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Abstract

Data center network faults are hard to debug due to their scale
and complexity. With the prevalence of hard-to-reproduce
transient faults, root-cause analysis of network faults is ex-
tremely difficult due to unavailability of historical data, and
inability to correlate the distributed data across the network.
Often, it is not possible to find the root cause using only
switch-local information. To find the root cause of such tran-
sient faults, we need: 1) Visibility: fine-grained, packet-level
and network-wide observability, 2) Retrospection: ability
to get historical information before the fault occurs, and 3)
Correlation: ability to correlate the information across the
network.

In this work, we present the design and implementation of
SyNDB, a tool with the aforementioned capabilities to enable
root cause analysis of network faults. We implement and
evaluate SyNDB with realistic topologies using large scale
simulation and programmable switches. Our evaluations show
that SyNDB can capture and correlate packet records over
sufficiently large time windows (~4 ms), thus facilitating the
root cause analysis of various network faults.

1 Introduction

Large cloud providers need to quickly resolve network faults
to meet their high SLA (service level agreement) require-
ments [35, 66]. However, a data center is a distributed system
that is prone to bugs caused by non-deterministic timing of dis-
tributed events [43]. Therefore, debugging network failures
occurring in modern data centers is extremely challenging
due to the scale and complexity of interactions in a dynamic
environment. Network faults in modern data center networks
are often transient and non-reproducible. A recent study [66]
reports that some network faults could not be reproduced even
with techniques such as EverFlow [67] or Pingmesh [30]. Fur-
ther, for a given network fault, the root cause can come in
many forms. For example, a packet drop due to a table miss
can happen either due to a parity error [66] or due to tem-
poral inconsistency during a network update [36, 54]. Due
to the complex nature of network faults, the key bottleneck
in quickly resolving them lies in finding the root cause. For
example, in AliBaba’s production network, 90% of the total
time required to resolve a network fault is spent in finding the
root cause [66]. Another study from Facebook’s network [47]
notes that 29% of network failures go without establishing
the root cause.
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In this paper, we focus on the problem of finding the root
cause of transient and hard-to-reproduce network faults with
many possible root causes. To better understand the difficulty
in finding the root cause, let’s consider an example scenario of
a microburst. When a microburst occurs at a switch port, there
is a uniform distribution of packets from different sending
hosts responsible for the microburst (more details in §7.2.1).
This indicates a fan-in traffic pattern with no single offend-
ing flow. Now, there are two possible root causes for such
a fan-in to occur. First, the sending hosts themselves are
sending the data in a synchronized fashion. In this case, the
issue needs to be resolved at the sending hosts by using tech-
niques such as application-level jitter [53]. The other possible
cause could be that the sending hosts are already introducing
application-level jitter, but still result in a microburst due to
non-deterministic interaction with other network traffic (see
§7.2.1 for details).

One way to differentiate the root causes is to look at the
packets involved in the microburst before it happens. If the
packet arrival times at the first-hop switches connected di-
rectly to the sending hosts are synchronized, then the root
cause is synchronized traffic. Otherwise, the microburst is
due to non-deterministic interactions of flows in the network
and even more details are required to identify the root cause.
Therefore, in order to find the root causes of complex network
faults, we believe that a network monitoring system needs to
have the following capabilities:

* Visibility: Observability in space, the ability to observe
network-wide metrics at a packet-level resolution (e.g.
packet arrivals and departures at all ports for all switches).
Aggregate states such as flow level statistics will not be able
to provide sufficient visibility to the underlying sequence
of events.

* Retrospection: Observability in time, the ability to be “al-
ways on” and look back on past network-wide states before
the fault has occurred. When the problem is detected, the
events leading to the problem would have already occurred
and information related to these past events is lost unless ad-
ditional effort is made to preserve the history. Such a capa-
bility is especially necessary to deal with faults that are tran-
sient, hard to reproduce and caused by non-deterministic
interactions.

Correlation: The ability to correlate network-wide events

at small timescales. This is required if faults occur due

to the interaction of traffic flows across multiple switches.

Without this capability, it would not be possible to correlate

events from different parts of the network.

Going back to the aforementioned microburst scenario,



retrospection allows us to look at network metrics before the
microburst at the different first-hop switches with visibility
at the granularity of packet arrivals. Correlation allows us
to compare these arrival times across the different first-hop
switches. If the root cause is not synchronous source traffic,
we can again make use of these three capabilities to see what
other non-deterministic interactions transpired in the network
that led to the fan-in microburst. We elaborate more on this
latter root cause in §7.2.1.

Several of the existing approaches [7, 32, 34,37, 62, 63, 66]
provide visibility to a good extent. But they either do not
provide retrospection and correlation capabilities or provide
them only partially (see Table 1). Since network faults oc-
cur unpredictably, providing retrospection typically requires
the system to be “always on” in terms of collecting teleme-
try information. In this sense, NetSight [32], an “always
on” version of postcard mode INT [7] comes closest to pro-
viding all the three properties with its packet-level visibility
and retrospection capabilities. However, it does not provide
a strong correlation property since it assumes that the post-
cards are received in order and out-of-order postcards can
be corrected using topology information. Therefore, it can
only correlate packets within a single flow at best. A straw-
man approach to achieving the three properties would be
to augment a NetSight like approach with a precise data-
plane time synchronization mechanism such as DPTP [38]
so that it can now provide strong correlation with synchro-
nized timestamps across the switches. However, such a so-
lution does not scale to today’s large data center networks
because of the “always on” approach of NetSight in record-
ing telemetry data. While efficient recording of telemetry
data is achieved by trigger-based approaches such as INT-
MX [7], PathDump [59], BurstRadar [37] and NetSeer [66],
they compromise on retrospection since the packet history is
not recorded, especially for switches and flows not involved
in the trigger.

In this paper, we present, SyNDB, a packet-level, synchro-
nized network-wide monitoring and debugging framework
that provides all the 3 desired capabilities of visibility, ret-
rospection and correlation. For visibility, SYNDB leverages
programmable data-plane switches to capture packet-level
telemetry information at nanosecond time resolution. A com-
mon issue with dataplane-based telemetry systems is that
the metrics to be captured need to be specified at compile
time [51]. To address this issue, SyNDB provides an in-
terface to the network operator to specify and change the
metrics at runtime without having to re-program the switch
data-plane. For achieving retrospection, the key trade-off is
that “always on” approaches are too expensive, while cheaper
trigger-based approaches do not provide strong network-wide
retrospection. We find a middle ground with SyNDB. Our
key idea is to leverage the switch data-plane as a fast tempo-
ral storage to perform continuous recording of packet-level
telemetry information (packet records) over a moving time

window (recording window). When no network fault is de-
tected, the recording window moves ahead and the older data
beyond the record time-length is discarded. When a network
fault is detected on any switch, the switch broadcasts a prior-
ity message to other switches in the network. On receiving
this message, these switches send the packet records from
the recent recording window to a monitoring server (collec-
tor) for permanent storage. At the monitoring server, the
synchronized, network-wide packet-level data enables root
cause analysis. In this way, SyNDB provides retrospection
efficiently by exporting network-wide historical telemetry in-
formation only when a fault occurs. To correlate the telemetry
information from different switches, SyNDB uses DPTP [38]
to synchronize the switch data-planes. DPTP is a recently
proposed time synchronization protocol for the network data-
plane. SyNDB is thus able to provide visibility, retrospection
and correlation capabilities all under the same framework.
In summary, we make the following contributions:

1. We present the design of SyNDB, the first network mon-
itoring and debugging framework that provides all the
three capabilities of visibility, retrospection and correla-
tion for finding the root cause of transient and hard-to-
reproduce network faults (§3).

2. For flexible visibility, we develop an abstract interface
and a run-time support for the operator to configure and
dynamically change the operating parameters of SYNDB
such as fault detection conditions and the recorded met-
rics, without needing to re-program the data-plane (§5).

