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ABSTRACT
Wepresent the design and prototyping of a framework to sup-
port multicast for remote direct memory accesses (RDMA),
specifically the one-sided WRITE operation. We use P4 pro-
grammable hardware to augment fixed-function RDMA trans-
port hardware found on commodity NICs to enable one-sided
RDMA multicast with zero-CPU overhead. Finally, we out-
line the potential challenges and future directions in realizing
the framework for large-scale data center deployments.
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1 INTRODUCTION
RDMA is a technology that allows end hosts in the network 
to directly exchange data in the main memory and offload 
network I/O responsibilities from the CPU to the RDMA-
capable network interface cards (RNICs). RDMA offers the 
potential of exceptional performance for high-performance 
systems [9, 18, 28] and thus the data center network land-
scape has been gradually shifting towards RDMA [9, 10].
There are two communication paradigms in RDMA, e.g., 

one-sided operations and two-sided operations. For one-
sided operations, two communicating end hosts first ex-
change their connection parameters, i.e., queue pair num-
ber (QPN), packet sequence number (PSN), remote access
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key (RKEY), and remote virtual address (RADDR). With the
learned connection parameters, one host can then perform
READ, WRITE, and ATOMIC operations on the remote hosts
main memory directly. This process incurs zero-CPU over-
head on the remote end. On the other hand, two-sided opera-
tions – SEND and RECV, do not operate directly on the remote
end’s main memory, and thus no RKEY and RADDR is re-
quired. Instead, the CPU is actively involved [14] in buffering,
and packets are processed upon arriving at the userspace
similar to other kernel bypass techniques [8, 11].
With the rapid growth of network traffic in data centers

and the end ofMoore’s law looming, the efficient usage of net-
work and compute resources has been the utmost priority for
hyperscalers [10]. To optimize network resources, multicast
presents a promising option for the plethora of data center
applications [19] that exhibit one-to-many group communi-
cation patterns, e.g., file system replication [26], distributed
coordination [17], and virtual tenant intra-networking [25].
Multicast also accelerates application performance [5, 27, 29].
As to conserve the precious CPU resources, network I/O op-
erations can be offloaded to dedicated hardware like RNICs.
Unfortunately, existing RDMA operations either do not sup-
port multicast primitives with zero-CPU overhead (i.e., one-
sided) or do multicast with a non-negligible amount of CPU
cycles on the receiver end (i.e., two-sided) [14]. As two-sided
operations cannot be performed without the CPU, the only
way to enable the efficient zero-CPU RDMAmulticast is thus
through one-sided operations.

Note that one-sided operations require RKEY and RADDR
parameters per receiver. Therefore, in multicast, there will
be 𝑁 different combinations of connection parameters <QPN,
PSN, RKEY, RADDR> for𝑁 receivers, whichwould be difficult
to be encoded in the RDMAheaders. Even if they are encoded,
existing RDMA transport hardware found on RNICs is fixed-
function and cannot be modified to add custom functionality.
This hinders the possibility of introducing innovations to the
underlying RDMA transport hardware to enable one-sided,
zero-CPU RDMA multicast.
To that end, we propose a framework that abstracts one-

sided, zero-CPURDMAmulticast from the underlying RDMA
transport hardware. Specifically, we refer to one-sided RDMA
multicast as the one-sided WRITE operation with multicast
in our subsequent discussions1. The core idea is to leverage

1RDMA READ and ATOMIC operations do not fit the context of multicast.
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Figure 1: The RDMA processing pipeline.

the on-path P4 programmable hardware as the intermedi-
ate hardware shim layer to manipulate the RDMA packet
headers to support one-sided RDMA multicast at line rate.

In §2, we first analyze howRNICs process one-sided RDMA
packets. Then, we present a mechanism that abstracts one-
sided RDMA multicast from the RNICs’ transport hardware
using P4 programmable hardware (e.g., switches and Smart-
NICs) in §3. Lastly, in §4, we present our prototypes on the
Intel Tofino ASIC-based programmable switches [12] and
Mellanox BlueField2 DPU SmartNICs [21]. This work ex-
tends the one-sided RDMA multicast mechanism outlined
in [24] and takes the next step in making one-sided, zero-
CPU RDMA multicast suitable for general applications.

