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Abstract

In this paper, we present a short survey of programmable net-
works starting from pre-SDN (Software Defined Network-
ing) efforts to the more recent programmable data-plane.
In particular, we highlight the benefits of data-plane pro-
grammability and present some of the challenges and future
research directions.

1 Introduction

Computer networks play a critical role in modern technol-
ogy. For a long time, computer networks were hardware
based solutions with rigid and proprietary applications and
devices. The minimal functionality that was assumed from
the network (routers) is simply best-effort packet forwarding.
However, treating routers and switches as monolithic black
boxes with limited capability poses an enormous challenge
for the network administrator. This challenge derives from
the need to understand, maintain and analyze a complex net-
work consisting of a large number of networking devices.

One approach to address this challenge is to open up the
networking devices to make them more programmable.
Clearly, there are obvious questions that arise. First, what
are the right programming models and abstractions? Sec-
ond, what are the incentives for network equipment manu-
facturers to "open up the box"? An open network platform
which gives the users more power and flexibility may not
make good business sense. The second question is beyond
the scope of this paper. In this paper, we will discuss only
the first question.

The rest of the paper will be organized as follow. In
§2, we briefly present efforts made to enhance network pro-
grammability till roughly mid 2000s. These efforts include
various proposals from academic, standard bodies and in-
dustries. In §3, we present OpenFlow, which starts a new
era of programmable networks termed as Software Defined
Networking (SDN) with its data/control separation and logi-
cally centralized control plane. In §4, we present the recent
developments in programmable networks in the form of pro-
grammable data plane. In §5, we present some interesting
applications that have been enabled by these recent devel-
opments. Finally, in §6, we discuss challenges and possible
future research directions.

2 Pre-SDN Programmable Model

While network programmability has attracted a lot of in-
terest and, promises much practical impact in recent years,
many of the concepts that the current generations of pro-
grammable networks are not new and have been proposed
in earlier work.

Mid 1990s saw the development of active networks [22,
80]. There are two forms of active networking: 1) capsule
model and, 2) switch/router model. In the capsule model,
programs can be embedded in packets to deploy new ser-
vices in the network. However, the capsule model rises lots
of security concerns as it is possible for malicious end-host
to infect a router and hence the network. The other form is
the switch/router model, whereby the switch/router can be
programmed to perform different tasks. This is conceptu-
ally similar to the data-plane programmability model to be
discussed in §4.

The concept of an open programmable network was also
proposed in works [24, 49] in the late 90s. The idea was to
provide a set of application programming interfaces (APIs)
that abstract network resources and services. By providing
access to the network hardware via open, programmable net-
work interfaces, new services, in particular, multimedia that
require QoS guarantees can be built on top of these APIs
through a distributed programming environment.

Another similar effort is the IETF General Switch Man-
agement Protocol (gsmp) [7] working group that was active
from 1999 to 2003. The gsmp working group aimed to pro-
vide an interface that can be used to separate the data for-
warder from the routing and other control-plane protocols.
One of the objective of this separation is that it will allow
easier addition of network services.

A more recent effort is the IETF Forwarding and Con-
trol Element Separation (ForCES) [6] working group (2001 -
2015) which also looks at the separation of control-plane and
data-plane. The ForCES base protocol (RFC5810) is used to
maintain the communication channel between the control el-
ement (CE) and forwarding element (FE). SoftRouter [47] is
one of the earlier proposal to use logically centralized and
separate control elements to control multiple forwarding el-
ements. It uses the ForCES protocol for communication be-
tween the CEs and FEs.

Unfortunately, the above proposals were not widely
adopted. Besides the fact that it is difficult to get vendor
support, these ideas also received pushback because expos-
ing the underlying hardware through API, a more complex
control-plane and logically centralized route control could
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Figure 1: Software Defined Networking model compared to traditional networking

be argued as going against the simple/dumb network de-
sign philosophy of the internet that prefers a minimalist ap-
proach [28].