3. In order to achieve efficient retrospection capability, we
design packet-level telemetry caching mechanism in the
data-plane (§3.2). In doing so, we address the challenges
of limited data-plane storage by developing compression
techniques to minimize memory requirement while still
retaining packet-level statistics (§3.2.1). We also develop
techniques to further reduce the telemetry information
exported for each fault trigger (§3.2.1).

4. We demonstrate the effectiveness of SyNDB by showing
how it can be used to identify the root cause for transient
and hard-to-reproduce network faults (§7). In particular,
we demonstrate how SyNDB can identify different root
causes for the same network fault using two different
scenarios involving a microburst.

We have implemented SyNDB on Intel Tofino [8] switches
using P4. The packet records at the collector are stored in
a relational DBMS facilitating debugging of network faults
using SQL queries (§4 and §6).

While SyNDB is designed to deal with transient and hard-
to-reproduce network faults, it can be used as a tool to debug
common network faults as well (Appendix B). In addition,
SyNDB can be considered complimentary to existing frame-
works such as INT [7] and NetSeer [66] by providing the
capability to perform network-wide event correlation and
retrospection.



Table 1: Comparison of SyNDB with existing solutions

Solution Visibility Retrospection Correlation
Per-packet .
Postcards [32] Packet-based Yes, Always On Partial
INT [7] Packet-based No, x.1etwork Partial
trigger
Packet-based
SwitchPointer [60] (Flow-level Yes, host trigger Partial
locality)
Sketch Frame- Past Aggregated
works [46, 62]  T1ow-based Counts, N/A No
BurstRadar [37]  Packet-based No, hxc?d No
network trigger
. Switch Causal
Speedlight [63] Metrics No, Scheduled Consistency(us)
NetSeer [66] Flow-based No, ﬁx.ed No
network triggers
Recent History,
<100ns
SyNDB Packet-based Programmable (DPTP [38])

network triggers

2 Related Work

Network monitoring literature is wide and extensive, but none
of the existing works provide all the three capabilities of visi-
bility, retrospection and correlation required to find the root
causes of transient and non-reproducible network faults. Here
we mention some of the most relevant works.

Network Based. Query-based streaming telemetry systems
like Marple [51], Sonata [31], etc as well as sketch-based
frameworks [34, 46, 62] can provide network-wide visibil-
ity and retrospection but only with aggregated metrics and
without any network-wide correlation capability. SyNDB
is complementary to these streaming telemetry systems in
that it additionally correlates information collected across
the network and supports complex fault triggers based on
input from the streaming telemetry system. Systems such as
BurstRadar [37], Mozart [45], and INT-MX [7] that perform
trigger-based data collection cannot provide retrospection.
Mozart [45] involves coordination between network devices
to start collection of telemetry data while coordination in
SyNDB is to export already collected network-wide teleme-
try data. Through switch-local timestamps, INT-MX can
only provide partial correlation and no network-wide correla-
tion. Both PathDump [59] and SwitchPointer [60] leverage
end-host storage to collect packet-level telemetry information
providing retrospection. However, the fault triggers for both
of them are only host-based and SwitchPointer provides only
partial correlation with its millisecond-level epochs. Speed-
light [63] uses synchronized network snapshots to provide
microsecond-level casual consistency which is insufficient for
correlation required in the example scenario in §1. Further,
since it requires advance scheduling of snapshots every few
milliseconds, it cannot provide retrospection. NetSeer [66]
captures the flows that were affected by certain events like
packet drops, path changes, and congestion, and mainly helps
in fault localization - where the fault occurred and affected
which flow (5-tuple). It only provides flow-level visibility and
no retrospection or correlation. NetSight [32] which is equiv-
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Figure 1: SyNDB Overview : Switches continuously maintain
packet records, but send them to collector for debugging only
upon detecting a problem

alent of an “always on” version of postcard mode INT [7]
(INT-XD) provides network-wide packet-level visibility and
retrospection. However, it does not provide strong correlation
capability as it generally assumes in order arrival of postcards.
Even if strong correlation can be achieved with mechanisms
such as DPTP [38], NetSight’s “always on” recording is very
expensive and does not scale to multi-petabit data center net-
works [58]. As we show in §7.3, NetSight can require 5STB or
more storage per switch for every hour. The main bottleneck
is the limited network bandwidth available for exporting the
recorded data from the switches and the slow write speeds
of data storage devices where the data would eventually end
up. Other than scalability, this approach is also wasteful since
network faults do not occur all the time [48] and, more than
60% of data center bugs occur due to the untimely delivery
of a single message [43].

End-Host Based. Trumpet [50] performs end-host based
monitoring of packets based on specific triggers to perform
coordinated monitoring of network events. DETER [44] per-
forms TCP replay for diagnosis of fine-grained TCP events.
It constructs switch queues using simulation of the recorded
TCP Packets in the end-hosts. Although it can help in de-
bugging obscure TCP performance issues, it cannot diag-
nose problems inside the network at small time scales. Con-
fluo [40] provides an end-host stack to diagnose network-wide
events. However, it cannot provide packet level event correla-
tion inside the network. SIMON [26] applies network tomog-
raphy technique to reconstruct the switch queuing behaviour
based on NIC packet timestamps. SyNDB is complementary
to these techniques as it provides visibility, retrospection and
correlation capabilities inside the network.

Table 1 summarizes recent related works based on their
capabilities of visibility, retrospection and correlation.

3 Design

SyNDB provides fine-grained (packet-level, nanosecond res-
olution) and network-wide telemetry information, in a syn-
chronized manner to ensure visibility, correlation and retro-
spection. Visibility and correlation are ensured by collecting
packet-level telemetry and leveraging data-plane time syn-
chronization. For Retrospection, the key idea is to leverage



the switch data-plane as a fast temporal storage for recording
packet telemetry information over a moving time window.
One of the advantages of recording telemetry information in
the switch data-plane is that SyNDB can record information
about all packets within a time window at line rate.

When no network fault is detected, the recording window
moves ahead and older telemetry data beyond the window size
is discarded. Hence, the recording window always maintains
the recent history. When a trigger condition (e.g. packet
loss or high latency) is observed at any switch (Step 1), high
priority trigger packets are broadcast to all switches (Step
2), as shown in Figure 1. Upon reception of trigger packets,
a switch collects all the packet records from the recording
window and forwards them to the collector to be stored in
a database (Step 3). Once data collection is completed, the
operator can debug the fault using packet records collected
both before and after the fault (Step 4). Debugging can be
performed by operators using SQL queries. Details of the
various components of SyNDB are explained in the following
sections, namely Visibility (§3.1), Retrospection (§3.2) and
Correlation (§3.3).

3.1 Visibility

Packet Records. To generate packet-level telemetry data, we
record information for each packet that enters a switch. We
call this information a p-record. Each p-record contains 3
basic fields: [pID, pTime;,, pTime,,]. pID is the packet ID
which is comprised of a combination of the hash value of the
packet headers (5-tuple flow key) and TCP/UDP checksum.
The hash value helps in associating packets from the same
flow, whereas the checksum helps in uniquely tracking each
packet within the flow. Although hash collisions are possible,
we can resolve them using topology and timing information.
pTime;, captures the time when the packet enters the switch.
pTime,,; is the time when the packet leaves the switch.
Additional fields are appended by the network operator to a
p-record to capture statistics, such as queue depth, link utiliza-
tion, forwarding table version, port counters, etc. An operator
can specify such additional fields via SyNDB configuration
(§5). To identify a p-record with a particular flow, the flow
hash to 5-tuple flow key mapping could be temporarily stored
in NICs (or hosts) and retrieved on demand.

