data encoding and distribution technique called Network-
Assisted Network Coding (NANC). Instead of following a
degree distribution based on only local information, which
leads to the generation of sub-optimal codewords, NANC in-
corporates feedback from the neighbors to generate “be�er”
codewords.

In Codecast, nodes alternate between transmission and
reception as shown in Figure 2. If a node has just transmi�ed
a packet and its neighbor has successfully captured it, then

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

D
e
c
o
d
in

g
 P

ro
b
a
b
ili

ty

Degree

Figure 5: Decoding probability on receiving di�erent
degree codewords

the receiver is certain that the node that transmi�ed previ-
ously would currently be in reception mode. Further, the
transmi�ing node also includes information on its decoding
progress (number of symbols that it has decoded and there-
fore the symbols that it needs) in the packet. Speci�cally, in
the transmi�ed packet, a node indicates in a N-bit vector (N
is the number of nodes disseminating data) the data it has
successfully decoded.

Selecting a “be�er” codeword degree. When a node de-
cides to transmit, it has a record of the successfully decoded
packets of each of its neighbors as it has heard from them ear-
lier. However, note that except for the most recent data that
it has received, all other information received from other
nodes may be out-of-date because those nodes may have
decoded more information since the time the feedback infor-
mation was sent. Nevertheless, the decision will have to be
made based only on the available feedback at that moment.

Let us revisit Figure 4. Given that a transmi�ing node A
knows a (the number of symbols it has decoded) and ki (the
number of symbols it has common with its neighbor Ni),
then ρa,ki ,d , the probability of decoding a new symbol by
neighbor Ni on receiving a codeword of degree d from A can
be de�ned as:

ρa,ki ,d =

(ki
d−1

) (a−ki
1

)(a
d

) (1)

�us, node A selects the degree dopti that maximizes the
decoding probability for a particular neighboring node Ni
as below:

dopti = argmax
d

ρa,ki ,d (2)

Figure 6 illustrates the degree (heatmap color) a node can
select for n = 30, when a and ki ’s are known.

Note that a node can have many neighbors and the opti-
mal degree is likely to be di�erent for each neighbor. �e
heuristic is to select the dopti that maximizes the decoding

IPSN’18, April 2018, Porto, Portugal Paper 65

I’m Done Others Done Decoded New Transmit Remark
0 0 0 P Probabilistic transmission to avoid collisions.
0 0 1 1 Learned a new symbol, share with neighbors.
0 1 0 1 Only I need a symbol, inform neighbors.
0 1 1 1 Only I need a symbol, inform neighbors.
1 0 0 P Probabilistic transmission to avoid collisions.
1 0 1 0 Not possible. Cannot learn a new symbol a�er I’m done.
1 1 0 0 Everyone has terminated. Stop transmission.
1 1 1 0 Not possible. Cannot learn a new symbol a�er all done.

Table 1: Decision logic a�er every packet reception

 0 5 10 15 20 25 30

Num. Pkts. common with Receiver (k)

 0

 5

 10

 15

 20

 25

 30

N
u
m

.
P

k
ts

.
a
t
T

ra
n
s
m

it
te

r
(a

)

 0

 5

 10

 15

 20

 25

 30

Figure 6: Network-AssistedNetworkCoding degree se-
lection for a given n = 30, a, and k

probability for the slowest neighbor (the node that has solved
the least number of symbols so far).

Cra�ing a specialized codeword. Once the degree is de-
termined, the next step is to decide the set of data chosen to
cra� the codeword. Typically, the selection is done randomly
[25, 31]. However, for Codecast, we use a hybrid scheme to
utilize the available feedback. First, we select a single data
that the most recent transmi�er (B) has not decoded if such
a data is locally available. �is maximizes the likelihood
this codeword to be useful since (1) the node that has just
transmi�ed should be in the receiving mode and (2) its state
has not changed and still needs this data. For the remaining
dopt − 1 symbols, we select up to dopt − 1 data that both the
sender and B have decoded already so that the �rst selected
data can always be decoded by node B with certainty. Re-
call that the degree dopt is already chosen to optimize the
decoding probability of the slowest neighboring nodes. �is
hybrid scheme ensures the intended recipient can success-
fully decode a new data (if such a data is available locally)

Feedback
BitVector

1010....1010

Codeword
BitVector

0110....0011

Codeword Yi

D1 D5 D6 D15 D19 D30

PayloadOverhead

s bits

ID
1011

Slice

log2N bits log2N bits (128 - overhead) bits

Figure 7: CodeCast packet structure

every time it receives a codeword and also allows the other
neighbors to decode a symbol with high probability.