3 Sofware Defined Networking in the Control-
Plane

In spite of the previous difficulties in incorporating pro-
grammable networking ideas in actual network deployment,
programmable networks have recently enjoyed much more
success in the form of Software Defined Networking (SDN).
The success of SDN has created a fundamental change
in how we manage or program networks in the following
ways: 1) de-coupling the control-plane and data-plane in
the switches, 2) logically centralized programmable control-
plane and, 3) the development and introduction of pro-
grammable data-plane. We will look into aspect of (1) and
(2) in this section and (3) in §4.

1. Decoupling Control and Data-plane: Proprietary
networking devices have for long coupled control-plane and
data-plane with proprietary solutions. Control-plane is the
intelligence layer, which implements protocols like OSPF,
BGP, Multicast, Traffic Engineering, etc. Data-plane per-
forms the high-speed packet forwarding based on the rules
and policies programmed by the control-plane. Each net-
work device is an independent entity that needs to be man-
aged separately in the network. Also, each network de-
vice contains complex functionality baked in, making it very
complex to configure, debug and manage. SDN decouples
the control/data-plane and provides an API for the control-
plane to program the data-plane in the form of Match-Action
rules. OpenFlow [62] provides this API as an open standard
interface for the network operators to program the network
devices. Many switch vendors such as Cisco, Juniper, HP,
Arista, etc. support OpenFlow API to allow their devices to
be programmed.

2. Logically Centralized Programmable Control-
plane: Apart from decoupling control and data-plane,
the control-plane is a logically centralized entity (a.k.a con-
troller) as shown in Figure 1. The Controller being cen-
tralized, can see the network view, and provide a network-
level abstraction for the applications to be developed over
the controller. The controller, typically running on com-
modity servers, can install rules to network device, aggre-
gate statistics from the network device to provide a One-Big-
Switch [66] abstraction.

While the idea of control/data plane separation and logical
centralized control may have already been proposed in pre-
vious work, SDN, in particular OpenFlow [62], is the first
successful and widely deployed framework for network pro-
grammability. The popularity of OpenFlow may have been
due to the ease of adoption by switch vendors using just soft-
ware (OS) upgrades. Another strength of OpenFlow is the
availability of many SDN controllers based on OpenFlow
APIs targeting both academia (NOX [32], POX [15], Flood-
light [5], Ryu [16], etc.) and industry (ONOS [12], Open-
DayLight [13], etc.). OpenFlow APIs allow the SDN con-
trollers to program rules in switches that match several fields
on the packet, and take actions like forwarding, meter, queu-
ing, filtering, etc. OpenFlow 1.0 started simple with match-
ing on 12 fields (Ethernet, TCP/IPv4), while OpenFlow 1.5
supports matching on 44 fields [25].

OpenFlow was initially deployed in campus networks.
Early commercial successes, such as Google’s wide-area
traffic-management system [38] and adoption by large tel-
cos such as AT&T 1 has also boosted its attractiveness. The
emergence of data center as the key workhouse in modern
internet service provisioning also helped to make SDN de-
ployment attractive. The data center network is a large net-
work managed by a single entity. It demands advance feature
to deal with the scale and can be managed centrally.

1https://www.onap.org/wp-content/uploads/sites/20/2019/07/35752846-
0-Lumina-Orchestration-2.pdf
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A more comprehensive survey for SDN up till early 2010
can be found in [63] and [67].

Much of the early vision for SDN focused on control-
plane programmability. The next step is data-plane pro-
grammability.

4 Programmable Data-plane

While the control-plane programming allows a control pro-
gram to modify the Match-Action rules in the data-plane, the
matching fields and parsing logic are still pre-defined and
relatively limited in scope. On the other hand, data-plane
programming allows flexible parsing and matching on non-
standard fields. This enables faster and easier network evolu-
tion. New protocols (or headers) addition which traditionally
are big hardware upgrades that take 4-5 years, could be done
by a software upgrade in a few months.

