
Towards a Framework for One-sided RDMAMulticast
Xin Zhe Khooi

National University of Singapore
Singapore

Cha Hwan Song
National University of Singapore

Singapore

Mun Choon Chan
National University of Singapore

Singapore

ABSTRACT
Wepresent the design and prototyping of a framework to sup-
port multicast for remote direct memory accesses (RDMA),
specifically the one-sided WRITE operation. We use P4 pro-
grammable hardware to augment fixed-function RDMA trans-
port hardware found on commodity NICs to enable one-sided
RDMA multicast with zero-CPU overhead. Finally, we out-
line the potential challenges and future directions in realizing
the framework for large-scale data center deployments.

CCS CONCEPTS
•Networks→Data center networks; Programming in-
terfaces.

KEYWORDS
RDMA, multicast, programmable switches, SmartNICs, P4
ACM Reference Format:
Xin Zhe Khooi, Cha Hwan Song, and Mun Choon Chan. 2021. To-
wards a Framework for One-sided RDMA Multicast. In Symposium
on Architectures for Networking and Communications Systems (ANCS
’21), December 13–16, 2021, Layfette, IN, USA. ACM, New York, NY,
USA, 4 pages. https://doi.org/10.1145/3493425.3502766

1 INTRODUCTION
RDMA is a technology that allows end hosts in the network
to directly exchange data in the main memory and offload
network I/O responsibilities from the CPU to the RDMA-
capable network interface cards (RNICs). RDMA offers the
potential of exceptional performance for high-performance
systems [9, 18, 28] and thus the data center network land-
scape has been gradually shifting towards RDMA [9, 10].
There are two communication paradigms in RDMA, e.g.,

one-sided operations and two-sided operations. For one-
sided operations, two communicating end hosts first ex-
change their connection parameters, i.e., queue pair num-
ber (QPN), packet sequence number (PSN), remote access

ANCS ’21, December 13–16, 2021, Layfette, IN, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9168-9/21/12.
https://doi.org/10.1145/3493425.3502766

key (RKEY), and remote virtual address (RADDR). With the
learned connection parameters, one host can then perform
READ, WRITE, and ATOMIC operations on the remote hosts
main memory directly. This process incurs zero-CPU over-
head on the remote end. On the other hand, two-sided opera-
tions – SEND and RECV, do not operate directly on the remote
end’s main memory, and thus no RKEY and RADDR is re-
quired. Instead, the CPU is actively involved [14] in buffering,
and packets are processed upon arriving at the userspace
similar to other kernel bypass techniques [8, 11].
With the rapid growth of network traffic in data centers

and the end ofMoore’s law looming, the efficient usage of net-
work and compute resources has been the utmost priority for
hyperscalers [10]. To optimize network resources, multicast
presents a promising option for the plethora of data center
applications [19] that exhibit one-to-many group communi-
cation patterns, e.g., file system replication [26], distributed
coordination [17], and virtual tenant intra-networking [25].
Multicast also accelerates application performance [5, 27, 29].
As to conserve the precious CPU resources, network I/O op-
erations can be offloaded to dedicated hardware like RNICs.
Unfortunately, existing RDMA operations either do not sup-
port multicast primitives with zero-CPU overhead (i.e., one-
sided) or do multicast with a non-negligible amount of CPU
cycles on the receiver end (i.e., two-sided) [14]. As two-sided
operations cannot be performed without the CPU, the only
way to enable the efficient zero-CPU RDMAmulticast is thus
through one-sided operations.

