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Abstract—Wireless sensor networks have emerged as an im-
portant information collection and monitoring tool. The data
collected is typically uploaded to a central gateway for processing
and analysis. However, the approach of forwarding all the sensed
data to a sink for processing is not always practical due to the
high communication cost.

In this paper, we present InDP, a framework that is designed to
support data dissemination and processing in the edge. InDP has
a communication component and a computation component. The
communication component supports a low duty cycle mode for
an infrequent status update and a high throughput mode to
support distributed computation. The computation component
implements a distributed version of Principal Component Anal-
ysis (PCA). As an application, we have implemented an outlier
detection component over InDP.

InDP and the outlier detection application have been im-
plemented on Contiki using a modified version of Codecast
as the underlying many-to-many communication protocol. Our
evaluations show that InDP can terminate as fast as 100ms and
1.3s on the average running on a testbed with more than 70
nodes. In terms of PCA computation, InDP’s computation uses
91.6% less data than a centralized approach and is able to detect
anomalies using a fraction of the sensed data.

Index Terms—wireless sensor networks, principal component
analysis, machine learning, distributed algorithms

I. INTRODUCTION

Wireless Sensor Networks (WSNs) have been used in a large
number of monitoring applications involving sensing and data
communication. These applications cover a variety of domains
such as (i) monitoring of active volcano, structural health, and
wildlife, (ii) acoustic/image based sensing, (iii) soil monitoring
studies and energy auditing [1].

Existing WSN protocols typically focus on communication,
in particular, data collection. With the emergence of Internet-
of-Things (IoT), there will be many more applications that
require the collection of a huge amount of data to a fusion
center for processing. The cost of these approaches can be
prohibitive due to the limited bandwidth of the WSN and the
limited energy available on the sensors. With these challenges
in mind, there is a strong incentive to move more processing to
the edge in order to address issues related to latency, energy,
and privacy [2]. In this work, we are motivated to address
the following questions. What kind of network communication
protocol will be required to support in-network edge process-
ing? How can network-wide distributed computation based on

edge processing be exploited and implemented efficiently with
low overhead?

In this paper, we present INDP, a framework that is de-
signed to support data dissemination and processing in the
edge. InDP has a communication component and a compu-
tation component. The communication layer is designed to
support efficient many-to-many communication over a multi-
hop wireless sensor network. The computation component
implements distributed PCA. PCA is a statistical technique that
has been applied in many domains and is a popular technique
for finding patterns in data of high dimension [3].

The contributions of this paper are:
• The design of InDP that supports efficient communication

by switching between two operating modes, a low duty
cycle mode to support infrequent status update and a
high throughput mode to support distributed computation
within the same framework depending on the application
requirements.

• The separation of control and data dissemination in
InDP so that early termination is made possible.

• The implementation of a distributed version of PCA
based on disPCA [4] in InDP. To the best of our knowl-
edge, this is the first work that implements distributed
PCA over a multi-hop wireless sensor network based on
many-to-many communication.

• Demonstrates the potential of edge processing in two
ways. First, by using InDP , the global PCA can be
computed by each node efficiently using only a small
number of the largest eigenvectors and their correspond-
ing eigenvalues. Second, by sharing only the singular
matrices, each node can obtain the underlying structure
of the data and perform outlier detection locally with
minimum data exchange.

InDP can be used to support different applications on
the edge that is enabled by PCA such as data reduction,
outlier detection, clustering, etc. In this paper, only the outlier
detection and compression applications are shown.

We have implemented InDP on the Contiki OS using a
modified version of Codecast [5]. In the evaluation, with 16
nodes serving as sinks/nodes, when there is only one source,
InDP can terminate as fast as 100ms running on a testbed
with more than 70 nodes. With 16 sources updating their
data, InDP terminates in 1.3 sec on the average. Compare
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Fig. 1. Overview of InDP in action, duty-cycling mode

to the baseline Collection Tree Protocol (CTP), InDP reduces
completion time and energy consumption by more than 85%
and 76% respectively. In terms of PCA computation, InDP’s
computation uses 91.6% less data than a centralized approach.
Finally, InDP is able to detect anomalies using 1

4 to 1
3 of the

sensed data.
The rest of the paper is organized as follow. In section

II, we present the communication component of InDP and
in section III the computation component. Details of the
implementation of InDP is presented in section IV. Section V
presents the evaluation results and related work in section VI.
Finally, we conclude in Section VII.