Programmable switches expose new datapath primitives
that are previously not available, including:

1. Transactional Memory (SRAM) with stateful ALUs
that can perform simple computations like add, subtract
and approximate multiply/divide.

2. Precise timestamps at different stages (ingress/egress
pipeline), useful in network telemetry like queue dura-
tion and depth.

3. Packet cloning/replication useful for flexible mirroring,
reporting postcards and conditional multicast.

Recent networking architectures [10, 26] have enabled the
following to be programmable:

• Parsing of a packet;
• Ingress/egress processing using flexible Match-Action

tables;
• Stateful maintenance of network states using SRAMs

(registers).
The model of programmable data-planes are standard-

ized in the form of a Portable Switch Architecture (PSA) as
shown in Figure 2.

Given all these additional capabilities and features, pro-
gramming the data-plane is challenging considering that all
processing must be performed at line-rate with no slow down
in the packet processing pipeline. This constraint comes at
the cost of the programming flexibility. For example, in the
program to be run in the data-plane, there is no loop con-
struct, no floating point computations and no complex com-
putations like multiply/divide (only approximation possibly
using bit-shifts). A memory unit is mapped to a single stage
and it can be read/write only once in the single pass of the
packet. In spite of these limitations, developing applications
in data-plane provides an attractive option to achieve high
processing throughput at low latency.

Data-plane programmable switches have gained major
traction in the networking industry with programmable
switching ASICs being released by major switch vendors
such as BareFoot Tofino [20], Cavium [3], Intel Flex-
pipe [10], Cisco Nexus 3000 [4], Broadcomm Trident [2],
Innovium [9] and Xilinx SDNet [17]. P4 programming lan-
guage [25], which emerged from academic and industry ef-
forts is currently widely used to program these devices.

5 Applications

In this section, we will be exploring the various applications
developed in the network data-plane over the recent years.
We categorize them into two main sections : 1) Network
Monitoring and Debugging (§5.1) and 2) In-network Com-
puting (§5.2).

5.1 Network Monitoring and Debugging
Traditional network monitoring has relied on sampling tech-
niques like NetFlow [11], sFlow [18], SNMP [19] which col-
lect flow information by sampling techniques. These tech-
niques are useful in gathering coarse-grained statistics of the
network traffic. However, they are not as effective for gath-
ering fine-grained information such as flow-level statistics
over short time-scales (in order of milliseconds). One limi-
tation of existing approaches is that they need to reduce the
amount of information exchange between control and data-
plane. Hence, low sampling rates of 0.1% or less are used.
Such sampling looses information and cannot capture an ac-
curate picture of the network.

Recently, several research works have leveraged pro-
grammable networking to develop monitoring tools in the
context of a single network device and also network-wide.
All these works have been implemented in the data-plane us-
ing P4 running either on the BMv2 2 simulator or hardware
such as the Tofino switches. The commonality among these
works is that they exploit the new programming capability
in the data-plane to compute and store information that were
not possible previously. We group them into two categories :
1) Local Monitoring: the monitoring context is local to a de-
vice. 2) Network-wide monitoring: The monitoring context
is to provide network-wide statistics.

5.1.1 Local In-Network Monitoring

Count-Min Sketch [29], OpenSketch [85], SketchLearn [37]
and ElasticSketch [83] design optimal data structures to
store flow summary and features in the network data-
plane. HashPipe [75] provides heavy-hitter detection in
the network data-plane using a pipeline of hash-tables.
BurstRadar [43] and Snappy [27] implement techniques in

2https://github.com/p4lang/behavioral-model
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Figure 2: Data-plane programmability using Portable Switch Architecture [14]

the network data-plane to detect short-term events such as
microbursts. BurstRadar [43] sends post-cards of the queue
contents when microbursts occur to facilitate further debug-
ging. Snappy [27] provides a probabilistic technique to iden-
tify the heavy flows in the network data-plane. Finally,
*flow [77] implements mechanism to export telemetry in-
formation from switching ASICs in a flexible format.