Note that one-sided operations require RKEY and RADDR
parameters per receiver. Therefore, in multicast, there will
be 𝑁 different combinations of connection parameters <QPN,
PSN, RKEY, RADDR> for𝑁 receivers, whichwould be difficult
to be encoded in the RDMAheaders. Even if they are encoded,
existing RDMA transport hardware found on RNICs is fixed-
function and cannot be modified to add custom functionality.
This hinders the possibility of introducing innovations to the
underlying RDMA transport hardware to enable one-sided,
zero-CPU RDMA multicast.
To that end, we propose a framework that abstracts one-

sided, zero-CPURDMAmulticast from the underlying RDMA
transport hardware. Specifically, we refer to one-sided RDMA
multicast as the one-sided WRITE operation with multicast
in our subsequent discussions1. The core idea is to leverage

1RDMA READ and ATOMIC operations do not fit the context of multicast.

129

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3493425.3502766
https://doi.org/10.1145/3493425.3502766
https://creativecommons.org/licenses/by/4.0/

ANCS ’21, December 13–16, 2021, Layfette, IN, USA Xin Zhe Khooi, Cha Hwan Song, and Mun Choon Chan

PCIe
RDMA
Packet

C
R

C
 c

he
ck

Q
PN

 m
at

ch

PS
N

 m
at

ch

R
K

EY
 m

at
ch

R
A

D
D

R
 m

at
ch

an

d
tra

ns
la

tio
n

RDMA NIC

Figure 1: The RDMA processing pipeline.

the on-path P4 programmable hardware as the intermedi-
ate hardware shim layer to manipulate the RDMA packet
headers to support one-sided RDMA multicast at line rate.

In §2, we first analyze howRNICs process one-sided RDMA
packets. Then, we present a mechanism that abstracts one-
sided RDMA multicast from the RNICs’ transport hardware
using P4 programmable hardware (e.g., switches and Smart-
NICs) in §3. Lastly, in §4, we present our prototypes on the
Intel Tofino ASIC-based programmable switches [12] and
Mellanox BlueField2 DPU SmartNICs [21]. This work ex-
tends the one-sided RDMA multicast mechanism outlined
in [24] and takes the next step in making one-sided, zero-
CPU RDMA multicast suitable for general applications.

2 DISSECTING RDMA
Here, we outline the key requirements to abstract one-sided
RDMA multicast from the RNICs. We focus on RoCEv2 [1]
which is commonly adopted in data centers [9, 10].

2.1 The RDMA Pipeline
Fig. 1 depicts the processing pipeline in RDMA transports.
Firstly, whenever a packet arrives, the RNIC verifies the
checksums (e.g., IP checksum and invariant CRC32 check-
sum), then discards corrupted RDMA packets. Next, the des-
tination QP number (QPN) is checked for whether the par-
ticular RDMA connection exists or not. Typically, one QP
corresponds to a single instance of a one-sided operation
at a time. Subsequently, the RNIC inspects the packet se-
quence number (PSN) to identify out-of-order or duplicate
packets. Depending on the API used for the RDMA con-
nection setup, the starting PSN can either be randomly as-
signed (librdmacm) or manually assigned (libibverbs) [22].
Lastly, the remote key’s (RKEY) validity is scrutinized. The
RKEY plays the role of the pointer to the memory region for
use. Provided that the remote virtual address (RADDR) falls
within the allocated memory region corresponding to the
RKEY, the RADDR can be translated to the actual memory
address, accessible directly via the PCIe bus.

2.2 Key Takeaways
As long as an RDMA packet has the correct parameters <QPN,
PSN, RKEY, RADDR>matching an existing connection, it will

5

Sender Receiver 1

Coordinator

Receiver n

...

Sender Receiver 1

Coordinator

Receiver n

...

7
6

1

4

2 3

Figure 2: Mechanism for one-sided RDMAmulticast

be accepted by the RNIC’s RDMA transport hardware to per-
form the corresponding RDMA operation [3, 22, 24]. Thus,
one-sided RDMAmulticast to a group of 𝑁 receivers is possi-
ble if the on-path programmable network hardware can mod-
ify the multicasted RDMA packets with the “correct” param-
eters, i.e., <QPN, PSN, RKEY, RADDR> tuples, prior to reach-
ing the RNICs. The top-of-the-rack (ToR) programmable
switches connected to RNICs or the programmable packet
processing pipelines within the RNICs [16, 21] are perfect
vantage points to perform the modifications.