3.2 Retrospection

After a p-record is generated in the data-plane for each packet,
we store them in a ring buffer array in the switch data-plane.
This ring buffer array maintains only the recent p-records and
we call this the history buffer.

Trigger Initiation. While SyNDB collects p-records for
each packet in the data-plane, it requires a trigger to initiate
data collection. These triggers can be events such as conges-
tion at a link, packet drops or packet reordering. The trigger
conditions are monitored in the data-plane. Once a trigger is

hit, the p-records can be transmitted to the collector.

To initiate network-wide p-record collection, we create a
trigger packet to be broadcast (with priority) to other switches
through the data-plane. In SyNDB, when a trigger condition
is hit, a new trigger packet is created. The trigger packet is an
Ethernet frame with a trigger header consisting of: 1) Trigger
ID, 2) Trigger Type: unique type to classify trigger, and 3)
Trigger Time: time when the trigger was hit.

The switches receiving the trigger packets further broadcast
it to their neighboring switches and so on. Due to redundan-
cies in trigger packet broadcast (multiple paths in data center
topology), unless the network is partitioned, trigger packets
reach the entire network. On receiving a trigger packet in
the data-plane, the switch stops storing p-records in the his-
tory buffer and instead uses a fixed buffer (we call it future
buffer) for subsequent storage of p-records. If a switch had
previously received a trigger packet with the same ID, then
it is dropped. The history buffer and future buffer contains
p-records of packets before and after the trigger condition
respectively.

Conceptually, the size of the history buffer that is needed
to be stored for debugging purpose depends on the round-trip-
time (RTT). In a data center context, recent measurements
show that VM-to-VM RTTs vary between Sus to 100us [24].
For a packet rate of 1 Bpps, 1 million p-record entries could
maintain at least 1 millisecond duration of history if the switch
pipeline is fully utilized. This translates to packets corre-
sponding to at least 10’s of RTTs available for debugging. In
practice, the packet rate is usually much lower than 1 Bpps
and this translates to a much longer time window. We present
our evaluation on the time window in §7.1 and discuss the
sizing of future buffer to enable continuous recording in §7.3.

p-record Collection. Upon receiving a trigger packet with
a new trigger ID in the data-plane, collection of p-records
is performed. The control-plane initiates the data-plane
packet generator which generates collection packets to read
the p-records from the history buffer. A collection packet
can read only one p-record each time it traverses through
the switch [16], before being forwarded to the collector via
a mirror-port. Consequently, we recirculate the collection
packet multiple times in the data-pane to coalesce multiple
p-records into a single packet. This reduces the large serializa-
tion overhead, if each packet contained exactly one p-record.

Once the number of p-records in a packet has reached a
threshold (configured by switch control-plane), the collection
packet is forwarded to the collector. A collection cycle ends
when all the p-records stored in the data-plane have been
transmitted or sufficient time has elapsed since the trigger.
The collection cycle repeats upon a new trigger hit. It is im-
portant to note that regular traffic forwarding is not disrupted
during the trigger and collection process. For cases when an
additional trigger is hit during collection process of the previ-
ous trigger, a new trigger packet is generated and collection
period is extended (discussion in §7.3). Techniques such as



bulk DMA read could also be employed to collect p-records.
However, such techniques require additional packetization
in the control-plane to forward the whole set of p-records
to a controller. The pseudo-code for recording, trigger and
collection is shown in Appendix A.

Aggregating Triggers. SyNDB supports operator to spec-
ify collection to be performed when a set of trigger conditions
occur within the historical time window. To support this, upon
receiving a trigger packet, SyNDB maps the trigger type to
a bit-index in a temporal trigger bit-array. It also sends the
trigger packet to the control-plane where a timer for each
trigger type is maintained, and the bit corresponding to the
trigger type is cleared upon expiration. Hence, the temporal
trigger bit-array represents the lists of triggers that occurred
in the network for the past historical time window. Based on
this trigger bit-array value, collection could be configured to
be performed. The triggers are customizable by the network
programmer, and is presented later (§5).

3.2.1 Reducing Collection Overhead

As SyNDB collects data only on event triggers, the amount
of data collected is expected to be much smaller compared to
continuous monitoring. To further reduce the data collected
for each trigger, SYNDB implements two mechanisms, a com-
pression scheme on the p-record and a scope reduction on the
network level.

p-Record Compression: SyNDB performs the following
p-record compression while ensuring packet ordering:
1. Compress pID : Consecutive packets from the same flow
do not need their pID stored. Instead, a counter corresponding
to the last pID is incremented.
2. Compress pTime;, : Similarly, incoming packets within
a time window (e.g. 64 ns) do not need the pTime;, stored
individually. Instead, a counter for the number of packets
received in the past time window is incremented. The packets
within the time window are assumed to have uniform inter-
arrival times. The same approach is applied to pTime,,;. In
the best case, a single (pID, pTime;,, pTime,,) tuple plus
the corresponding (n-bit) packet counters are sufficient to
represent (2"*) packets in the same time window.

Reduction on the Network Level: On detecting a fault,
SyNDB performs collection of p-records from all switches in
the network. This may burden the collector with unnecessary
data if the network is huge and the root cause is localized. We
mitigate this by a simple technique. Each switch maintains a
list of links from which it received the packets for the histori-
cal time window. Upon fault trigger, instead of broadcasting
trigger packets, they are selectively multicast to only the links
from where the packets were received in the recent recording
window. The intuition behind this is that we are interested
in where the current set of packets came from. This solution
provides the ability to trace every packet which appeared in

the trigger switch to its source, while reducing the number of
switches involved in the collection.

3.3 Correlation

Time-synchronization. SyNDB uses global timing informa-
tion to correlate packet records from multiple switches to help
construct an accurate network-wide ordering of events. Hence,
the data-plane clocks (used for pTime;, and pTime,,) across
switches are synchronized to a fine granularity to avoid tim-
ing inconsistencies. To rightly correlate established events in
distributed systems using "happened before" relation, causal
consistency [41] is essential. In SyNDB, since a trigger event
is the captured reference point, causal consistency is the right
model to correlate events happened before the trigger event.
We derive the necessary condition to ensure causal consis-
tency below.

Let’s consider two directly connected switches X and Y,
with internal clocks Cx and Cy respectively. We denote the
synchronization error |Cyx — Cy| between the internal clocks
by T.,.. Packet A is transmitted from switch X to switch Y.
Packet A leaves switch X at TimeOuty, and enters switch
Y at Timelny, after a propagation delay D. TimeOutx cor-
responds to the time packet A enters the egress pipeline in
switch X after queuing. This is the latest available time in
the data-plane for a packet [16]. Similarly, Timelny corre-
sponds to the time packet A enters the ingress pipeline at
switch Y. Consequently, propagation delay now becomes the
sum of egress pipeline delay, packet deparsing delay, MAC
processing delay, and wire delay.

D = EgressDelay + DeparserDelay + MACDelay + WireDelay
M
To ensure causal consistency between packet records, we
should see packet A leave switch X before reaching switch Y.
In short, TimeOutx should be less than Timelny. This will be
true if the synchronization error between the internal clocks
is less than the propagation delay.

Terr <D 2

If the condition stated in this equation can be met, we can
ensure consistency between any set of packets transmitted
between two adjacent switches.

Previous works on network time synchronization have
shown that the T,,, between neighbouring switches is in the
order of tens of ns [38, 42]. Additionally, real world data
shows that D between two adjacent switches ranges between
360 ns to 1900 ns under varying traffic conditions [38]. Thus
it is possible to achieve causal consistency between adjacent
switches, using current time synchronization techniques. The
same principle can also be extended between switches sepa-
rated by several hops in the network. In such cases, we ob-
serve that the increase in propagation delay is higher than the
increase in 7, thus ensuring consistency between switches
across multiple hops.
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Figure 2: SyNDB Debugger Database Schema
4 SyNDB Debugger

The collector composes of multiple servers which store and
analyze the p-records. The p-records are stored in a relational
database (RDBMS) which allows the p-records to be queried
using SQL. The collector also stores information regarding
the trigger events, network topology, and position of switches
within the topology. Before storing p-records in database,
SyNDB performs hash collision removal using topology and
timing information. The hash collision removal is performed
using a simple heuristic based on the ground-truth of the
queuing time of a p-record and the identity of the switch.
Duplicate hashes found are then re-assigned with other p-
record ids. The p-records are organized using tables in a
relational database as shown in Figure 2.