5.1.2 Network-wide Monitoring and Telemetry

The ability to store states in the data-plane and to modify
the packet header according to the application requirements
have opened up many promising approaches for network-
wide monitoring.

FlowRadar [55] provides per-flow counters for all the
flows by encoding the flows and their counters with a small
memory in the switches and performs aggregation of coun-
ters across switches to build network-wide information over
a time scale of 10s of seconds. UnivMon [60] is similar
in nature, but uses sketch data structure in the data-plane to
compute aggregate statistics and provides more features like
heavy-hitters, DDos victim detection, entropy estimation.
Mozart [58] uses match-action rules to monitor flow statis-
tics and the rules are placed to measure the flows at the right
time subjected to the switch constraints. TurboFlow [76]
is another recent proposal that uses data-plane capability to
generate flexible flow-records from the network by aggregat-
ing records from switches.

While the previous approaches [55, 58, 60] measure statis-
tics in the data-plane and extract the aggregated information
from the control-plane, another approach is to convey the
statistics using data packets instead of through the control-
plane. For example, NetSight [34] generates packet-histories
in the form of postcards for data packet and sent to end-hosts
to build a debugger which can be used to debug a packet’s
history. Alternatively, In-band Network Telemetry (INT) [8]
modifies the packet header to append telemetry data like
queue depth and other meta. SwitchPointer [79] runs on INT
and provides support for directory services and distributed
debugging.

Finally, Sonata [33] and Marple [64] provide declara-
tive interfaces to express queries for network-wide teleme-

try tasks by offloading the primitives of queries into net-
work data-plane. Marple [64] additionally provides a scal-
able Key-Value store hardware primitive.

While these research works collect network-wide statis-
tics, they do not present a synchronized or a consistent state
of the network at fine time scales (microseconds). However,
presenting a consistent picture of the network is important to
debug network-wide faults like load imbalance, loops, mis-
configurations, microbursts, etc.

Synchronized Debugging. OFRewind [81] enables co-
ordinated replay of control-plane (OpenFlow [62]) events by
recording controller messages and packets to diagnose Open-
Flow configuration issues and bugs. Speedlight [84] per-
forms synchronized (using PTP [21]) network snapshots us-
ing consistent snapshot algorithm in data-plane and control-
plane clocks. It requires advance scheduling of snapshots
every few milliseconds. One limitation of current works
on synchronized debugging is that they are triggered by
control-plane clocks which operate in the time scale of mil-
liseconds. As a result, they are not effective in capturing
ephemeral faults in the network that can occur in the order
sub-milliseconds. Such ephemeral faults are more likely to
occur as link speed is fast approach a few hundred Gbps.

5.2 In-network Computing
Programmable switches provide flexible access to SRAMs
and additionally provide stateful computations. It enables
certain computations to be offloaded from the end-hosts to
the switches. In this section, we summarize the research on
offloading computation to the network (termed In-network
Computing). We broadly categorize works into areas: 1) Im-
proving Network Performance, 2) In-Network Aggregation
& Caching and, 3) Assisting (Accelerating) Distributed Sys-
tems.

Improving Network Performance. Several research
works have leveraged programmable switches to enable the
network to provide more than just a best-effort service.
HULA [46] performs load balancing in the network by main-
taining live tracking of congestion levels of all paths to a
destination. NDP [35] presents a new data center protocol
architecture to achieve high throughput and low latency of
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network flows. Sharma et al. [73] implements traditional
congestion control protocols like XCP [45] and RCP [78]
at line-rate. AFQ [74] implements approximate fair-queuing
using programmable switches. Elmo [72] enables scalable
multicast in data-centers with very low traffic overhead.
Blink [36] performs network fast path recovery in the data-
plane by listening to TCP signals in the data-plane. Finally,
SQR [69] performs in-network packet-loss recovery during
link failures.