II. INDP: COMMUNICATION

We will first present a typical usage scenario of InDP. Sensor
nodes collect sensor data over some period of time (say from
a few minutes to a few hours depending on the application
requirement). Based on the sensed data collected, a node may
choose not to perform any update or may decide to share
detected changes with the rest of the network. The number
of nodes that want to perform a status update can thus vary
from none to many (or all) nodes. As a result, InDP needs to
be able to support periods with very low duty cycles with no
update as well as periods with high data rate exchanges with
many nodes sharing their data with other nodes at the same
time.

A. Two Modes Operation

Duty Cycling Mode By default, every node runs in the duty-
cycling mode. In this mode, a node performs periodically clear
channel assessment (CCA) say every 62.5ms (16Hz). If no
channel activity is detected, a node goes back to sleep. If a
node finds a busy channel, it starts a reception slot.

When one of the sources generates a transmission event,
it switches to run InDP as an initiator and start dissemi-
nation of the data. In order to wake up the source node’s
neighbors, the source node transmits the packet multiple times
and wait for receiving after each transmission. Whenever the
source node receives a packet, it switches back to the default
transmit/receive dissemination phase. When other nodes detect
these transmissions, they join the dissemination process and
eventually all nodes participate in the dissemination. Figure 1
shows an overview of InDP in action.

This duty cycling mode works well when there is only a
single data source. However, a problem arises when additional

1

c1{0, X, X, X}
d1{}

2

c2{X, 1, X, X}
d2{2}

3

c3{X, X, 0, X}
d3{}

4

c4{X, X, X, 1}
d4{4}

Initialization r = 2 Termination

1

c1{0, X, X, X}
d1{}

2

c2{0, 1, X, X}
d2{2}

3

c3{0, X, 0, X}
d3{}

4

c4{X, X, X, 1}
d4{4}

1

c1{0, 1, X, X}
d1{2}

2

c2{0, 1, X, X}
d2{2}

3

c3{0, X, 0, X}
d3{}

4

c4{0, 1, X, 1}
d4{4, 2}

1

c1{0, 1, 0, 1}
d1{2, 4}

2

c2{0, 1, 0, 1}
d2{2, 4}

3

c3{0, 1, 0, 1}
d3{2, 4}

4

c4{0, 1, 0, 1}
d4{4, 2}

r = 1

Fig. 2. InDP overview. (1 - ”Needed”, 0 - ”Not Needed”, X - ”Unknown”)

transmissions are triggered on other nodes after the first source
node initiates the dissemination but the other source nodes
have not detected the transmission yet. In such scenarios, the
other source nodes trigger separate dissemination processes,
resulting in data loss due to separate, concurrent dissemina-
tions. Such scenarios can be detected by all the nodes and the
protocol switches to operate in the periodic mode to handle
these higher data rate events.

Periodic Mode The Periodic mode is triggered to handle high
traffic scenarios when events can be detected by two or more
sources within a single dissemination cycle. The periodic mode
is basically similar to the basic Codecast with a single node
as the initiator. In such a mode, only one dissemination cycle
can occur and many nodes can contribute data. At the end
of each round, the nodes will check if there is more data to
be disseminated. If there is no more data to be shared, nodes
switch back to the duty cycling mode.

B. Control and Data Dissemination

InDP defines two kinds of information, namely control and
data. Let there be k nodes. For nodei, 1 ≤ i ≤ k, let cij(r)
and dij(r) be the values of the control and data items of node
j known by node i respectively at round r.
cij(r) can take three values, namely 0, 1 and X . Depending

on the values, cij(r) can be interpreted as ”Needed” (cij(r) =
1), ”Not Needed” (cij(r) = 0), and ”Unknown” (cij(r) = X).

Figure 2 shows a simple example of four nodes running
InDP. In this example, nodes 1 and 3 have no data to share
while nodes 2 and 4 have data to contribute to the computation.