Codecast parameters. Figure 7 shows the Codecast packet
structure. It comprises of 4 components: (1) Codeword of
a certain degree decided as explained earlier, (2) Codeword
BitVector to indicate which data have been use to create a
codeword, (3) Feedback BitVector to indicate which all data
has been successfully decoded by the packet, and (4) Slice ID
which is used to make Codecast scale to large network and
would be explained later in section 4.

In the current implementation, Codecast slot length of
16ms is �xed to allow up to 10ms of encoding/decoding
time and transmission time for a maximum sized 802.15.4
packet. Our optimized “On the Fly Gaussian Elimination
for LT Codes” implementation [4] takes less than 10ms on
TelosB motes for up to N = 30 nodes.

3.4 Transmit/Receive Decision
A�er a packet reception, a node decides if it wants to transmit.
Since Codecast allows synchronous transmission to improve
spatial reuse exploiting capture e�ect, it is important that
not too many nodes transmit at the same time as that will
reduce the likelihood of successful capture. A node makes
use of a 3-tuple < I ′mDone,OthersDone,DecodedNew > to
decide whether it should transmit or not.

�e states are recorded at the end of a reception slot upon
successful reception of a packet and are interpreted as follow:

• “I’m Done”: 1 if the local node has received data
from all sources, 0 otherwise.
• “Others Done”: 1 if all other nodes (excluding the

local node) have received data from all sources, 0
otherwise.

Codecast IPSN’18, April 2018, Porto, Portugal

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

P
ro

g
re

s
s
 G

ro
w

th

Number of Codewords

(a) NANC with Feedback

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

P
ro

g
re

s
s
 G

ro
w

th

Number of Codewords

(b) NANC

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

P
ro

g
re

s
s
 G

ro
w

th

Number of Codewords

(c) Growth Code

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

P
ro

g
re

s
s
 G

ro
w

th

Number of Codewords

(d) Robust Soliton

Figure 8: Decoding progress for each of the network node using di�erent encoding schemes in Cooja

• “Decoded New”: 1 if the local node has successfully
decode a new data, 0 otherwise.

Table 1 illustrates the decision logic. �e node spends most
of its time in the states < 000 > and < 001 >. �e node
always transmits when:

(1) It decodes a new data < 0 ∗ 1 >, and
(2) It is the last incomplete node < 01∗ >

For cases when other nodes are not done and the local
node has not decoded any new data in the last slot (< ∗00 >),
a node chooses to transmit with probability P . �e value of
P depends on the network density. In the current evaluation,
we select a small value of P = 0.1.

Finally, to con�rm completion, Codecast uses a bit vector
of size N bits where N denotes the number of source nodes
sharing data. When a node has received from all sources, it
broadcasts its data 5 times in quick succession similar to the
Aggressive Sharing upon Completion in Chaos before turning
o� its radio.

4 EVALUATION
In this section, we �rst evaluate Network-Assisted Network
Coding (NANC) against the standard network coding (Ro-
bust Soliton and Growth Code) and highlight the importance
of feedback in achieving faster data retrieval. Later, we in-
corporate NANC into Codecast to evaluate how it performs
on real testbed evaluations.

4.1 Network Code Performance
It is challenging to have a fair comparison of di�erent net-
work coding degree distributions on a real testbed. Unpre-
dictable interference from multiple cross-technology inter-
ference (CTI) sources can change the results for di�erent
experiment runs. For consistency, we �rst evaluate the per-
formance of di�erent network coding schemes on Cooja [36],
a simulator for sensor network using Multi-path Ray-tracer
Medium (MRM) radio propagation model. We selected a
30 node network deployment over a 500mx500m simulated
area for each run of the experiment. Nodes are allowed to
transmit concurrently and packet receptions happen due to

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

P
ro

g
re

s
s
 G

ro
w

th

Number of Codewords

NANC
NANC w/o FB
Growth Code

Robust Soliton

(a) Cooja

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

P
ro

g
re

s
s
 G

ro
w

th

Number of Codewords

NANC
NANC w/o FB
Growth Code

Robust Soliton

(b) Indriya

Figure 9: Decoding progress when averaged across
nodes

successful capture e�ect. �e parameters for Robust Soliton
and Growth Code are selected based on the recommended
values [25, 31]. Figure 8 shows the number of packets re-
quired by individual nodes to decode the remaining 29 data
of the other nodes for di�erent schemes. Figure 9 highlights
the decoding progress when averaged over all the network
nodes to understand the general decoding trend.