3 ONE-SIDED RDMAMULTICAST
Next, we discuss a mechanism leveraging P4 programmable
switches and/or programmable RNICs to enable one-sided
RDMA multicast. We introduce a central coordinator that
acts as the proxy for the RDMA connection setup between
the multicast group receivers and the sender. We illustrate
the mechanism in Fig. 2. Multicast routing and group mem-
bership mechanisms are beyond the scope of this discussion.

3.1 Overview
First, the multicast sender initiates a multicast transfer re-
quest with the coordinator (step 1○). Then, the coordina-
tor performs RDMA connection setup with the group of
receivers, acquires the necessary connection parameters (i.e.,
<QPN, PSN, RKEY, RADDR>) from every receiver of that
group (step 2○). The coordinator subsequently converts the
connection parameters into match-action rules that perform
RDMA header modifications and installs them into the pro-
grammable switch and/or the RNICs’ match-action tables
(step 3○). Next, the coordinator signals the sender that it is
“clear to send” (step 4○). Upon receiving the ”ready-to-send”
signal from the coordinator, the sender proceeds with the

130

Towards a Framework for One-sided RDMA Multicast ANCS ’21, December 13–16, 2021, Layfette, IN, USA

multicast transfer (step 5○). Once the transfer is completed,
the sender notifies the coordinator (step 6○) on the transfer
completion. Finally, the coordinator teardowns the relevant
match-action rules on the programmable switch and/or pro-
grammable RNICs (step 7○). This completes the one-sided
RDMA multicast process. For both the sender and receivers’
RNIC, the one-sided RDMA multicast operation appears as
if it is a one-sided RDMA WRITE in unicast.

3.2 Design Considerations
Here, we discuss the design considerations for programmable
switches and programmable RNICs to enable the one-sided
RDMA multicast mechanism.

3.2.1 Programmable Switches. First, we consider only using
programmable switches for RDMA header mapping. The cen-
tralized coordinator configures the programmable switches
with the mapping rules (step 3○) which are derived from
RDMA connection parameters collected from the receivers.
Unfortunately, while using only programmable switches is
feasible to support the mechanism, it may not be scalable
as the available H/W resources (e.g., SRAM) comes at a pre-
mium [15]. For example, given a multicast group of 𝑁 re-
ceivers, 𝑁 RDMA header mapping rules have to be created.
The ever-changing data center workloads [23] make it chal-
lenging for the switch to support such operations at scale.

3.2.2 Programmable RNICs. For better scalability, we can
exploit the programmable RNICs to perform RDMA header
mappings before handing over the packets to RDMA trans-
port hardware. Specifically, the programmable pipeline in the
RNICs can be either ARM cores [21], dedicated ASICs [16],
or FPGAs [30] that come with abundant memory resources.
Here, the programmable switches only perform multicast.
In practice, deployment does not have to choose one ap-

proach over another. Rather, programmable switches and
RNICs can complement each other to support one-sided
RDMA multicast.

4 PROTOTYPING
We prototype our proposed mechanisms to support one-
sided RDMA multicast on both P4 programmable switch and
P4 programmable RNIC.

4.0.1 Programmable Switch. Our local testbed consists of
two x86 servers equipped with dual-port 25Gbps Mellanox
ConnectX-5 RNICs. The ports are connected to an Intel
Tofino [12] ASIC-based EdgeCore Wedge100BF-32X pro-
grammable switch. Using the four ports, we emulate a topol-
ogy with one multicast sender and three receivers through
Linux network namespaces.
We implement our prototype in P416 [4] in ∼500 LoC.