The overall flow is as follow. At the start of the computation
r = 0, dii(0) has the most recent locally sensed/available
data at node i in round 0. dij(0) is set to Unknown ∀i 6= j.
Node i set cii(0) to 1 if it wants to contribute its data to
the computation or 0 otherwise. cij(0) is set to ”Unknown”
∀i 6= j.

Data Sharing: For ease of exposition, let the execution be
performed in rounds. In a given round r, node i shares with
its neighbor cij(r), ∀j. Let this be denoted as ci(r). For data
item, the value shared is application dependent, and let it be
denoted as Di(r). Note the size of the control item shared is
small, while the size of Di(r) depends on the application and
can be as large as the maximum packet size.

Update: If node i successfully receives cj(r) from node
j, node i updates cij(r) and dij(r). These updated values



becomes the value for cij(r + 1) and dij(r + 1) in the next
round. Update is performed as follow:

• if (cjm(r) is set to 0 OR 1) set cim(r) = cjm(r).
• Update dij according to the application.

There is no change in the control and data item if there is
no successful packet reception. Set cij(r + 1) = cij(r) and
dij(r + 1) = dij(r).

Termination: Update terminates for node i when ∀j, either
(cij = 0) or (cij = 1 and dij is not Unknown). Processing
terminates when all nodes satisfy the termination condition.

In the following sections, we will provide a concrete ex-
ample of how the framework can be utilized in practice by
showing how distributed PCA can be implemented as an
application using the framework presented in this section.
For completeness, we will first provide a brief overview
of PCA and distributed PCA, followed by details of the
implementation.

III. INDP: COMPUTATION

A. PCA Overview

PCA is a technique that can be used to reduce the dimension
of the original data with little loss of information and without
losing the distribution of the data. In a WSN context, data is
initially sensed and available only on the individual nodes. For
the purpose of this exposition, the following terms are defined:

• There are S sensor nodes.
• Each sensor node collects q records (over time) of n

features (different sensor modalities, e.g, temperature,
voltage, air quality, etc.).

• Let m = S * q. Data from all sensors can be represented
as a data matrix X with m records of n features (X ∈
Rm×n).

In order to perform PCA, we can perform the computations
either in the centralized or distributed manner.

In the centralized approach, a fusion center collects data
from all sensors. Each sensor i sends the data matrix xi with
q observations of n features (xi ∈ Rq×n) to the gateway. The
fusion center then builds the data matrix X with m records of
n features (X ∈ Rm×n). There are two common approaches
to perform PCA (1) by deriving the data covariance matrix
and (2) by performing Singular Value Decomposition (SVD).

B. Distributed PCA

The distributed PCA computation in InDP is based on
the disPCA presented in [4]. Comparing to other introduced
distributed PCA techniques [6]–[10], disPCA incurs the least
communication overhead as it requires only one round of
(many-to-many) communication. Table I summarizes notations
used.

Figure 3 shows an overview of how InDP utilizes disPCA
by introducing two modes, namely update mode and approx-
imation mode. The update mode is to check if the local PCA
needs to be updated and for nodes to check for changes in the
global PCA (if any). The approximation mode is for nodes to
get the approximated data (if required). At the start, each node

TABLE I
TABLE OF NOTATIONS

Symbol Meaning

S Number of sensors
xi Data matrix of node i
R Observation value
q Number of observations
n Number of features
Ui Left singular vectors matrix of node i
Di Singular values matrix of node i
Ei Right singular vectors matrix of node i
zi Projected data matrix of node i
ti Dimension of PCA used at node i
x̃i Approximated data matrix of node i

i has a locally sensed data matrix xi with q observations of
n features (xi ∈ Rq×n). Each node computes local PCA over
its data matrix, share it, and calculate the global PCA.

After the initialization and in the next round with a new
data matrix, in the update mode, each node computes the local
PCA on its data matrix (xi) and then check if the local PCA
is changed comparing to the previous round and if the new
local PCA may change the last computed global PCA. If a
node finds a change, it starts a communication round and share
the matrix Di and Ei to update the global PCA. In order to
reduce the amount of communication needed later, each node
only transmits the t largest eigenvectors E(t) t < n to all
the sensor nodes. In the approximation mode, if a node i is
required to share its data (e.g, it’s predicted to be an outlier),
it shares its projected data matrix zi and the number of global
PCA used to generate it ti which can be used along with the
global PCA to compute its approximated data matrix x̃i.