1. Packetrecords: This table stores basic and custom fields
within each p-record. Each p-record stores: 1) Switch ID, 2)
Packet ID, 3) Packet Hash, 4) TCP/UDP Checksum 5) Time
In, 6) Time Queued, 7) Time Out and, 8) Operator-specified
statistics. Note that Packet ID is just a combination of packet
hash and the checksum. They are stored separately to facilitate
flow-level queries as well as packet-level queries.

2. Triggers: This table stores information regarding each
trigger event. Each trigger event stores: 1) Trigger Type, 2)
Trigger Time, and 3) Trigger Origin Switch. This enables
SyNDB to classify network faults based on the trigger type.

3. Links: This table stores the topology of the data center,
as specified by the network operator. We do not infer the
topology from the packetrecords table because it is possible
for some links to have zero utilization. Each link stores the
endpoints and the link capacity.

4. Switches: This table stores the position of a switch in
the topology, e.g. ToR, Aggregation, Core, etc.

To determine the root cause of a network fault, we use
SQL queries on the above tables. For example, in the case
of an incast, culprit packets and their routes can be obtained
by combining information from packetrecords, triggers, and
links tables. The output of these queries can also be used to
replay or build dashboards using tools [6, 12, 17], which are
beyond the scope of this work.

We list some example queries below (scenarios in §7.2):

1) List the events in the trigger switch using:
Select * FROM packetrecords JOIN triggers
ON packetrecords.switch = triggers.switch;

2) List the packets in the trigger switch and the routes taken:
Select %= FROM (packetrecords as P) WHERE id
IN (select id from packetrecords JOIN triggers
ON p.switch = triggers.switch
AND p.time_in<triggers .time) ORDERBY time_in ASC;

ﬂrecord{ \
fields {

field_list_1;
field_list_2;

}
default_field : field_list_{x};
history {yh
future {z}
time_window : {t ms};
}
trigger {
conditions {
c1 = condition_1;
c2 = condition_2;

}

collection {

c1[&[] c2' [&[] 3" ...
NS J
}

Figure 3: SyNDB Configuration Syntax

5 SyNDB Configuration

SyNDB provides an interface for defining p-records and trig-
gers for programmable switches. The programmer configures
the following parameters in SYNDB: 1) the network statistics
(fields) to be collected in p-records, 2) the number of p-record
entries to be collected, and 3) the trigger (fault) conditions to
initiate a collection of p-records. The fields specified in the
configuration could be: 1) switch-provided metadata (queue
depth, ingress port, egress port), 2) packet header data (flow-
id), and 3) data that is computed and stored in user metadata
by the programmer (link_utilization, counters, EWMA). The
SyNDB configuration is compiled, then translated to P4 and
finally embedded with the original switch P4 program. Fig-
ure 3 shows the interfaces to define p-records and trigger
conditions.

A p-record defines a list of field_lists. Each field_list con-
tains one or more (metadata) fields [13] from the Packet
Header Vector (PHV) [16] supported by the switch architec-
ture and defined in the user’s P4 program. A "default_field"
list is specified by the programmer which is the active
field_list to be included in each p-record. The current active
field_list can be changed during runtime. The "history" refers
to the total size of the history buffer, while "future" refers
to the size of the future buffer. The "time_window" is the
target historical window (in milliseconds), and this is used to
maintain the trigger and broadcast window. The user declares
a list of trigger conditions, which are predicates operating on
header/metadata fields. For example, meta.link_utilization >
90. Finally, based on the triggers declared, the collection can
be configured to be performed using individual triggers or a
combination (AND(&), OR(l) of multiple triggers defined).
For example, let ¢ be the local trigger condition and ¢’ be
a trigger condition happening elsewhere in the network. A
representation like c1&c2’ would trigger a coordinated col-
lection by a switch A only if condition ¢l occurs at A, and
c2 has occurred in another switch in the network. Defining
triggers conditions and collection could be based on several
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Figure 4: SyNDB from Programmer’s perspective

network metrics in the network like packet drop, high packet
queuing, loops, etc. Additionally, it could be based on well
documented symptoms and alarms observed by network op-
erators [28, 43, 47].

SyNDB-Runtime. In practice, there is a need to make
changes to the p-record structure and trigger configurations
while SyNDB is running without the need to recompile and
load a new P4 program. SyNDB-Runtime facilitates changing
the configuration in the following ways: 1) Adding a new
field_list or editing the active field_list, and 2) Adding/remov-
ing trigger conditions. Note that these changes are restricted
to the available PHV contents in the data-plane as there is no
modification to the parser of the underlying P4 program.

When the SyNDB configuration is compiled, the compiler
enumerates all the PHV contents (packet headers, switch and
user-defined metadata) of the P4 program. It then creates tem-
plate tables with actions for each PHV container to be stored
in the p-record. This facilitates the runtime to dynamically ad-
d/remove the fields to be recorded in each p-record. The fields
could be TCP sequence number, TCP flags which are part of
packet headers, or ingress_port, queue_depth, etc. which are
part of the switch meta-data. The field to be added cannot be a
metric (e.g. EWMA) that is not defined or a packet header that
is not parsed by the already compiled P4 program. Since PHV
contents are limited, enumerating and storing them in actions
do not significantly increase data-plane resource consumption.
The maximum bytes in a p-record and the number of p-record
entries (recording window) is fixed at compile-time based on
the available hardware resources (stateful ALUs and SRAM).
To facilitate addition/removal of trigger conditions at runtime,
SyNDB configuration compiler uses similar enumeration tech-
nique and generates range-based match-action tables. Since
collection is performed based on the trigger bit-array value,
this value is added/modified based on the collection condition
changes. Additionally, SyNDB-Runtime updates the collector
each time the SyNDB configuration is changed, to ensure that
p-records are stored correctly.

Figure 4 summarizes the SyNDB workflow. A network
programmer configures the statistics to be recorded and the
fault triggers. The configuration can be continuously tweaked
to suit the statistics that the programmer wants to keep an eye
on using SYNDB-Runtime.

6 Implementation

SyNDB Dataplane. We have implemented SyNDB on Intel
Tofino [8] switches using P4 (~1900 LoC). We use DPTP! for
time synchronization between switches. We use DPTP since it
is implemented on PSA [16] and provides a global timestamp
in the data-plane. We store the baseline contents of p-record
in both ingress and egress pipeline. Ingress pipeline maintains
the write_index of the history ring buffer array upon a packet
arrival and stores the pID and pTime;,. Egress pipeline stores
pTime,,; and custom field_list to be captured. pID is a com-
bination of 16-bit flow hash, and 16-bit TCP/UDP checksum.
pTime;, is a 32-bit global timestamp (at nanosecond gran-
ularity) of the packet when it enters ingress pipeline of the
switch. On the other hand, pTime,,, is a 24-bit field which
captures time when the packet enters egress pipeline. A 24-bit
value allows to calculate upto 16 ms of queuing. The basic
uncompressed p-record is 11-bytes in size. To implement
compression, we maintain separate 8-bit counter array asso-
ciated with pID, pTime;, and pTime,,. Trigger conditions
are implemented using TCAM tables which create a trigger
packet upon match. A trigger packet is created by cloning
the current packet and inserting a new header type for trigger
packet after stripping the payload and other headers. By us-
ing a TCAM match for the trigger table, different aggregate
conditions of individual triggers can be supported using wild-
cards. We implement SyNDB control-plane, which performs
: 1) Time-keeping of temporal trigger bit-array, 2) Updating
multicast port-group, 3) Set up packet generators for p-record
collection.