2 DISSECTING RDMA
Here, we outline the key requirements to abstract one-sided
RDMA multicast from the RNICs. We focus on RoCEv2 [1]
which is commonly adopted in data centers [9, 10].

2.1 The RDMA Pipeline
Fig. 1 depicts the processing pipeline in RDMA transports.
Firstly, whenever a packet arrives, the RNIC verifies the
checksums (e.g., IP checksum and invariant CRC32 check-
sum), then discards corrupted RDMA packets. Next, the des-
tination QP number (QPN) is checked for whether the par-
ticular RDMA connection exists or not. Typically, one QP
corresponds to a single instance of a one-sided operation
at a time. Subsequently, the RNIC inspects the packet se-
quence number (PSN) to identify out-of-order or duplicate
packets. Depending on the API used for the RDMA con-
nection setup, the starting PSN can either be randomly as-
signed (librdmacm) or manually assigned (libibverbs) [22].
Lastly, the remote key’s (RKEY) validity is scrutinized. The
RKEY plays the role of the pointer to the memory region for
use. Provided that the remote virtual address (RADDR) falls
within the allocated memory region corresponding to the
RKEY, the RADDR can be translated to the actual memory
address, accessible directly via the PCIe bus.

2.2 Key Takeaways
As long as an RDMA packet has the correct parameters <QPN,
PSN, RKEY, RADDR>matching an existing connection, it will
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Figure 2: Mechanism for one-sided RDMAmulticast

be accepted by the RNIC’s RDMA transport hardware to per-
form the corresponding RDMA operation [3, 22, 24]. Thus,
one-sided RDMAmulticast to a group of 𝑁 receivers is possi-
ble if the on-path programmable network hardware can mod-
ify the multicasted RDMA packets with the “correct” param-
eters, i.e., <QPN, PSN, RKEY, RADDR> tuples, prior to reach-
ing the RNICs. The top-of-the-rack (ToR) programmable
switches connected to RNICs or the programmable packet
processing pipelines within the RNICs [16, 21] are perfect
vantage points to perform the modifications.

3 ONE-SIDED RDMAMULTICAST
Next, we discuss a mechanism leveraging P4 programmable
switches and/or programmable RNICs to enable one-sided
RDMA multicast. We introduce a central coordinator that
acts as the proxy for the RDMA connection setup between
the multicast group receivers and the sender. We illustrate
the mechanism in Fig. 2. Multicast routing and group mem-
bership mechanisms are beyond the scope of this discussion.

3.1 Overview
First, the multicast sender initiates a multicast transfer re-
quest with the coordinator (step 1○). Then, the coordina-
tor performs RDMA connection setup with the group of
receivers, acquires the necessary connection parameters (i.e.,
<QPN, PSN, RKEY, RADDR>) from every receiver of that
group (step 2○). The coordinator subsequently converts the
connection parameters into match-action rules that perform
RDMA header modifications and installs them into the pro-
grammable switch and/or the RNICs’ match-action tables
(step 3○). Next, the coordinator signals the sender that it is
“clear to send” (step 4○). Upon receiving the ”ready-to-send”
signal from the coordinator, the sender proceeds with the
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multicast transfer (step 5○). Once the transfer is completed,
the sender notifies the coordinator (step 6○) on the transfer
completion. Finally, the coordinator teardowns the relevant
match-action rules on the programmable switch and/or pro-
grammable RNICs (step 7○). This completes the one-sided
RDMA multicast process. For both the sender and receivers’
RNIC, the one-sided RDMA multicast operation appears as
if it is a one-sided RDMA WRITE in unicast.

3.2 Design Considerations
Here, we discuss the design considerations for programmable
switches and programmable RNICs to enable the one-sided
RDMA multicast mechanism.