The data reconstruction error can be computed using Eq. 1,

error = ||xi − x̃i|| (1)

Reduction in Communication In the centralized approach,
there are S nodes and each node has q × n amount of data.
The total amount of data that needs to be communicated from
all nodes to the fusion center is S × q × n. The fusion center
will calculate the global PCA which of size n+ (n× n) and
transmits it to all the nodes. Each node needs to transmit (q×
n) + (n+ (n× n)) amount of data plus the amount of data it
needs to relay as part of the routing processing from various
nodes to the fusion center.

In the distributed approach, each node sends or receives
local PCA of size S × (q × t). With this information, each
node calculates the (same) global PCA locally. Typically, the
number of data records (q) on each node in a data exchange
cycle is much larger than both the number of features (n) and
the dimensions used in the reduced PCA matrix (t). Hence,
q >> n > t. Communication cost in the distributed PCA is
O(Snt), compared to O(Snq) for the centralized form. Since
q >> t, the reduction is on the order of t

q .
As an example, to calculate the global PCA in the cen-

tralized approach for a network of size 16 nodes each with
10 observations of 4 features. The amount of sensed data
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Fig. 3. Overview of data update and approximation using disPCA.

to be communicated is 16 × 10 × 4 = 640. For the fusion
center to send back the global PCA, the amount of data is
16 × (4 + (4 × 4)) = 320. The total amount of data to be
communicated is 960.

In disPCA, the amount of data to be communicated depends
on how many local PCA is required to calculate the global
PCA. In the case where only 1 local PCA needs to be shared
by each node, the amount of data is 16×(1+(1×4)) = 80. In
the case where 4 local PCA needs to be shared by each node,
the amount of data is 16× (4 + (4× 4)) = 320. The amount
of data reduction using disPCA is thus 66.6% to 91.6%.

To get the approximated data, each node calculates the
projected data on the t largest global PCA. Using the projected
data, nodes can compute the approximated data. The cost of
the approximated mode is the same for the centralized and
distributed PCA which is S × (t + q × t). However in InDP,
each node can locally determine if its local computation will
impact the global PCA in the update mode and if it’s required
to share its sensed data in the approximation mode, so the
number of nodes contributing in both the modes is typically
much smaller.

IV. IMPLEMENTATION

We have implemented InDP on the Contiki OS using a
modified version of Codecast. InDP utilize the radio-off time
between communication rounds in Codecast to perform its
computation. Figure 4 shows an overview of how InDP works
on top of Codecast. Codecast supports efficient many-to-many
communication using a combination of capture effect and
network coding. More details can be found in [5]
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Next, we will describe how the distributed PCA computation
is supported by the underlying communication layer.

Initialization: At the start of the computation r, in the
update mode, dii(r) is set to the local PCA (D(t)

i , E
(t)
i ) of

round r, if node i needs to update its local PCA, and set
it to the projected data (zi, ti) in the approximation mode if
its data is required to be shared. dij(r) is set to Unknown
∀i 6= j. Node i set cii(r) to 1 for nodes with data update and
0 otherwise. cij(r) is set to Unknown ∀i 6= j.

Data Sharing: For data value, node i shares D
(t)
i , E

(t)
i in

update mode and shares zi, ti in appriximation mode if it wants
to contribute its data to the computation in this round. For



control information, node i shares with its neighbor ci(r), as
mentioned previously.

Update: In the update mode, node i updates its Y matrix,
for later use to compute global PCA, with the received local
PCA for nodes with updates and use the previous values in its
matrix for nodes which have no update. In the approximation
mode, node i computes the approximated data matrix for nodes
with data to share.

Termination: As described before, node i will terminate
when ci is updated ∀j and dij is known ∀j if cij = 1.