Apart from the match-action tables that are used to perform

RDMA header field mapping, two separate register arrays
are used to keep track of the PSN and RADDR offsets. Our
prototype only supports up to 64B payloads as the switch has
to parse and compute the invariant CRC32 checksum over a
variety of header fields (including the data payload) that is
at the tail of the packet [1]. Alternatively, checksum verifi-
cation on the RNICs can be disabled [24] to support longer
payloads but it may not be possible on most RNICs [6]. Next,
we adapt the implementation in [2] to perform the initial
RDMA connection setup with the receivers. The gathered
connection parameters <QPN, PSN, RKEY, RADDR> are then
configured into the switch. Lastly, we use scapy to craft
RDMA WRITE packets from the sender.

Verification. We carry out multiple trials by multicasting
128MB file chunks from the sender to a group of 3 receivers.
We verify that all receivers received the exact file chunks sent
implying the correctness of the prototype implementation.

4.0.2 Programmable RNICs. In the absence of programmable
RNICs on our local testbed, we perform the evaluations
on our cloud testbed on CloudLab [7] equipped with two
bare metal r7525 servers equipped with Mellanox Bluefield2
DPU SmartNICs which are RDMA capable and has a P4 pro-
grammable packet processing engine that consists of 16 ARM
cores and 32GB of memory. Because official P4 support are
yet to be available [20], as a workaround, we implement
our prototype in P416 for the behavioral model (BMv2) in
∼400 LoC. Here, the RDMA header mapping is done by the
ARM cores on the receiver’s RNIC. We verify the prototype’s
correctness similar to §4.0.1 between the two end hosts.

5 FUTURE DIRECTIONS
We present a mechanism to augment existing fixed-function
RDMA transport hardware with P4 programmable hardware
to support one-sided RDMA multicast. While we envision
that the framework can benefit various group communication-
heavy applications, many challenges remains to be tackled in
making one-sided RDMA multicast practical. How multicast
interacts with PFC-enabled lossless Ethernet fabrics remain
to be answered [10]. Furthermore, to ensure reliable commu-
nication, multicast congestion control algorithms for one-
sided RDMA multicast need to be explored alongside mecha-
nisms to handle packet retransmissions. Finally, scalable mul-
ticast routing and group membership mechanisms [13, 25]
have to be integrated with the framework and evaluated.

ACKNOWLEDGMENTS
We thank the reviewers for their feedback. We would also
like to thank Levente Csikor and Jialin Li for their comments
and suggestions on the poster. This research is supported
by the Singapore Ministry of Education Academic Research
Fund Tier 2 (Grant Number: MOE2019-T2-2-134).

131

ANCS ’21, December 13–16, 2021, Layfette, IN, USA Xin Zhe Khooi, Cha Hwan Song, and Mun Choon Chan

REFERENCES
[1] Infiniband Trade Association. 2014. Annex A17: RoCEv2. https:

//cw.infinibandta.org/document/dl/7781 [Accessed: Oct 2021].
[2] Tarick Bedeir. 2010. Rdma read and write with ib verbs. Tech-

nical Report. Technical report, HPC Advisory Council, 2010.
URL: https://www.hpcadvisorycouncil.com/pdf/rdma-read-and-write-
with-ib-verbs.pdf.

[3] Rutger Beltman, Silke Knossen, Joseph Hill, and Paola Grosso. 2020.
Using P4 and RDMA to collect telemetry data. In 2020 IEEE/ACM
Innovating the Network for Data-Intensive Science (INDIS). 1–9.

[4] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, and David Walker. 2014. P4: Programming Protocol-
Independent Packet Processors. SIGCOMM Comput. Commun. Rev. 44,
3 (July 2014), 87–95.

[5] Jiaxin Cao, Chuanxiong Guo, Guohan Lu, Yongqiang Xiong, Yixin
Zheng, Yongguang Zhang, Yibo Zhu, Chen Chen, and Ye Tian. 2013.
Datacast: A Scalable and Efficient Reliable Group Data Delivery Service
for Data Centers. IEEE Journal on Selected Areas in Communications
31, 12 (2013), 2632–2645.