3.2.1 Programmable Switches. First, we consider only using
programmable switches for RDMA header mapping. The cen-
tralized coordinator configures the programmable switches
with the mapping rules (step 3○) which are derived from
RDMA connection parameters collected from the receivers.
Unfortunately, while using only programmable switches is
feasible to support the mechanism, it may not be scalable
as the available H/W resources (e.g., SRAM) comes at a pre-
mium [15]. For example, given a multicast group of 𝑁 re-
ceivers, 𝑁 RDMA header mapping rules have to be created.
The ever-changing data center workloads [23] make it chal-
lenging for the switch to support such operations at scale.

3.2.2 Programmable RNICs. For better scalability, we can
exploit the programmable RNICs to perform RDMA header
mappings before handing over the packets to RDMA trans-
port hardware. Specifically, the programmable pipeline in the
RNICs can be either ARM cores [21], dedicated ASICs [16],
or FPGAs [30] that come with abundant memory resources.
Here, the programmable switches only perform multicast.
In practice, deployment does not have to choose one ap-

proach over another. Rather, programmable switches and
RNICs can complement each other to support one-sided
RDMA multicast.

4 PROTOTYPING
We prototype our proposed mechanisms to support one-
sided RDMA multicast on both P4 programmable switch and
P4 programmable RNIC.

4.0.1 Programmable Switch. Our local testbed consists of
two x86 servers equipped with dual-port 25Gbps Mellanox
ConnectX-5 RNICs. The ports are connected to an Intel
Tofino [12] ASIC-based EdgeCore Wedge100BF-32X pro-
grammable switch. Using the four ports, we emulate a topol-
ogy with one multicast sender and three receivers through
Linux network namespaces.
We implement our prototype in P416 [4] in ∼500 LoC.

Apart from the match-action tables that are used to perform

RDMA header field mapping, two separate register arrays
are used to keep track of the PSN and RADDR offsets. Our
prototype only supports up to 64B payloads as the switch has
to parse and compute the invariant CRC32 checksum over a
variety of header fields (including the data payload) that is
at the tail of the packet [1]. Alternatively, checksum verifi-
cation on the RNICs can be disabled [24] to support longer
payloads but it may not be possible on most RNICs [6]. Next,
we adapt the implementation in [2] to perform the initial
RDMA connection setup with the receivers. The gathered
connection parameters <QPN, PSN, RKEY, RADDR> are then
configured into the switch. Lastly, we use scapy to craft
RDMA WRITE packets from the sender.

Verification. We carry out multiple trials by multicasting
128MB file chunks from the sender to a group of 3 receivers.
We verify that all receivers received the exact file chunks sent
implying the correctness of the prototype implementation.

4.0.2 Programmable RNICs. In the absence of programmable
RNICs on our local testbed, we perform the evaluations
on our cloud testbed on CloudLab [7] equipped with two
bare metal r7525 servers equipped with Mellanox Bluefield2
DPU SmartNICs which are RDMA capable and has a P4 pro-
grammable packet processing engine that consists of 16 ARM
cores and 32GB of memory. Because official P4 support are
yet to be available [20], as a workaround, we implement
our prototype in P416 for the behavioral model (BMv2) in
∼400 LoC. Here, the RDMA header mapping is done by the
ARM cores on the receiver’s RNIC. We verify the prototype’s
correctness similar to §4.0.1 between the two end hosts.

5 FUTURE DIRECTIONS
We present a mechanism to augment existing fixed-function
RDMA transport hardware with P4 programmable hardware
to support one-sided RDMA multicast. While we envision
that the framework can benefit various group communication-
heavy applications, many challenges remains to be tackled in
making one-sided RDMA multicast practical. How multicast
interacts with PFC-enabled lossless Ethernet fabrics remain
to be answered [10]. Furthermore, to ensure reliable commu-
nication, multicast congestion control algorithms for one-
sided RDMA multicast need to be explored alongside mecha-
nisms to handle packet retransmissions. Finally, scalable mul-
ticast routing and group membership mechanisms [13, 25]
have to be integrated with the framework and evaluated.
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