As seen in Figure 9a, Growth Code and Robust Soliton dis-
tribution help to recover the �rst 15 symbols almost together.
�e progress using Robust Soliton slows down a�er that as
the degree used to form codewords are too low. Growth
Code, on the other hand, continues with a faster progress
due to transmission of codewords with increasing degrees.
In comparison, NANC is able to complete decoding with
signi�cantly smaller number of codewords - 55 codewords
on average and 69 codewords in the worst case. �e perfor-
mance of NANC get further enhanced with explicit feedback.
�e number of codewords required to successfully decode all
the information reduces to 35 on average and 42 in the worst
case. �is is close to the theoretical bound of 29 codewords.
On the average, network coding used in Codecast requires
60% lesser codewords that the Growth code to recover the
same amount of information as shown in Figure 10a.

Similar observations can be made when we run the same
network coding schemes on Indriya as shown in Figures
9b and 10b, however with slightly longer completion time.

IPSN’18, April 2018, Porto, Portugal Paper 65

�is is mainly due to the increase in packet collisions and
interference present in a real testbed.

4.2 Many-to-Many Data Sharing
Codecast enables high throughput data sharing between
many distributed nodes of a low-power wireless sensor net-
work. In this section we compare Codecast against two
popular protocols that also support many-to-many data com-
munication.

4.2.1 Experiment Se�ings. We have implemented Code-
cast on Contiki OS [11] running on TelosB devices[37]. For
each experiment, unless speci�cally mentioned, we used
channel 26 of the IEEE 802.15.4 radio. Also, the maximum
transmission power is used. To enable evaluation of the pro-
tocol multiple times, instead of allowing Codecast to run
inde�nitely, we timeout each codecast round a�er 4.5 sec-
onds and restart the next. �is gives codecast a maximum of
4.5 seconds to recover all the information.

�e time required decode a codeword increases exponen-
tially with N , the number of nodes participating in the data
exchange. It takes up to 10ms for N = 30 and much longer
for N > 30 as in Indriya, thus making it non-scalable. Large
slot lengths may not be supported by the device timers and
nodes may lose synchronization [34]. To achieve scalable
data exchange from all nodes to all nodes in large networks,
we utilize a hybrid approach. We divide the network into
multiple slices with N 6 30 nodes in each slice and add
the slice ID in each Codecast packet as shown in �gure 7.
Every node encodes and transmits a codeword using data
belonging to nodes from the same slice thus limiting the
decoding time to up to 10ms. Each node transmits codeword
belonging to the same slice that it has received new data
from so as to utilize the explicit feedback in the codeword.
If the node does not have any data from the received slice,
it transmits codewords from the smallest slice ID that the
neighbors still have not completely decoded. In this way,
nodes decode data from multiple slices in parallel.

4.2.2 Testbeds Considered. For extensive evaluation, we
used the Indriya [6] and Flocklab [29] testbeds. Indriya is
a large and dense deployment, housing 90 TelosB nodes
deployed over three �oors of an academic institution. Flock-
lab on the other hand is a relatively smaller and less dense
testbed comprising of 30 TelosB nodes deployed inside o�ces,
hallways and even the roo�op of an adjacent buildings. Each
testbed roughly provides a diameter of around 5-6 hops when
the highest transmission power of 0dBm is used. Detailed
testbed characteristics are enlisted in Table 2 for reference.

4.2.3 Baseline Protocols. We consider the following pro-
tocols to evaluate Codecast against.

 0

 0.2

 0.4

 0.6

 0.8

 1

 30 40 50 60 70 80 90 100

N
o

d
e

s
 W

h
o

 D
e

c
o

d
e

d
 A

ll

Number of Packets Required

NANC
NANC w/o FB
Growth Code

Robust Soliton

(a) Cooja

 0

 0.2

 0.4

 0.6

 0.8

 1

 30 40 50 60 70 80 90 100

N
o

d
e

s
 W

h
o

 D
e

c
o

d
e

d
 A

ll

Number of Packets Required

NANC
NANC w/o FB
Growth Code

Robust Soliton

(b) Indriya

Figure 10: CDF for the codewords required to decode

Table 2: Testbed Characteristics

Testbed Indriya Flocklab
Number of Nodes 90 30
Tx Power (dBm) 0 0

Network Diameter (hops) 6 5
Ave. Neighbor per Node 15 8

Chaos: A synchronous transmission-based protocol that
exploits capture e�ect and in-network processing to support
many-to-many data sharing for applications like “Leader-
Election”. We used the Contiki implementation of Chaos for
sky motes [27].

LWB: A synchronous transmission-based protocol that
relies on a centralized scheduler to disseminate transmission
schedules to network nodes. All the participating nodes then
initiates a Glossy �ood [17] for data dissemination in their
own dedicated time slot. We used the Contiki implementa-
tion of LWB for sky motes [38].