A. Outlier Detection

As an illustration on how distributed PCA can be utilized,
we consider an outlier detection application by showing how
data from the sensors can be processed to detect outliers in the
network (nodes which have readings different than all others
in the same network).

Note that the local eigenvalues capture the variance of each
node’s observations. Hence, outliers will have an eigenvalue
that is different from most of the others. One way to utilize
InDP more efficiently is to use an outlier prediction mecha-
nism to check for anomalies instead of executing both modes
and disseminate projected sensor data to all nodes. If an outlier
is detected, then the node which has been detected that it is
the outlier broadcasts its projected data (zi and ti). This will
significantly reduce the amount of traffic to be shared if the
number of records q is large.

InDP uses Eq: 2 to measure the distance between each
sensor’s projected data and the others to detect outliers.

di,j = d(zi, zj) =

√√√√ q∑
k=1

(zik − zjk)
2 ∀i ∈ N, ∀j ∈ N, j 6= i

(2)
where di,j is the distance between sensor i and sensor j, zi
is the projected data matrix for node i, and N is the set of S
sensor nodes.

InDP decides that sensor i is an outlier if Eq: 3 is satisfied
for a predefined percentage of S.

di,j > predefined threshold, j 6= i (3)

V. EVALUATION

A. Overview

We evaluate the performance of InDP by executing the
protocol on the Flocklab testbed and Indriya testbed. The
Flocklab testbed has 27 TelosB nodes deployed inside offices
and in hallways in the same building at the Swiss Federal
Institute of Technology Zurich in Switzerland [11]. On the
other hand, the Indriya testbed is denser as it has 73 TelosB
nodes deployed in the National University of Singapore over
three floors [12].

Two datasets are used:
• Intel Lab Dataset 1: a dataset from an indoor WSN

deployment at Intel Berkeley Research Lab. Readings

1http://db.csail.mit.edu/labdata/labdata.html

from the temperature, humidity, light, and voltage sensors
are used. Data is sampled once every 31 seconds and 18
motes are used. Readings from some motes (5, 14, and
15) are excluded as a lot of the readings are missing or
faulty.

• Indriya Dataset: a 24 hours temperature, humidity, and
light sensors data collected from Indriya testbed. Data is
sampled once every 10 seconds and 18 motes are used.

We presented four sets of evaluation. The set of experiments
cover execution time (Section V-B), power consumption (Sec-
tion V-C), outlier detection (Section V-D) and reconstruction
error vs data reduction (Section V-E).

B. Completion Time

To evaluate the average time required for InDP to complete,
we performed experiments on the Flocklab testbed using up to
27 nodes, as well as the Indriya testbed using up to 73 nodes.
We use the maximum transmission power and IEEE 802.15.4
channel 26.

In each experiment, there are always 16 destination nodes.
Different destination nodes are selected in each experimental
run. The remaining nodes in the testbed serve as relays. The
number of data sources is either 1 or 16 and are chosen from
the set of destination nodes. Unless stated otherwise, each
experiment runs for one hour on Flocklab and three hours
on Indriya. In the evaluation, we measure the time taken for
the destination nodes to receive data from all the source nodes
that have data to share. If there is no data to be shared, then
completion time is taken for all the destination nodes to receive
control information from all source nodes. As a baseline, we
compare the completion time of InDP to CTP.

The CDF of the completion time of InDP are reported in
Figures 5 and 6 on the Indriya and the Flocklab testbeds
respectively. We can observe that the completion times can
vary significantly depending on the choice of data sources and
ambient interference.

The completion times with only a single source vary from
100ms to about 800ms in both testbeds. The median is 296ms
and 396ms for FlockLab and Indriya respectively.

As expected, when the number of source nodes increases
to 16, completion time increases. Considering only control
information with zero or 1 data update, the completion times
vary from 500ms to 1.4s on Indriya and 700ms to 1s on Flock-
Lab, with the corresponding median completion of 945ms and
891ms respectively. When there are data from all 16 nodes, the
completion times vary from 0.5s to 1.4s on Indriya and 0.8s to
1.5s on FlockLab, with the corresponding median completion
times of 1.34s and 1.2s respectively.