SyNDB Runtime. We have implemented the compiler for
SyNDB configuration using Rust (~4000 LoC). It takes as
input the configuration and the switch P4 program, and gen-
erates a P4 code that implements p-record storage, trigger
conditions and collection logic. p-record storage and trigger
conditions are executed using stateful ALUs. Additionally,
the runtime environment (implemented in Python) accepts
commands to modify configuration such as: 1) changing the
active field_list, 2) adding new field_list, and 3) adding/re-
moving trigger conditions. These configurations translate to
control-plane configuration updates of the composed switch
P4 program. The runtime supports addition of new fields
to p-records, by varying the recording parameters of the set
of pre-enumerated PHV contents from the control-plane. A
similar approach is also used for modifying trigger condi-
tions. The maximum set of trigger conditions and contents
in p-records are specified during the generation of the P4
program.

Finally, we implement the collector using n2disk utility
(with PF_RING [15]) to store collection packets as PCAP
files in the local disk. Additionally, we implement a Python
program to parse the PCAP files, decompress and store indi-
vidual p-records in a MySQL database. The collector also

Uhttps://github.com/praveingk/DPTP
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takes as input the SYNDB configuration for initializing the
database. Each time the active field_list is modified through
the SyNDB runtime, the update is passed on to the collector.

7 Evaluation

We evaluate SyNDB using a hardware testbed as well as large-
scale simulations. Our hardware testbed consists of 4 physical
servers, and 2 Intel Tofino Wedge100BF-32X switches [18].
The servers and the switches are virtualized to create a fat-tree
topology [19] (see Figure 5(a)). Switches S1-S5 are virtu-
alized on the first physical switch (“Tofino A”) using 10G
loopback links while switches S6-S10 are virtualized on the
other physical switch (“Tofino B”). Each virtual switch is
configured to have 10K and 5K p-records in the history and
future buffer respectively. Each p-record entry is 16 bytes in
size. Figure 7 shows the SyNDB configuration that we use
in the testbed-based evaluation. Additionally, we synchro-
nize each virtual switch’s data-plane to S10 using DPTP (see
Figure 5(b)).

For large-scale simulations, we have built a packet-level
simulator? in C++ (~6K LoC) that implements low-level
packet transmission and forwarding behaviors for hosts, links
and switches. To validate our simulator, we compare its re-
sults with those from the testbed for the following experiment.
For the topology in Figure 5(a), we send 10 Mpps CBR traffic
along the path S1-S4-S10-S9-S7 with each switch storing 10K
p-record entries. Switch S7 generates a trigger after receiving
10,000 packets which is then broadcast to other switches to
initiate p-record collection. Based on the p-records available
at the collector, in Figure 6, we plot the percentage of com-
mon p-records seen by other switches compared to those seen
by S7. We observe that the testbed and simulation results
match each other closely — due to hop delays experienced
by the trigger packet, the percentage of common p-records
reduces slightly with increasing number of hops from S7.

Zhttps://github.com/rajkiranjoshi/syndb-sim
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The evaluation is divided into three parts. In §7.1, we
evaluate SYNDB for consistency in p-records and large scale
operation. In §7.2, we present different network debugging
scenarios with one in full details. Finally, we evaluate the
overhead of SyNDB in §7.3.

7.1 Design Validation

In this section, we evaluate the SyNDB for its ability to pro-
vide consistent p-records at packet-level granularity and to
provide retrospection and correlation at scale.

7.1.1 Consistency of p-records

To ensure that the p-records captured by SyNDB are consis-
tent, the time synchronization error should be less than the
propagation delay between adjacent switches (equation (2)).
In our hardware testbed (Figure 5a), we measure DPTP syn-
chronization error as well as the propagation delay between
adjacent switches. We observe that the worst case synchro-
nization error is less than 50 ns while the propagation delay
varies between 400-450ns. Thus, synchronization error is
much lower than the propagation delay between two switches
and hence captured p-records should be consistent with the
ground truth. To validate this further, we send a CBR traffic
of 10 Mpps (limited due to 10G host links) along the path S1-
S4-S10-S9-S7, with each packet annotated with a sequence
number along. The switches record the sequence number of
each packet in the corresponding p-record. After receiving
5000 packets, switch S1 generates a trigger packet (trigger
d in Figure 7) which when received, each switch sends the
p-records to the collector. In Figure 8, we plot the packet
sequence number against time for a sequence of 50 packets.
We observe that every packet is recorded in the next switch
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only after it has left the previous switch. Furthermore, the
timestamps increase linearly. This behavior confirms that the
p-records captured by SyNDB across all the switches in the
network are consistent and at expected intervals.

7.1.2 Retrospection and Correlation at Scale.

We perform large scale simulations to evaluate how much
retrospection and correlation SyNDB provides in realistic
traffic scenarios.

Simulation Setup. All simulation runs were done on
a k=24 fat-tree topology (720 switches, 3456 hosts) with
100G links. The network has a total bisection bandwidth of
172.8 Tbps. For generating packets from the hosts, we use
distributions of packet size and inter-packet gap as measured
by Benson et al. [20] from a data center hosting web applica-
tions. We configure the traffic pattern such that 75% of total
traffic is intra-rack as observed in cloud datacenters [20]. On
top of these basic traffic characteristics, we add additional
incast traffic such that 30% of the host links experience 100%
utilization for 10% of total simulation time. The inter-packet
gap distribution from Benson et al. is originally for 1 Gbps
switch links. We scale it to adjust the load on 100 Gbps host
links such that the average utilization (over 100 ms interval)
is about 34%, with the busiest 5% of links experiencing about
42% utilization. These utilization characteristics are similar to
those reported by Facebook [55]. All switches are configured
with a p-record history buffer of 1M entries. We also con-
figure a hop delay of 1 us per switch such that the maximum
RTT across the network (inter-pod) is ~11.5 us [21]. Each
simulation run simulates 100 ms of network run time and de-
livers about 5.2B packets. Within each run, we generate 50
triggers on randomly chosen switches across the three switch
types — top-of-rack (ToR), aggregation (Aggr) and Core. The
following results are based on the aggregate data from 10
independent simulation runs.

We use two metrics to compare p-record buffers between
the triggering switch and the upstream switches from which it
receives packets: (i) Common p-records (Figure 9(c)): the per-
centage of common p-records between the trigger switch and
the upstream switches. (ii) Common History (Figure 9(b)):
the time difference between the latest and oldest common p-
record. While the first metric quantifies the correlation using
the similarity of p-records between the switches, the latter
reflects the ability of SyNDB to perform retrospection.

Aggr
Trigger Switch Type

Trigger Switch Type
(©

Figure 9: Simulation results for history captured at the trigger switch, correlation history and percentage of common p-records
for different trigger switch types

For triggers originating at the ToR switch, the maximum
common history that can be captured at other upstream
switches is limited by the history at the ToR switch (~4 ms).
Note that ~4 ms history is worth ~350 RTTs since maximum
RTT in our setup is ~11.5 us. For triggers originating at the
Aggr/Core switches, history of ~11 ms is recorded. This
is expected since the ToR switches experience higher packet
rates (due to 75% intra-rack traffic) and hence provide smaller
history relative to Aggr and ToR switches.

As for percentage of common p-record, we can capture
~100% of common p-records in the upstream switches in
many cases. The exceptions are for cases where the trig-
ger switch is the Aggr/Core. The percentage of common p-
records with other ToR switches is ~40% since the p-records
in upstream ToR switches are quickly overwritten by newer
intra-rack packets. Note that in a fat-tree topology a packet
passes through exactly one Core switch. Hence, if the trigger
switch is a Core switch, there is no upstream Core switch.