�e LWB se�ings chosen is shown in Table 3. We do
not use the default LWB parameters as they work only for
extremely small packets (15 bytes). Reliability for LWB de-
pends on both the packet size and the length of data slot
Td . We choose the smallest data slot length that provided
similar reliability of over 99% as reported in the paper [16]
and showed high throughput to be fair as shown in Figure
13.

4.2.4 Metrics. We use the following key performance
metrics for testbed evaluations:

�roughput: Calculated as the amount of data (exclude
overhead) received by a node per unit time and represented
in kilobits per second (kbps).

Reliability: Calculated as the total data received out of
the total data generated by all the data sources. It is averaged
over multiple rounds and represented as a percentage.

4.3 Impact of Varying Data Sources
In this section we test the performance of di�erent protocols
with varying number of data sources.

Codecast IPSN’18, April 2018, Porto, Portugal

 97.5

 98

 98.5

 99

 99.5

 100

10 15 20 25 30

R
e

lia
b

ili
ty

 (
%

)

Number of Data Sources

Chaos
LWB

Codecast

(a1) Reliability

 0

 5

 10

 15

 20

10 15 20 25 30

T
h

ro
u

g
h

p
u

t
(k

b
p

s
)

Number of Data Sources

Chaos
LWB

Codecast

(a2) �roughput

(a) Flocklab

 97.5

 98

 98.5

 99

 99.5

 100

10 15 20 25 30

R
e

lia
b

ili
ty

 (
%

)

Number of Data Sources

Chaos
LWB

Codecast

(b1) Reliability

 0

 5

 10

 15

 20

10 15 20 25 30

T
h

ro
u

g
h

p
u

t
(k

b
p

s
)

Number of Data Sources

Chaos
LWB

Codecast

(b2) �roughput

(b) Indriya

Figure 11: Performance comparison for many-to-
many communication with varying number of data
sources

 97.5

 98

 98.5

 99

 99.5

 100

32 48 64 96 128

R
e

lia
b

ili
ty

 (
%

)

Packet Size (Bytes)

Chaos
LWB

Codecast

(a1) Reliability

 0

 5

 10

 15

 20

32 48 64 96 128

T
h

ro
u

g
h

p
u

t
(k

b
p

s
)

Packet Size (Bytes)

Chaos
LWB

Codecast

(a2) �roughput

(a) Flocklab

 97.5

 98

 98.5

 99

 99.5

 100

32 48 64 96 128

R
e

lia
b

ili
ty

 (
%

)

Packet Size (Bytes)

Chaos
LWB

Codecast

(b1) Reliability

 0

 5

 10

 15

 20

32 48 64 96 128

T
h

ro
u

g
h

p
u

t
(k

b
p

s
)

Packet Size (Bytes)

Chaos
LWB

Codecast

(b2) �roughput

(b) Indriya

Figure 12: Performance comparison for many-to-
many communication for di�erent packet sizes

 95

 96

 97

 98

 99

 100

 101

50 75 100 150 200

R
e

lia
b

ili
ty

 (
%

)

Data Slot Length (ms)

LWB

(a) Reliability

 0

 2

 4

 6

 8

 10

 12

 14

50 75 100 150 200

T
h

ro
u

g
h

p
u

t
(k

b
p

s
)

Data Slot Length (ms)

LWB

(b) �roughput

Figure 13: Dependence of LWB reliability and
throughput on data slot length Td

Setup: We select N randomly selected nodes from Flock-
lab and Indriya as data sources. N is varied from 5 to 30.
�e remaining network nodes not only act as relays to allow
data exchange but are also data recipients. Maximum sized
IEEE 802.14.5 packets are used for all the runs. Each experi-
ment last for 30 minutes which involves multiple rounds of
Codecast, Chaos and LWB. We plot the observed reliability
and throughput averaged over all the rounds and across all
the nodes.�e error bars in the plots indicate the 5th and the
95th percentiles.

Result: As illustrated in Figures 11a1 and 11b1, both
Chaos and Codecast are extremely reliable on both the testbeds.

Table 3: LWB Parameters

Parameters Values
Ts 100ms
Td 25 (32 bytes) - 100ms (128 bytes)
Ntx Up to 7
Packet Size (Bytes) 32-128

LWB, because of the lack of explicit feedbacks or acknowl-
edgements, is not as reliable as the others but is still over 99%
in reliability (achieved by choosing larger than default data
slot length). Note that smaller data slot length will increase
LWB’s throughput but lower the reliability to below 99% as
shown in Figure 13.