[6] Mellanox Community. 2019. How to disable ICRC validation
with RoCE v2? https://community.mellanox.com/s/question/
0D51T00007A2M1fSAF/how-to-disable-icrc-validation-with-roce-
v2 [Accessed: Oct 2021].

[7] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong,
Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David John-
son, Kirk Webb, Aditya Akella, Kuangching Wang, Glenn Ricart,
Larry Landweber, Chip Elliott, Michael Zink, Emmanuel Cecchet,
Snigdhaswin Kar, and Prabodh Mishra. 2019. The Design and Op-
eration of CloudLab. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19). 1–14.

[8] Linux Foundation. [n. d.]. Data Plane Development Kit (DPDK). http:
//www.dpdk.org [Accessed: Oct 2021].

[9] Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi, Pengcheng Zhang,
Wenwen Peng, Bo Li, Yaohui Wu, Shaozong Liu, Lei Yan, Fei Feng, Yan
Zhuang, Fan Liu, Pan Liu, Xingkui Liu, Zhongjie Wu, Junping Wu,
Zheng Cao, Chen Tian, Jinbo Wu, Jiaji Zhu, Haiyong Wang, Dennis
Cai, and JieshengWu. 2021. When Cloud Storage Meets RDMA. In 18th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 21). 519–533.

[10] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye,
Jitu Padhye, and Marina Lipshteyn. 2016. RDMA over Commodity
Ethernet at Scale. In Proceedings of the 2016 ACM SIGCOMMConference.
202–215.

[11] Toke Høiland-Jørgensen, Jesper Dangaard Brouer, Daniel Borkmann,
John Fastabend, Tom Herbert, David Ahern, and David Miller. 2018.
The express data path: Fast programmable packet processing in the
operating system kernel. In Proceedings of the 14th international con-
ference on emerging networking experiments and technologies. 54–66.

[12] Intel. [n. d.]. Intel® Tofino™ Programmable Ethernet Switch
ASIC. https://www.intel.com/content/www/xa/en/products/network-
io/programmable-ethernet-switch/tofino-series.html [Accessed: Oct
2021].

[13] Theo Jepsen, Ali Fattaholmanan, Masoud Moshref, Nate Foster, Anto-
nio Carzaniga, and Robert Soulé. 2020. Forwarding and Routing with
Packet Subscriptions. In Proceedings of the 16th International Conference
on Emerging Networking EXperiments and Technologies. 282–294.

[14] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. Design
Guidelines for High Performance RDMA Systems. In 2016 USENIX
Annual Technical Conference (USENIX ATC 16). 437–450.

[15] Xin Zhe Khooi, Levente Csikor, Jialin Li, Min Suk Kang, and Dinil Mon
Divakaran. 2021. Revisiting Heavy-Hitter Detection on Commodity
Programmable Switches. In 2021 IEEE 7th International Conference on
Network Softwarization (NetSoft). 79–87.

[16] Patricia Kummrow. 2021. The IPU: A new, strategic resource for
Cloud Service Providers. https://itpeernetwork.intel.com/ipu-cloud/
[Accessed: Oct 2021].

[17] Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana Szekeres, and
Dan R. K. Ports. 2016. Just Say NO to Paxos Overhead: Replacing
Consensus with Network Ordering. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16). 467–483.

[18] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. 2017. Octopus: an
RDMA-enabled Distributed Persistent Memory File System. In 2017
USENIX Annual Technical Conference (USENIX ATC 17). Santa Clara,
CA, 773–785.

[19] MikeMcBride andOlufemi Komolafe. 2020.Multicast in the Data Center
Overview. Internet-Draft draft-ietf-mboned-dc-deploy-09. Internet
Engineering Task Force. https://datatracker.ietf.org/doc/html/draft-
ietf-mboned-dc-deploy-09 Work in Progress.

[20] NVIDIA. [n. d.]. DOCA SDK. https://developer.nvidia.com/
networking/doca [Accessed: Oct 2021].