In-Network Aggregation & Caching. DAIET [70]
was one of the earliest works to show-case the benefits
of performing in-network aggregation using programmable
data-plane. It performed aggregation of key-value pairs
of big-data workloads and observed upto 89% reduction
in traffic. Several recent works like IncBricks [57], Net-
Cache [42], SwitchKV [54], KV-Direct [51], DistCache [59]
and SwitchML [71] leverage programmable switches to
cache key-value pairs to perform traffic reduction by caching
hot key-value pairs at line-rate and additionally free up some
computation from end-hosts. Thus, hot key-value pairs can
be retrieved from the network at sub-RTT without reaching
end-host compute nodes.

Assisting (Accelerating) Distributed Systems. Replica-
tion and consistency are integral components of data cen-
ter applications to ensure availability. Several works in
the past couple of years have looked into novel ways of
assisting and accelerating such distributed applications by
offloading functionalities to the network data-plane. Net-
Paxos [30] offloads Paxos [48] algorithm to be run in the
network data-plane thus achieving acceleration upto an or-
der of magnitude. NoPaxos [53] demonstrates an overhead-
free consistent replication using network ordering. Eris [52]
and Harmonia [86] perform in-network concurrency con-
trol and in-network conflict detection at network line-rate.
NetChain [41] performs in-network sub-RTT coordination
services and achieves a magnitude increase (compared to
ZooKeeper [1]) in throughput with lower latency.

Researchers have also looked at accelerating dis-
tributed applications including layer-4 load balancing
(SilkRoad [50]), time synchronization (DPTP [44]), string
searching (PPS [39]), data analytics (iPipe [56]), machine
learning classification (Xiong et al. [82]) and high-speed
trading (Jepsen et al. [40]).

6 Discussion and Conclusion

6.1 Network Monitoring and Debugging
While network monitoring and debugging traditionally have
always been complex, programmable networks provide the
necessary visibility to look into precise information (times-
tamps, counters, etc.) needed by network operators. The
recent works on network monitoring are based on creating
post-cards or appending information on packets (based on

custom queries specified by network operator). The informa-
tion is aggregated at a central controller. These approaches
are too expensive to be enabled continuously due to overhead
of the disk write space and speed (at controller) and commu-
nication to the controller. Hence, the telemetry reporting is
enabled only when an operator observes a problem. How-
ever, by doing so, they may end up missing the historical in-
formation which is critical to debug the root-cause of a net-
work fault. Hence, research is needed in areas to identify
faults at runtime and exporting only necessary and precise
information needed to debug the root-cause of faults.

6.2 In-Network Computing
The challenges to in-network computing comes from the fol-
lowing aspects of programmable switches : 1) Computation:
limited computation could be done at line-rate, 2) Storage:
limited SRAM capacity and, 3) Programmability: challeng-
ing to express traditional applications in the network data-
plane which is based on packets. It is necessary to keep these
constraints in mind while deciding the right functions or ap-
plications to place in the network.

While the recent years have observed several novel ap-
plications being offloaded to the network, there have also
been debates on whether it is right for the network to handle
such applications and what type of functions and/or appli-
cations should be offloaded to the network [61] [68]. One
suggested guideline [68] is to weigh the gain against the ad-
ditional overhead in terms of computation and storage in the
network data-plane.

Finally, to exploit the programmability available, it is im-
portant to have high-level compiler for network applica-
tions, which can dynamically place parts of a network ap-
plication on either end-host, SmartNIC or programmable
switches. While, there have been some recent works such as
SNAP [23], Sluice [65] and Chipmunk [31], there is much
more work needed in this area to identify and automatically
extract the right primitives from end-host applications to run
in the network.
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