A signi�cant di�erence is observed in the throughput
comparison as shown in Figures 11a2 and 11b2. Codecast
exhibits high throughput of up to 20kbps when 30 nodes act
as data source. �is is an improvement of up to 1.8 times
in comparison to LWB and and 4.0 times in comparison to
Chaos for the same number of data sources.

4.4 Impact of Varying Packet Sizes
Synchronous transmissions are known to be unreliable for
large packet sizes [8]. Packet reception reliability drops with
the increase in the packet size as well as with the increase

IPSN’18, April 2018, Porto, Portugal Paper 65

 25

 26

 27

 28

 29

 30

 0 5 10 15 20

C
u
rr

e
n
t
(m

A
)

Time (ms)

Codecast
Glossy

Figure 14: Energy Consumption with and without
computation.

in the number of synchronous transmi�ers [5, 24, 34, 41]. In
this section we check the impact of di�erent packet sizes on
the performance of Codecast, LWB and Chaos.

Setup: We repeat the above experiment with 30 randomly
selected nodes as data sources. However, this time we vary
the size of the transmi�ed packets from 32 bytes to 128 bytes.
Each time we record the reliability and throughput along
with the 5th and the 95th percentile from both the testbeds.

Result: Figure 12 summarizes the results of the above ex-
periment. �e impact of packet sizes on reliability is not no-
ticeable in Codecast and Chaos. As expected, LWB exhibits
slight improvement in reliability as packet size decreases
from 128 to 32 bytes. Codecast like previous section achieves
extremely high throughput of up to 20kbps in comparison to
a maximum throughput of 5.09kbps and 10.59kbps for Chaos
and LWB respectively.

Table 4: Scalablemany-to-many data sharingwith net-
work slicing

Nodes # Slices �roughput Reliability
30-to-90 1 22.5 kbps 100.00%
60-to-90 2 19.4 kbps 99.95%
90-to-90 3 18.0 kbps 99.98%

4.5 Impact of Network Slicing
Slicing of network allows many-to-many data sharing to
scale to any number of nodes to support large networks.
Table 4 shows the average throughput and reliability when
30, 60 and 90 nodes share the data with the rest of the 90
nodes of Indriya. With 30 nodes in a slice, 60-to-all involve
2 slices being shared while all-to-all involves 3 slices being
shared in parallel.

4.6 Energy Consumption
To achieve high throughput data exchange between net-
work nodes, Codecast rely on intensive in-network process-
ing to perform network encoding and decoding on every

packet that every node receives. Energy is a crucial resource
for such resource constraint devices. Figure 14 compares
the average energy consumption of Codecast (synchronous
transmissions with in-network processing) and Glossy (only
synchronous transmission that LWB is based on). Since
radio accounts for the major portion of the consumed en-
ergy, Codecast’s additional intensive processing does not
signi�cantly add to it. Codecast’s average current consump-
tion during the active phase is 27.53µA. It is only 0.25µA
increase when compared to 27.28µA current consumption of
Glossy/LWB. �ere is negligible di�erence in current drawn
when compared to Chaos since it also involves some sim-
pler in-network processing. Combined with the fact that
Codecast takes requires 1.8 to 4 times smaller radio-on time
to share the same about of data, it provides an extremely
e�cient way of enabling many-to-many data sharing.

5 APPLICATIONS
In this section, we demonstrate the utility of Codecast through
two applications.

5.1 Distributed Channel Selection
Cross-technology interference is becoming increasingly ram-
pant [35]. Many techniques have been designed to mitigate
the impact on packet losses. �e most common method is
to exploit channel diversity using some channel hopping
mechanism [7, 8, 23, 35, 42, 44]. However, none of these
protocols specify a way to agree on a set of common chan-
nels. �ite o�en, these protocols hard-code a set of channels
upon the initial setup. However, due to the dynamic nature
of interference, channel selection should be performed in a
more dynamic manner rather than statically determined in
advance.

We implement a distributed channel selection scheme
using Codecast. All 90 nodes on Indriya periodically assess
the environment and individually pick one channel as the
preferred channel out of 4 channels. �ese nodes then share
this information with the rest of the network using Codecast.
Early termination (before all information are received by all
nodes) can happen if a node decides it has determined the
channel that is preferred by the largest number of nodes or
the preferred channel. Note that the preferred channel does
not have to be the choice of the majority, it just needs to
have the most votes.