[21] NVIDIA. [n. d.]. Mellanox BlueField2 DPU SmartNICs. https://store.
mellanox.com/categories/dpu.html [Accessed: Oct 2021].

[22] Benjamin Rothenberger, Konstantin Taranov, Adrian Perrig, and
Torsten Hoefler. 2021. ReDMArk: Bypassing RDMA Security Mech-
anisms. In 30th USENIX Security Symposium (USENIX Security 21).
4277–4292.

[23] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C.
Snoeren. 2015. Inside the Social Network’s (Datacenter) Network.
SIGCOMM Comput. Commun. Rev. 45, 4 (Aug. 2015), 123–137.

[24] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis,
Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan Ports,
and Peter Richtarik. 2021. Scaling Distributed Machine Learning with
In-Network Aggregation. In 18th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 21). 785–808.

[25] Muhammad Shahbaz, Lalith Suresh, Jennifer Rexford, Nick Feamster,
Ori Rottenstreich, and Mukesh Hira. 2019. Elmo: Source Routed Multi-
cast for Public Clouds. In Proceedings of the ACM Special Interest Group
on Data Communication. 458–471.

[26] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. 2010. The hadoop distributed file system. In 2010 IEEE 26th
Symposium on Mass Storage Systems and Technologies (MSST). 1–10.

[27] Xiaoye Steven Sun, Yiting Xia, Simbarashe Dzinamarira, Xin Sunny
Huang, Dingming Wu, and TS Eugene Ng. 2018. Republic: Data multi-
cast meets hybrid rack-level interconnections in data center. In 2018
IEEE 26th International Conference on Network Protocols (ICNP). IEEE,
77–87.

[28] Xingda Wei, Rong Chen, and Haibo Chen. 2020. Fast RDMA-based
Ordered Key-Value Store using Remote Learned Cache. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
20). 117–135.

[29] Yiting Xia, T. S. Eugene Ng, and Xiaoye Steven Sun. 2015. Blast: Ac-
celerating high-performance data analytics applications by optical
multicast. In 2015 IEEE Conference on Computer Communications (IN-
FOCOM). 1930–1938.

[30] Xilinx. [n. d.]. Alveo SN1000 SmartNICs. https://www.xilinx.com/
applications/data-center/network-acceleration/alveo-sn1000.html
[Accessed: Oct 2021].

132

https://cw.infinibandta.org/document/dl/7781
https://cw.infinibandta.org/document/dl/7781
https://community.mellanox.com/s/question/0D51T00007A2M1fSAF/how-to-disable-icrc-validation-with-roce-v2
https://community.mellanox.com/s/question/0D51T00007A2M1fSAF/how-to-disable-icrc-validation-with-roce-v2
https://community.mellanox.com/s/question/0D51T00007A2M1fSAF/how-to-disable-icrc-validation-with-roce-v2
http://www.dpdk.org
http://www.dpdk.org
https://www.intel.com/content/www/xa/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/xa/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://itpeernetwork.intel.com/ipu-cloud/
https://datatracker.ietf.org/doc/html/draft-ietf-mboned-dc-deploy-09
https://datatracker.ietf.org/doc/html/draft-ietf-mboned-dc-deploy-09
https://developer.nvidia.com/networking/doca
https://developer.nvidia.com/networking/doca
https://store.mellanox.com/categories/dpu.html
https://store.mellanox.com/categories/dpu.html
https://www.xilinx.com/applications/data-center/network-acceleration/alveo-sn1000.html
https://www.xilinx.com/applications/data-center/network-acceleration/alveo-sn1000.html

	Abstract
	1 Introduction
	2 Dissecting RDMA
	2.1 The RDMA Pipeline
	2.2 Key Takeaways

	3 One-sided RDMA Multicast
	3.1 Overview
	3.2 Design Considerations

	4 Prototyping
	5 Future Directions
	Acknowledgments
	References