Figure 9(a) shows the time window history that can be
recorded for different p-record buffer sizes.

Takeaway: The simulation results show that the amount of
history that can be captured depends on the incoming packet
rate and the buffer size. For the traffic load and distribution
used in the evaluation, SyNDB is able to consistently capture
common p-record across different upstream switches. The
time history available for retrospection varies from 4ms to
11ms using a buffer size of 1M p-record.

7.2 Network Debugging Scenario

In this section, we show how SyNDB can be used to debug
one of the most common transient network faults, namely
microburst [37, 47]. The evaluation uses the same configura-
tion setup as defined in Figure 7 on the hardware testbed in
Figure 5. Each p-record is configured to contain the custom
"field_list: SyNDB_scenario". It contains three metrics : 1)
Ingress Port 2) Link Utilization and 3) Drop Counter.
Ingress port of a packet is provided by the switch meta-data.
Link utilization is calculated over a window of 10 us in the
data-plane using a low-pass-filter. Drop counter is the number
of packets which missed the forwarding table. Additionally,
we configure SyNDB to perform collection of p-records based
on three triggers : (1) High Queuing Delay (trigger a), (2)
Table Lookup Miss (trigger b) and (3) Network Configuration
Update (trigger c¢). Data collection is initiated when a switch



receives trigger a or a switch receives both triggers b and c.
In each of the following case studies, we generate data and
control traffic to emulate the corresponding network faults.
The host data traffic is generated using MoonGen [23].

7.2.1 Microbursts

Microburst is a common problem in data centers where con-
gestion is caused by a short burst of packets lasting for at most
a few hundred microseconds [56, 65]. Traffic bursts occur
due to various reasons like application traffic patterns (e.g.
DFS, MapReduce), TCP behavior and also NIC-offloads (seg-
mentation, receive) [39]. The complex interactions and traffic
patterns make microbursts debugging extremely complicated.
It is necessary to find the root cause to determine how the
issue should be resolved.

In this experiment, we demonstrate how two microburst
events that are detected by the same trigger can be attributed
to different root causes using SyNDB. In one scenario, the mi-
croburst is due to incast of synchronized application traffic. In
the other scenario, the microburst is caused by the interaction
of uncorrelated flows with different source-destinations.

Synchronized Application Traffic. We consider the com-
monly known fan-in traffic pattern of data center networks
exhibited by applications such as MapReduce and Distributed
File System (DFS). This is an incast traffic pattern where
many sources transmit to a small number of destinations
within a short time window. These short bursts of traffic
increase the queuing delay at microsecond time-scales. The
challenge in identifying the root cause of such microburst is
that many sources contribute to the total traffic and the burst
occurs only for a very short time.

We setup the experiment with hosts H1 to H6 sending data
to H8 as shown in Figure 10. Each host sends a burst of 10
1500-byte packets at an average rate of 1 Gbps to H8 via ToR
switch S7. All links have capacity of 10 Gbps. In the exper-
iment, the sources started in an asynchronized fashion, but
over time transmissions from different hosts can synchronize
their transmissions causing sudden spikes in queuing delays
on switch S7, triggering the trigger a. Such synchronization
of periodic messages over time has been known to occur in
routing message updates [25].

With SyNDB, to determine if the issue of microburst is
caused by synchronized fan-in traffic, a query of the queu-
ing delay at S7 together with the packet arrival information
at the ToR switches before the microburst detection can be
performed at the collector as shown below:

SELECT switch, ingress_port, time_in FROM packetrecords
WHERE id IN (SELECT id FROM packetrecords AS A
JOIN triggers as T ON (A.time_in < T.time
AND A.switch = T.switch)) AND switch
IN (SELECT switch FROM switches WHERE type = "tor");
SELECT time_queue FROM packetrecords where switch=7;

Listing 1: Query to list the packet arrival times at ToR switch
ports and queuing delay at S7

The answer to the query is shown in Figure 10. The top
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Figure 10: Synchronized Fan-in : Correlating Queuing at S7
and Packets arrival sequence at ToR Switches

right plot in the figure illustrates the queue buildup over time.
When we correlate the packet arrivals from different hosts
before the bursts occurred, we see that the packets that make
up the bursts are transmitted by hosts H1 to H6 synchronously
and reach S7 at about the same time. The root cause of this
microburst from H1 to H6 can thus be determined as host-
based synchronized traffic.

Non-Synchronized Application Traffic. Synchronized
incast is just one possible cause for microburst. As discussed
by Shan et al. [57], there are many other scenarios for mi-
crobursts. In this experiment, we generate microburst events
through the interaction of traffic from multiple hosts that are
not synchronized at host. However the individual flows, due to
different queuing behaviour across hops (due to cross-traffic),
arrive synchronously at the bottleneck link. In this scenario,
hosts H1 to H6 send bursts of 10 packets at an average rate
of 1Gbps to H8. A randomized delay of upto Sus is added
before sending a burst to minimize traffic synchronization. In
addition, another flow sends a burst of 10 packets every 1ms
of packets from H9 to H6 (through S1-S4-S5-S8-S6) at an
average rate of 2Gbps. Note that this flow (H9 - H6) runs
asynchronously and does not travel through the bottleneck
switch (S7) where the microburst occurred. Nevertheless, we
observe microbursts on the link from S7 to H8.

A query of the queuing delay at S7 together with the packet
arrival information is shown in Figure 11. The shaded por-
tion in the bottom right plot shows the duration in which the
flow from H9 to H6 can occur. The information provided by
SyNDB shows that the microburst is likely due to a combina-
tion of factors, namely (1) the synchronization of the bursts
among the pair of flows from H1 & H2, H3 & H4 and H5
& H6; (2) the burst from H9 to H6 arriving just before the
bursts from H1 & H2 in S1 and the bursts from H3 & H4 in
S5. This causes a queue buildup resulting in packets from H1
to H6 arriving at S7 at about the same time. The root-cause is
thus due to interaction of network queuing effect caused by
cross traffic.

Additional Use Cases: Table 2 presents a list of additional
use-case scenarios for SYNDB. We have experimentally eval-
uated (on the hardware testbed) the use-cases for debugging
network faults related to network configuration updates and
transient load imbalance whereby the use of multiple triggers
is demonstrated. The details are provided in Appendix B.

Takeaway: The scenarios we presented show that in or-



al
@
3
S
5]

|

Packet -

7

T
He | - - - B

» H5| = N - - o

% H4 - " " e

S Hs - - - ]

H9 H1 H2 H3 H4 H5 H6 H7 H8 K2l - - 1 =

0 5 10 15
Time(uS)

Figure 11: Non Synchronized Fan-in : Correlating Queuing
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Table 2: Use-cases of SYNDB
Fault and Description

Routing Bugs. Bugs in the routing protocols, for example, synchroniza-
tion between LDP IGP protocols [10] could be due to timing issues such
as race conditions [49]. Since SyNDB provides causal consistency, it
helps in correlating different protocol packets and to narrow down the
root-cause.
App Timing Bugs. SyNDB can be used to debug timing bugs in dis-
tributed systems (Hadoop [1], ZooKeeper [2]) where more than 60%
of the bugs are due to a single packet [43]. In these timing bugs, a
dead-lock is caused by a missed or delayed message. SyNDB can help to
identify and track message lost or delayed by raising trigger conditions
when it observes reordering or drops of certain packets.
Traffic Pattern Analysis. SyNDB collection could be triggered at reg-
ular intervals to study and profile traffic patterns [64] and to optimize
cloud applications. In this case, p-records could contain the flow-id (5
tuple) to understand the interactions on a flow-level granularity.
Routing Loops Routing Loops can be detected by observing duplicate
p-record ids at the switches.
Network Configuration Updates. Refer Appendix B
Transient Load imbalance. Refer Appendix B

der to identify the root cause of complex network faults, it
is often necessary to have the visibility into packet statis-
tics, the ability to look at past events (retrospection) and the
timing information to correlate observations across switches
(correlation). While NetSight [32] and INT-MX [7] can de-
tect routing loops and bugs, NetSight has higher collection
overhead due to its “always on” nature (§7.3). Also, while
NetSight cannot perform correlation across the network, INT-
MX cannot perform retrospection to identify whether the
root-cause of such issues is due to configuration, race con-
dition, etc. While Marple [51], BurstRadar [37] can detect
microbursts, they do not provide correlation and packet-level
visibility to inspect the root-cause of microbursts due to tim-
ing related issues like synchronized traffic. While it is possible
to analyze traffic patterns in a coarse manner using systems
like Speedlight [63] with tpprof [64], SYNDB can be used to
understand microsecond-level changes in traffic.