To be precise, let there be a total of N nodes, and the
number of votes received for channels x1, x2, x3 and x4 so far
bev1,v2,v3 andv4 respectively. Assume thatv1 ≥ v2 ≥ v3 ≥
v4. Selection can terminate if (1) v1 >

N
2 or (2) v1 > v2 +

(N −∑
i vi). In the worst case, there is no early termination

and Codecast distributes all data to all nodes. In case of a tie,
the channel with lower channel number is selected.

Codecast IPSN’18, April 2018, Porto, Portugal

Table 5: Channel selection distribution

Ch 1 Ch 2 Ch 3 Ch 4
Case 1 100% 0% 0% 0%
Case 2 48% 24% 16% 12%
Case 3 40% 30% 20% 10%
Case 4 25% 25% 25% 25%

Table 5 shows the di�erent distributed channel selection
cases and Figure 15 shows the average completion time taken
of distributed channel selection using Codecast. As expected,
in the extreme case when all nodes chooses the same channel,
Codecast terminates early in 2.97 sec once a node hears
from a majority of the nodes. In the extreme case whereby
all the channels are selected with almost equal likelihood,
channel selection runs to completion in 5.54 sec. With other
combinations of channel preferences, early terminations are
triggered ranging from 4.43 sec to 5.42 sec.

�is example illustrates the potential of Codecast to sup-
port more complex interaction. When more information is
available, a decision can be made in a shorter time depending
the decision logic and data characteristic.

5.2 Routing for Sensor Networks
Typically, routing in low-power sensor networks is distance
vector based and a routing tree [19, 43] or a DODAG [13, 35]
is constructed. Nodes share their distances from the sink
(using metrics like hop-count, ETX, EDC, etc.) with their
neighbors and the information is propagated until a stable
network topology is constructed. Even though the process
is simple, this however has certain disadvantages:

Routing loops: �e nodes generally know only its parent
or a set of forwarders along the direction of the sink. �is
limited information can cause routing loops and leads to
packet losses when link quality changes.

Incomplete topology: �e nodes do not have a complete
and consistent view of the network topology. Communica-
tion from any source to any destination has to go through
the sink thus introducing signi�cant delays, even though
the source and destination could quite o�en be reachable
directly.

With Codecast’s ability to share larger amount of data
e�ciently, the question becomes whether it is possible to
use link state based routing instead. In this evaluation, we
use Codecast to distribute link state information from (1) 30
randomly selected nodes and (2) all nodes in Indriya. We
refer to the former as Codecast30 and the later as CodecastAll.
A standard shortest path algorithm is used to compute the
shortest paths between two nodes.

Table 6 summarizes the results of the evaluation in terms
of the distance in hops for any node to communicate with

Protocol Ave. Time Mean Hop Maximum Hop
RPL - 6.00 13
CTP - 5.96 14
CodecastAll 5.6s 2.17 4
Codecast30 1.4s 2.58 5

Table 6: Mean and Max hops to reach from any source
to any destination on Indriya for di�erent schemes

 0

 2

 4

 6

 8

 10

1 2 3 4

T
im

e
 (

s
)

Case Number

Codecast

Figure 15: Completion Time of Distributed Channel
Selection using Codecast with di�erent Settings

any other node on Indriya using routing schemes of RPL,
CTP and Codecast. On the average, any two nodes on In-
driya are within a communication range of 2.58 hops using
Codecast30. �is is almost a 60% reduction in hop count
compare to existing tree based routing protocols. In addition,
even though CodecastAll reduces the average path length to
2.17 hops, it does take more than 3 times longer to complete
since there are much more data (data from 90 nodes vs 30
nodes) to transfer.

6 CONCLUSION
We present Codecast, a generic many-to-many communi-
cation protocol that enables reliable and high throughput
data sharing among distributed network nodes. �e pro-
tocol exploits synchronous transmission and capture e�ect
to achieve high spatial reuse by allowing multiple nodes
to transmit at the same time. Codecast incorporates a new
network-assisted network coding scheme by utilizing feed-
back from the neighbors. Codecast not only generates opti-
mal degree codewords but also cra�s specialized codewords
that maximize the probability of decoding a new information
for the neighbors for every packet reception. Our data col-
lection and data dissemination application shows signi�cant
improvements in comparison to other state-to-art protocols
that supports many-to-many communications.

REFERENCES
[1] Beshr Al Nahas, Simon Duquennoy, Venkatraman Iyer, and �iemo

Voigt. 2014. Low-power listening goes multi-channel. In DCOSS. IEEE.

IPSN’18, April 2018, Porto, Portugal Paper 65

[2] JENSC Arnbak and Wim Van Bli�erswijk. 1987. Capacity of slo�ed
ALOHA in Rayleigh-fading channels. IEEE Journal on Selected Areas
in Communications (1987).