The results also show the benefit of separating control and
data dissemination when the number of sources increased.
When there is no (or 1) data update, the protocol can terminate
much faster. In the case of 16 sources, the median completion
times reduce by 26% and 29% on FlockLab and Indriya
respectively when the number of sources reduces from 16 to
0.
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The completion times of the CTP baselines are shown in
Figures 7 and 8. Comparing the median completion times, the
reduction is 85% and 98% for 1 and 16 sources respectively.
Given that InDP is designed to support many-to-many commu-
nication, the significant improvement over CTP is expected.

C. Energy Consumption

To evaluate the energy consumption of InDP and CTP, we
measure the power consumption on the TelosB mote. In this
experiment, the payload size is set to 20 bytes and the network
size is set to 16 nodes. Power measurement is obtained by
connecting one of the 16 TelosB motes running InDP and
connecting the sink node running CTP to a Monsoon power
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meter 2. Table II shows the average energy consumed for
InDP and CTP under scenarios with a different number of
source nodes.

We can make the following observations. The energy con-
sumed by InDP increases from 17mJ to 140mJ when the
network size increases from 1 to 16. As a baseline, the energy
consumed for CTP for the corresponding scenarios varies from
47mJ to 590mJ.

Figure 9 shows the detailed power consumption of InDP in
the case of network size of 16 nodes and all sharing data. Note
that computation energy is much less than communication
energy and vary from 95.55% to 96.57% of the total energy
consumption depending on the number of nodes with a data
update.

D. Outlier Detection

In this section, we perform the following experiments to
evaluate the outlier detection mechanism.

In the first experiment, 10 nodes are placed in an indoor
environment over different rooms and along the corridor in
the lab. 2 of the nodes (nodes 2 and 3) were attached to a
laptop. The flashlight from a smartphone was used to increase
the light sensor readings on these two nodes at different times.
Nodes sampled the temperature, humidity, and light sensors at
a frequency of 0.1Hz.

We execute InDP over these 10 nodes for 1000s. In each
100s cycle, the flashlight was used to increase the light

2https://www.msoon.com/
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TABLE II
TABLE OF INDP AND CTP: AVERAGE ENERGY CONSUMED (MJ)

Number of sources Average energy consumed (mJ)

w/ No Update w/ Update InDP total InDP computation CTP

Total sources of 1

1 0 17 0.75 47
0 1 17 0.75 47

Total sources of 16

15 1 108 4.8 590
0 16 140 4.8 590
16 0 1.5 - 590
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Fig. 13. Singular values of local PCA.

readings on nodes 2 or 3 at different times for a duration
of 50s as shown in Figure 12.

Figures 10, 11, and 12 show the sensed data observations
on 4 selected nodes with nodes 2 and 3 being the outlier nodes
caused by the changes in light readings. The duration shown
is 100s. As shown in Figures 10, 11, and 12, the sensor
readings of all nodes for temperature and humidity are similar
and do not vary much throughout the experiment. The only
change comes from the sudden change in light readings in
nodes 2 and 3.

Recall that after running the update mode of InDP, each
node has the singular values from the matrix D. Figure 13
shows the singular values obtained from the PCA computed
for 4 nodes based on data from a 100s interval (10 samples).
It is clear that the singular values (and thus PCA) computed
can efficiently be used to predict the outliers as the singular
values from the outlier nodes are relatively different than other
nodes in the network.

In order to evaluate InDP over a longer period, we utilize
data traces collected over 24 hours from the Indriya testbed
and the Intel Lab dataset. In this evaluation, we do not run
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Fig. 14. Indriya traces: projected data.
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Fig. 15. Intel lab traces: projected data.

InDP on the actual sensor nodes due to long data collection
periods. Instead, we execute only the distributed PCA part of
InDP offline using a C program.

For the dataset from the Indriya testbed, instead of using the
singular values (D) for outlier detection, we used the project
data (x̃i) available after approximation mode. Note that while
we are able to detect the presence of an outlier in the update
mode using the differences in the eigenvalues, we obtain the
projected data after the approximation mode to confirm its
status as an outlier.