7.2.2 Partial Deployability

SyNDB-enabled switches can be deployed incrementally
with each new switch providing additional visibility into
the network. To maximize effectiveness, deployment can
start from ToR switches where most congestion events oc-
cur [65]. For DPTP synchronization, links can be added
between adjacent ToR switches, which is not a complex un-
dertaking [61]. With just SyNDB-enabled ToR switches, is-
sues like microbursts(§7.2.1), application timing bugs can be

T T
15 Normal C—1
Compressed

SRAM Usage (MB)

Q2 Q 2
X Q <
N N N Q
S
N
Num p-records

Figure 12: SRAM consumption for different packet rates and
p-record size

debugged fully with just the ToR switches’ p-records, while
issues like routing loops, bugs, load imbalance and configura-
tion updates can be partially debugged if the ToR switch is
involved in the fault. In such cases, to infer the core network’s
states, network tomography techniques [26] can be employed.

7.3 SyNDB Overhead

SRAM Overhead. We estimate the total amount of SRAM
consumption used by the history buffer based on a compressed
p-record size of: 11bytes (baseline compressed p-record),
16 bytes (evaluation configuration in Figure 7 + baseline com-
pressed p-record) in Figure 12. We plot the SRAM con-
sumption for different profiles in Figure 7. For example,
“100K(11B)” represents 100K precords with 11-byte baseline
p-record.SyNDB consumes an average of ~5 MB while con-
suming ~10 MB of SRAM to record 1 Million uncompressed
baseline p-records respectively. For 16-byte p-records, we
observe the SRAM overhead to be about ~7 MB on average.
Compression saves 50% of SRAM memory on average,
and can save upto 80% depending on the traffic pattern. The
SRAM consumption can be easily accommodated by latest
switching ASICs [3, 4, 11] which contain SRAM greater than
100 MB. Recent studies [65] have observed high utilization
only across a few switch ports during congestion events. Thus
the pipeline utilization is usually much lower than its capac-
ity. To support lower packet rates like <500 Mpps, SyNDB
uses about 2 MB of SRAM. The programmer can trade-off
between the total capture duration and the memory budget.
Collection Overhead. We measure the overhead incurred
at the switch to collect the p-records. To perform collection,
the switch control-plane sets up packet generator in the data-
plane packets to inject collection packets at 100 Mpps. The
collection packets typically coalesce p-records (64 p-records
per packet) by recirculation. Collection of 10000 compressed
p-records requires 104 collection packets on average. We ob-
serve that it takes a total time of 245us to evict the p-records.
Also, it takes only 45us to collect these packets in the data-
plane using packet generator and recirculation, with the major-
ity of the time being signalling from the control-plane to start
the packet generator. We believe this timing overhead would
be reduced drastically in upcoming architectures [9] which
support triggering packet generation from data-plane events.
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The overall pipeline overhead incurred is about 100 Mpps and
bandwidth consumption is limited to re-circulation port and
the collection forwarding port (e.g. mirror port), thus not
affecting regular data-plane traffic. In order to collect IM
compressed p-records (1ms history at 1 Bpps), it takes only
about 323us on an average. Out of this, it takes 123us to
recirculate 7800 packets to collect the compressed p-records,
and 200us to trigger the packet generation. SyNDB can re-
sume recording (in history buffer) after half the p-records
are collected in about 260us. This means SyNDB can ide-
ally support upto == 6000 triggers/sec. Note that, SyNDB has
a future buffer to store p-records once trigger condition is
met. To support continuous recording of all future events, the
minimum duration the future buffer needs to capture is 260us.

With a 1ms history buffer, the ability to support 1000 trig-
gers per second without any break in recording is sufficient
to enable continuous monitoring. Hence, SyNDB can capture
microbursts occurring every few milliseconds [65] as well as
network incidents separated by hours [47].

We observe that the latency to receive, decompress and
store the p-records in the collector takes few hundreds of
milliseconds per switch on a single collector server. Complex
queries with several join operations take several seconds or
more. Query optimizations are beyond the scope of this work.

Comparison with Other Debugging Tools. Next, we
compare the total storage overhead of SyNDB to that of Net-
Sight [32]. NetSight creates a post-card by stripping the
packet payload, and attaching switch ID and ingress port to
the post-card. We compare the storage overhead incurred at
the collector from a single switch for SyNDB compared to
NetSight for a period of 1 hour. SyNDB performs collection
only upon fault triggers while NetSight performs collection
throughout the network operation. In Figure 13, we plot the
overall storage incurred for an hour of network operation with
increasing number of triggers/hr. We assume both NetSight
and SyNDB store 16-byte post-cards/p-records per packet. Ir-
respective of the frequency of faults, NetSight collects about
500 GB and 5TB of data per hour from a single switch at
10 Mpps and 100 Mpps packet rates, respectively. SyNDB
on the other hand collects only 56 GB per hour for 10000
triggers/hr and 1 Bpps data-plane traffic. This means, when
SyNDB monitors packets at the maximum rate (e.g. 1.6 Tbps),
the total fraction of data exported for debugging is 0.01%.

Switch Resource Overhead. We evaluate the total hard-

Table 3: Hardware resource consumption of SyNDB com-
pared to the baseline switch.p4

Resource switch.p4  DPTP[5] SyNDB Combined
SRAM 29.58% 2.29% 15.31% 47.18%
Stateful ALU 14.58% 8.83% 33.33% 56.74%
VLIW Actions 36.72% 4.43% 6.25% 47.4%
TCAM 32.29% 0% 1.04% 33.33%
Hash Bits 34.74% 3.99% 14.14% 52.87%
Ternary Xbar 43.18% 0% 0.63% 43.81%
Exact Xbar 29.36% 2.34% 12.5% 44.2%

ware resource consumption of SyNDB (with configuration
shown in Figure 7) compared to the baseline switch.p4 [14].
switch.p4® is a baseline P4 program that implements vari-
ous common networking features applicable to a typical data
center switch. As we implement SyNDB along with DPTP,
we show the total resources consumed by all the components
(switch.p4, DPTP and SyNDB) in Table 3. The majority of
resources required for SyNDB arise from the need to store p-
records in the data-plane. We observe that SYNDB consumes
33% of the stateful ALUs and 15% of the SRAM to store
p-records and trigger conditions in the evaluation configura-
tion. Thus, SYNDB can be implemented on top of switch.p4
in programmable switch ASICs available today.

8 Conclusion and Discussion

In this paper, we design and implement SyNDB, which to the
best of our knowledge, the first system providing packet-level
visibility, retrospection and correlation to tackle transient
faults. SyNDB leverages data-plane time synchronization
and data-plane storage (SRAM) to temporally store packet
records which can be exported to aid in debugging upon
network faults. It provides the unique ability of looking back
at the trace of events before the occurrence of a network
fault. Additionally, since it performs collection only upon
occurrence of programmable event triggers, it exports only a
small fraction of the data-plane traffic for targeted debugging.
We study case-studies which uncover SyNDB’s capabilities
in finding the root cause of transient faults.