[3] Simon Duquennoy Beshr Al Nahas and Olaf Landsiedel. 2017.
Network-wide Consensus Utilizing the Capture E�ect in Low-power
Wireless Networks. In Sensys. ACM.

[4] Valerio Bioglio, Marco Grange�o, Rossano Gaeta, and Ma�eo Sereno.
2009. On the �y gaussian elimination for LT codes. IEEE communica-
tions Le�ers (2009), 953–955.

[5] Doug Carlson, Marcus Chang, Andreas Terzis, Yin Chen, and Om-
prakash Gnawali. 2013. Forwarder selection in multi-transmi�er
networks. In DCOSS. IEEE.

[6] Manjunath Doddavenkatappa, Mun Choon Chan, and Akkihebbal L
Ananda. 2011. Indriya: A low-cost, 3D wireless sensor network testbed.
In TRIDENTCOM. Springer.

[7] Manjunath Doddavenkatappa, Mun Choon Chan, and Ben Leong. 2011.
Improving link quality by exploiting channel diversity in wireless
sensor networks. In RTSS. IEEE.

[8] Manjunath Doddavenkatappa, Mun Choon Chan, and Ben Leong.
2013. Splash: Fast data dissemination with constructive interference
in wireless sensor networks. In NSDI. Usenix.

[9] Manjunath Doddavenkatappa and Mun Choon. 2014. P3: a practical
packet pipeline using synchronous transmissions for wireless sensor
networks. In IPSN. IEEE.

[10] Wan Du, Jansen Christian Liando, Huanle Zhang, and Mo Li. 2015.
When pipelines meet fountain: Fast data dissemination in wireless
sensor networks. In SenSys. ACM.

[11] Adam Dunkels, Bjorn Gronvall, and �iemo Voigt. 2004. Contiki-a
lightweight and �exible operating system for tiny networked sensors.
In LCN. IEEE.

[12] Simon Duquennoy, Beshr Al Nahas, Olaf Landsiedel, and �omas Wat-
teyne. 2015. Orchestra: Robust mesh networks through autonomously
scheduled TSCH. In SenSys. ACM.

[13] Simon Duquennoy, Olaf Landsiedel, and �iemo Voigt. 2013. Let
the tree Bloom: scalable opportunistic routing with ORPL. In SenSys.
ACM.

[14] Prabal Du�a, Stephen Dawson-Haggerty, Yin Chen, Chieh-Jan Mike
Liang, and Andreas Terzis. 2010. Design and evaluation of a versatile
and e�cient receiver-initiated link layer for low-power wireless. In
SenSys. ACM.

[15] Elena Fasolo, Michele Rossi, Jorg Widmer, and Michele Zorzi. 2007.
In-network aggregation techniques for wireless sensor networks: a
survey. IEEE Wireless Communications (2007).

[16] Federico Ferrari, Marco Zimmerling, Luca Mo�ola, and Lothar �iele.
2012. Low-power wireless bus. In SenSys. ACM.

[17] Federico Ferrari, Marco Zimmerling, Lothar �iele, and Olga Saukh.
2011. E�cient network �ooding and time synchronization with glossy.
In IPSN. IEEE.

[18] Yi Gao, Jiajun Bu, Wei Dong, Chun Chen, Lei Rao, and Xue Liu. 2013.
Exploiting concurrency for e�cient dissemination in wireless sensor
networks. IEEE Transactions on Parallel and Distributed Systems (2013).

[19] Omprakash Gnawali, Rodrigo Fonseca, Kyle Jamieson, David Moss,
and Philip Levis. 2009. Collection tree protocol. In SenSys. ACM.

[20] Andrew Hagedorn, David Starobinski, and Ari Trachtenberg. 2008.
Rateless deluge: Over-the-air programming of wireless sensor net-
works using random linear codes. In IPSN. IEEE Computer Society.

[21] Tracey Ho, Muriel Médard, Ralf Koe�er, David R Karger, Michelle
E�ros, Jun Shi, and Ben Leong. 2006. A random linear network coding
approach to multicast. IEEE Transactions on Information�eory (2006).

[22] Jonathan W Hui and David Culler. 2004. �e dynamic behavior of
a data dissemination protocol for network programming at scale. In
SenSys. ACM.

[23] Venkatraman Iyer, Ma�hias Woehrle, and Koen Langendoen. 2011.
Chrysso��A multi-channel approach to mitigate external interference.
In SECON. IEEE.