The results are shown in Figure 14. One node (sensor 1)
out of the 18 nodes shows a much higher projected data and
can be easily observed. Going back to the original sensing data
for validation, we see that sensor 1 sensed a lower temperature
because it was located in a room whereby the air conditioning
was set to a lower temperature during part of the experiment
causing its temperature to be much lower for an 8hr period
over the entire experiment duration.

Finally, we apply InDP to the Intel lab data. The data used
is six hours of observations. The results using the projected
data as outlier detector is shown in Figure 15. We observe that
sensors 9, 12, and 16 exhibit different behaviors compared to



the other nodes, with sensor 12 showing the largest difference
or the most anomaly. On further inspection, we note that nodes
9, 12, and 16 are close to the windows which may explain why
the light readings are different (higher) than the other nodes.

E. Reconstruction Error and Compression

In this evaluation, we look into the accuracy, measured
in reconstruction error of InDP. We will also investigate
the trade-off between reconstruction error and compression
achievable. The evaluation is done using the distributed PCA
part of InDP using a C program. The parameters varied in the
experiment are the following:

• Number of Local PCA: the number of the largest
principal components of the SVD shared in the update
mode of InDP.

• Number of Global PCA: the number of the largest prin-
cipal components of the SVD used in the approximation
mode of InDP to project and reconstruct data.

The reconstruction error is computed using Eq: 1. The
results are shown in Table III using the 24 hours dataset from
the Indriya testbed and 6 hours from the Intel lab dataset.
From the table, we can make two observations. First, it is
clear that the effect of the number of local PCA is low in
that the reconstruction error is dominated by the number of
global PCA. In fact, the number of local PCA almost has
no impact on the reconstruction error for these two datasets.
This is positive since outlier detection can be done only using
the local PCA in the update mode. Second, the reconstruction
error decreases as more data is used in the computation of the
global PCA, which is expected.

Table IV shows the reconstructed error for the centralized
PCA for 24 hours and 6 hours data from the Intel lab and
the Indriya testbed datasets, respectively. In tables III and IV,
the compressed data ratio can be determined by the number
of global PCA that is used to project the data (e.g, 1 global
PCA in the Intel lab data means that the projected data has
one dimension that is projected on one PCA out of the four
original dimensions and the compressed data ratio is 1/4).

Comparing the reconstruction error of disPCA when only
one local PCA is used to derive the global PCA, we can make
the following observations. First, the reconstruction error of
the distributed PCA is only slightly higher than the centralized
version, whereby all data are sent to a single fusion center.
Second, the reconstruction error decreases rapidly when the
number of global PCA is increased. Third, the reconstruction
error versus the compressed data ratio in both of the central-
ized and distributed PCA versions follow the same pattern
which shows that disPCA can capture the distribution of the
data the same way as the centralized PCA.

F. Discussions

The scalability of the protocol depends on how much
computation can be done within the fairly small time frame of
a single time slot. The current TelosB hardware places fairly
tight constraints on the amount of the computation that can
be done and thus limits the processing that is feasible and

size of the network that can be supported. More complex
processing can be performed, more data can be shared or a
much larger network can be supported if either the processing
power available on the node increases or the size of the time
slot is increased. However, given that the TelosB hardware is
fairly old and many newer and more powerful sensor hardware
are now available, we expect the scalability and applicability
of InDP to improve over time.

VI. RELATED WORK

Data Compression A lot of research techniques have been
presented to reduce the amount of data obtained from the
sensors as reducing the communication will extend the lifetime
of the network [13]. Switching to lower sampling rate is one
way to reduce the number of transmissions but it may cause
missing high-frequency events. Another way is to aggregate
the sensor readings, a survey of the aggregation approaches
is introduced in [14]. Data prediction based protocols are pre-
sented to reduce communication in WSN. In [15], the authors
used a data prediction model built on top of synchronous
transmissions. In [15], each sensor builds its model in the
training phase and sends the model to the gateway. After
that, each sensor will only send the reading if the predicted
value, using the model, is not within a predefined threshold.
Such a technique does not scale as the gateway is required to
maintain a different model for each sensor. Another research
interest in WSN is to use principal component analysis (PCA)
to compress data while preserving the data structure. However,
the current techniques require moving O(mn) amount of data,
where m is the number of data samples and n is the number
of features. These approaches cannot scale with the number
of nodes in the network [6], [7], [9], [10]. InDP shows how
an algorithm such as disPCA [4] can be implemented.