We believe that SyNDB’s capability goes beyond debug-
ging. A network device’s configuration can be used along
with network traces to create a “replay” of the network fault.
This in turn, can be used to form regression test suites. Fi-
nally, it will also be interesting to develop tools that provide
dashboards, query suggestions and an assistant (Similar to
Dogga et al. [22]) to network operators using Al techniques
to facilitate faster debugging.
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A SyNDB Pseudocode

precordArray : Register Buffer Array

writeIndex : Current index to write

N : Size of the ring buffer

POST_TRIG_SIZE : Size of buffer for post trigger

pwriteIndex : Current index to write post trigger

triggerArray : Temporal Trigger bit-array

triggerConditions : Bitmask configuration of
TriggerArray for collection

Timeyow : Current Global Time

Packet Record Logic
if packet is normalPacket:
if collectInProgress == False:
Store Hash, Timeuow, Timegueue,
CustomStats in precordArray[writeIndex]
writeIndex = (writelIndex + 1) $ N
add_to_port_group (ingress_port)
else :
if pwriteIndex < POST_TRIG_SIZE:
Store Hash, Timeuow, Timegueue,
CustomStats in precordArray[pwriteIndex]
pwriteIndex = (pwriteIndex + 1)
if triggerHit is True:
clone (packet)

if packet is clonedPacket:
add_header (trigger)
remove_header (ipv4/tcp/udp)
trigger.time = Timegy
trigger.id = triggerId
trigger.type = triggerType
recirculate ()
Trigger Packet Logic
if packet is triggerPacket:
if trigger.id != lastSeenId[trigger.source]:
triggerArray |= 1 << (trigger.type - 1);
lastseenId[trigger.source] = trigger.id;
else:
drop ()
if triggerArray in triggerConditions:
collectInProgress = True
Multicast (port_group)
Collection Packet Logic
if packet is collectPacket:
if collectPacket.entries < MAX_ENTRIES_PKT:
p-record = precordArray[readIndex]
readIndex = (readIndex + 1) $ N
add_header (p-record)
collectPacket.entries++
recirculate ()
else:
12fwd_to_collector ()

B More Network Debugging scenarios

B.0.1 Network Configuration Updates

Networks operate in a dynamic environment where opera-
tors frequently modify forwarding rules and link weights to
perform tasks from fault management, traffic engineering,
to planned maintenance [52]. However, dynamic network
configurations are complex and error prone especially if they
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Figure 14: Network Update Scenario causing a Forwarding
Blackhole at S8
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involve several devices. For example, updating the route for a
flow(s) can lead to unexpected packet drops if the updates are
not applied consistently or efficiently [36, 54]. In this case
study, we use SyNDB to identify whether a transient error is
due to a network update or localized hardware fault.

For the experiment, we add forward_rule_version to the
field_list SYNDB_scenario. We assume that each forwarding
rule indicates a version number and route based on destination
MAC address as shown below.

table_add forward
send_to_port ethernet_dstAddr <dstMac> =>
output_port <num> entry_ver <num>

A transient forwarding blackhole occurs when an out-
of-order execution of a network update gives rise to non-
deterministic network behavior leading to temporary packet
loss [29]. We emulate the transient blackhole using a setup
shown in Figure 14. Figures 14(a) and (b) depict the initial
and final state of the network after the updated route. The
routing of a flow from H1 to H7 is updated by rerouting traffic
from S10 to S8. However, transitioning from configuration
(a) to (b) requires updates to both S10 and S8.

In this network update, a new rule to route the flow needs to
be added to S8 first and then S10 needs to update the policy to
route the flows from S9 to S8. If the update at S8 occurs later
than the reroute at S10, a temporary forwarding blackhole
will form, resulting in packet drops.

However, the packet drop at S8 due to table lookup miss
could also be flagged as a parity error [66], when the context
of the table miss is unknown. To check if a delayed network
update is a possible cause, with SyNDB, we can query (List-
ing 2) the forwarding rule versions observed by each packets
at S10 and S8 along with the number of drops observed in
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Figure 16: Congestion at S9 due to Link Load Balancing
problem

Figure 15. From Figure 15, by correlating the rule version
number and packet drops in time, it is clear that the packet
dropped can be attributed to a transient inconsistency in rules
between switches S8 and S10.

SELECT forwarding_rule_ver, drop_counter
FROM packetrecords WHERE switch=8 OR switch=10;

Listing 2: Query for correlating network update with drops

Note that in this experiment, data collection is trig-
gered based on an aggregating trigger defined over multiple
switches. Switch S8 broadcasts the trigger b to other switches
on detection of forwarding table miss and S10 broadcasts
the trigger ¢ on policy update. Trigger b or c by itself does
not trigger data collection. When a switch receives both trig-
gers (within a time window), then data collection is triggered.
Such multi-switch trigger reduces both false-positives and
collection overhead.

B.0.2 Transient Load Balancing Issues

Modern data center topologies such as fat-tree provide redun-
dant paths between a source-destination pair. ECMP [27, 33,
58] is a common load balancing policy for handling multi-
path routes. However, it has a lot of inefficiencies in distribut-
ing the load evenly [27, 33]. As aresult, it has been observed
that a subset of core-links regularly experience congestion
while there is spare capacity on other links [20].

In this scenario, we setup ECMP based load balancing.
Each switch calculates the hash of the 5-tuple and redirects
the flow via one out of the two links. We experiment with
a variety of combinations of 5-tuple flows, and use a set of
combinations which can lead to load imbalance in the network.
In one such combination, S9-S7 is congested, even though
spare capacity is available at S8-S7. We create multiple flows
in the network originating from H1 to H6 with the destination
as H7 and H8 (Figure 16). The traffic (containing faulty
combination) is sent at short bursts, with an overall throughput
of 1 Gbps per flow. The load imbalance happens when both
the core switches (S5 and S10) direct too many flows to S9,
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Figure 17: Link Utilization and Queuing delays observed at
the core links points to load imbalance

resulting in congestion on the S9-S7 link.

With only the congestion indication, it is be difficult to
determine the root cause. To determine if load imbalance
is the root cause, one would have to observe the queuing
duration and link utilization of various links at the same time.
These network metrics are not available with both NetSight

and INT. SpeedLight [63] can measure only coarse-grained
link utilization (several us). With SyNDB, we can plot the
utilization of the links measured at the same time at packet-
level granularity using the query shown in Listing 2.
SELECT switchl , switch2, link_utilization=*8, time_queue
FROM (SELECT switchl , switch2 FROM links
WHERE (switchl IN (select switch FROM switches
WHERE type !="tor") AND switch2 IN (SELECT switch
FROM switches WHERE type !="tor"))) AS L
JOIN (SELECT = FROM packetrecords) AS A
JOIN (SELECT =# FROM packetrecords) AS B
ON (A.hash = B.hash AND A.switch = L.switchl
AND B.switch = L.switch2);
SELECT forwarding_rule_ver
FROM packetrecords WHERE switch=10;

Listing 3: Query for link utilization and queue depths

The result is shown in Figure 17. We can observe that
there is high link utilization at S9-S7 while link S8-S7 sees no
significant utilization. Furthermore, the congestion trigger at
the link S9-S7 is preceded by higher than normal link utiliza-
tion in links S5-S9 and S10-S9. Thus, the load distribution
from the core switches (S5 and S10) to S8 and S9 is heavily
skewed, with most flows being routed via S9 during some
time intervals. Based on this observation, one can infer that
the root cause for the congestion at the link S9-S7 is the load
imbalance cause by the load balancing scheme.
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