[24] Xiaoyu Ji, Yuan He, Jiliang Wang, Kaishun Wu, Ke Yi, and Yunhao Liu.
2013. Voice over the dins: improving wireless channel utilization with
collision tolerance. In ICNP. IEEE.

[25] Abhinav Kamra, Vishal Misra, Jon Feldman, and Dan Rubenstein.
2006. Growth codes: Maximizing sensor network data persistence. In
SIGCOMM. ACM.

[26] Sachin Ka�i, Hariharan Rahul, Wenjun Hu, Dina Katabi, Muriel
Médard, and Jon Crowcro�. 2006. XORs in the air: practical wireless
network coding. In SIGCOMM. ACM.

[27] Olaf Landsiedel, Federico Ferrari, and Marco Zimmerling. 2013. Chaos:
Versatile and e�cient all-to-all data sharing and in-network processing
at scale. In SenSys. ACM.

[28] Olaf Landsiedel, Euhanna Ghadimi, Simon Duquennoy, and Mikael
Johansson. 2012. Low power, low delay: opportunistic routing meets
duty cycling. In IPSN. IEEE.

[29] Roman Lim, Federico Ferrari, Marco Zimmerling, Christoph Walser,
Philipp Sommer, and Jan Beutel. 2013. Flocklab: A testbed for dis-
tributed, synchronized tracing and pro�ling of wireless embedded
systems. In IPSN. IEEE.

[30] Juan Liu, James Reich, and Feng Zhao. 2003. Collaborative in-network
processing for target tracking. EURASIP Journal on Advances in Signal
Processing (2003).

[31] Michael Luby. 2002. Digital Fountain, Inc. luby@ digitalfountain. com.
(2002).

[32] David JC MacKay. 2005. Fountain codes. IEE Proceedings-
Communications (2005).

[33] Petar Maymounkov. 2002. Online codes. Technical Report. Technical
report, New York University.

[34] Mobashir Mohammad, Manjunath Doddavenkatappa, and Mun Choon
Chan. 2017. Improving Performance of Synchronous Transmission-
Based Protocols Using Capture E�ect over Multichannels. ACM Trans-
actions on Sensor Networks (TOSN) (2017).

[35] Mobashir Mohammad, XiangFa Guo, and Mun Choon Chan. 2016.
Oppcast: Exploiting spatial and channel diversity for robust data
collection in urban environments. In IPSN. IEEE.

[36] Fredrik Osterlind, Adam Dunkels, Joakim Eriksson, Niclas Finne, and
�iemo Voigt. 2006. Cross-level sensor network simulation with cooja.
In LCN. IEEE.

[37] Joseph Polastre, Robert Szewczyk, and David Culler. 2005. Telos:
enabling ultra-low power wireless research. In IPSN. IEEE Press, 48.

[38] Chayan Sarkar. 2016. LWB and FS-LWB implementation for Sky nodes
using Contiki. arXiv preprint - h�ps://arxiv.org/pdf/1607.06622.pdf.
(2016).

[39] Amin Shokrollahi. 2006. Raptor codes. IEEE transactions on information
theory (2006).

[40] Dongjin Son, Bhaskar Krishnamachari, and John Heidemann. 2006.
Experimental study of concurrent transmission in wireless sensor
networks. In SenSys. ACM.

[41] Yin Wang, Yuan He, Xufei Mao, Yunhao Liu, and Xiang-yang Li. 2013.
Exploiting constructive interference for scalable �ooding in wireless
networks. IEEE/ACM Transactions on Networking (2013).

[42] �omas Wa�eyne, Ankur Mehta, and Kris Pister. 2009. Reliability
through frequency diversity: why channel hopping makes sense. In
PE-WASUN. ACM.

[43] Tim Winter. 2012. RPL: IPv6 routing protocol for low-power and lossy
networks. (2012).

[44] Yafeng Wu, John A Stankovic, Tian He, and Shan Lin. 2008. Real-
istic and e�cient multi-channel communications in wireless sensor
networks. In INFOCOM. IEEE.

https://arxiv.org/pdf/1607.06622.pdf

	Abstract
	1 Introduction
	2 Related Work
	3 Design
	3.1 Codecast - Motivation
	3.2 Codecast in a Nutshell
	3.3 Network Coded Data Distribution
	3.4 Transmit/Receive Decision

	4 Evaluation
	4.1 Network Code Performance
	4.2 Many-to-Many Data Sharing
	4.3 Impact of Varying Data Sources
	4.4 Impact of Varying Packet Sizes
	4.5 Impact of Network Slicing
	4.6 Energy Consumption

	5 Applications
	5.1 Distributed Channel Selection
	5.2 Routing for Sensor Networks

	6 Conclusion
	References