Communication Protocols Collection Tree Protocol
(CTP) [16] is a distance vector routing protocol designed for
data collection in sensor networks. CTP uses a contention-
based CSMA/CA layer as an underlying protocol which
makes it extremely slow in a multi-hop setting. Ferrari et
al. in [17] presented glossy, which exploits the concept of
constructive interference to improve dissemination time for
one-to-many communication. Authors in [18] introduced a
data dissemination protocol (LWB) based on glossy which
builds a shared bus in the wireless network. Splash is presented
in [19], which is suitable for bulk data dissemination. In [20],
the authors improve upon Splash by introducing better use of
network coding. p3 [1] is a high throughput bulk data transfer
between two points in the network. p3 uses synchronous
transmissions over multi-channel along with packets pipeline
to solve a problem of stalls in packets pipeline due to channel
assignment in PIP [21]. For many-to-many communication
protocols, Chaos [22] is an all-to-all aggregation protocol. In
A2 [23], the authors schedule multiple rounds of chaos to
support network-wide agreement. However, these techniques
cannot be used for sharing large data size between many nodes.
Finally, Codecast [5] uses synchronous transmissions and a



TABLE III
DISPCA AVERAGE RECONSTRUCTION ERROR AND COMPRESSED DATA RATIO VS. THE NUMBER OF LOCAL AND GLOBAL PCA.

Average Reconstruction Error

Num. of local-global PCA 1-1 1-2 1-3 1-4 2-1 2-2 2-3 2-4 3-1 3-2 3-3 3-4 4-1 4-2 4-3 4-4

Compressed data ratio 1/4 2/4 3/4 1 1/4 2/4 3/4 1 1/4 2/4 3/4 1 1/4 2/4 3/4 1

Intel lab

Temp. (C) 0.69 1.21 0 0 0.69 1.21 0 0 0.69 1.21 0 0 0.69 1.21 0 0
Humidity (%) 1.62 0.64 0 0 1.62 0.64 0 0 1.62 0.64 0 0 1.62 0.64 0 0
Light (lux) 0.01 0.001 0 0 0.01 0.001 0 0 0.01 0.001 0 0 0.01 0.001 0 0
Voltage (volts) 0.09 0.1 0.1 0 0.09 0.1 0.1 0 0.09 0.1 0.99 0 0.09 0.1 0.99 0

Compressed data ratio 1/3 2/3 1 - 1/3 2/3 1 - 1/3 2/3 1 - -

Indriya
Temp. (C) 0.46 0.33 0

-
0.46 0.02 0

-
0.46 0.02 0

- -Humidity (%) 0.21 0.16 0 0.21 0.006 0 0.21 0.006 0
Light (lux) 0.29 0.42 0 0.29 0.23 0 0.29 0.23 0

TABLE IV
CENTRALIZED PCA AVERAGE RECONSTRUCTION ERROR AND
COMPRESSED DATA RATIO VS. THE NUMBER OF GLOBAL PCA

Average reconstruction error

Number of global PCA 1 2 3 4

Compressed data ratio 1/4 2/4 3/4 1

Intel lab

Temp. (C) 0.69 1.2 0 0
Humidity (%) 1.62 0.61 0 0
Light (lux) 0.01 0 0 0
Voltage (volts) 0.09 0.1 0.1 0

Compressed data ratio 1/3 2/3 1 -

Indriya
Temp. (C) 0.25 0.41 0

-Humidity (%) 0.69 0.1 0
Light (lux) 0.26 0 0

network-assisted network coding (NANC) to better support
all-to-all communication.

VII. CONCLUSIONS

We have presented a new technique for edge processing on
constraint devices. InDP exploits distributed principal com-
ponent analysis to reduce data transmissions without losing
data structure nor high-frequency events. We believe the use
of PCA is just one example. Our work has demonstrated the
promise of edge computing on small devices and many more
interesting applications can be introduced, pushing the limits
on what edge computing can do.
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