
Low-Power Distinct Sum for Wireless Sensor
Networks

Ebram Kamal William
National University of Singapore

Mun Choon Chan
National University of Singapore

Abstract—Continuous monitoring is a major component of
many applications in wireless sensor network (WSN). In these
applications, to reduce the communication overhead, some form
of data summary or aggregation can be performed. However,
performing non-trivial in-network data processing such as finding
frequent items, Top-K monitoring, and clustering efficiently are
challenging in practice.

In this paper, we present Low-Power Distinct Sum (LDS), a
distributed in-network data aggregation primitive that performs
the sum of unique items in WSN. LDS serves as the underlying
primitive that can be used to implement many distributed data
processing efficiently. To demonstrate LDS’s capabilities, we
design and implement a distributed data streaming application
with LDS running on Contiki OS. Compared to the baseline
algorithm, LDS can reduce the completion time by up to 66%.

Index Terms—wireless sensor network, synchronous transmis-
sion, distributed edge processing, data aggregation

I. INTRODUCTION

Streaming applications (e.g. continuous monitoring) are a
major component of many applications in wireless sensor
network (WSN) such as the detection of malfunctions or
outliers [1]–[3]. The naive approach of collecting all the
data consumes a large amount of energy and bandwidth [4].
As is typical in many monitoring applications, the sensed
data change infrequently and continuous data collection often
results in lots of unnecessarily overhead if all the sensed
data are sent to the gateway. However, determining whether
there is a need for updates is data and application dependent.
This motivates a research direction to reduce the amount of
communication.

One approach to reduce network communication and pro-
cessing at the gateway node is to perform in-network compu-
tation. Several in-network computation primitives have been
proposed for WSN to support different applications. Some of
the earliest applications focus on data aggregation on a tree
towards the root to perform Min/Max/count etc., e.g. TAG [5],
Cougar [6], TinyDB [7]. However, aggregation along a tree is
prone to reliability issues. If a loss occurs at a particular link,
information from nodes within the sub-tree will be lost.

To address the challenge of route maintenance and improve
reliability through multi-path forwarding, there is much recent
research that proposes to disseminate data using synchronous
transmissions. There are approaches for in-network aggrega-
tion that are based on synchronous transmissions. Examples
include Chaos [8] and A2 [9] for agreement, and WPaxos [10]
for consensus. However, a key limitation of these approaches

is that they rely on duplicate insensitive operations such as
MIN and/or MAX. Aggregations like MAX and MIN are
duplicate insensitive since duplicate readings will not change
the result [4]. However, there is a large class of applications
that require duplicate sensitive aggregations, such as COUNT,
SUM, AVERAGE, and MEDIAN where the result is affected
by duplicate readings of the same value.

In this paper, we present Low-Power Distinct Sum (LDS).
LDS is a primitive that computes the sum of unique items in
a distributed manner. With LDS, many applications that re-
quire duplicate sensitive operations such as threshold function
monitoring [11], finding recent frequent items [12], largest K
monitoring [13], number of distinct values estimation [14],
etc., can be implemented efficiently on a WSN.

LDS is designed to run over a synchronous transmission
layer. To support duplicate-sensitive aggregation efficiently,
LDS incorporates features that include (1) segregated data
structures for efficient storing and processing of different state
information, and (2) heuristics for data decoding/encoding and
transmission priority to speed up the completion time of the
in-network data aggregation.

We implement the Geometric Monitoring (GM) [11] appli-
cation using LDS to illustrate its usage and benefits. GM is
a general approach that allows monitoring of global threshold
functions (e.g. monitoring if the average temperature of the
network is above a certain threshold). In GM, nodes locally
monitor received data and suppress data propagation to reduce
data exchange if the node determines, using local constraints,
that the changes detected will not affect the global monitoring
function. LDS provides the basic primitive for updating the
arithmetic constraints in GM efficiently using in-network
duplicate sensitive aggregation.

The contributions of this paper are:
• The design of LDS allows nodes to compute the sum of

unique items in a distributed manner running on top of
a synchronous transmissions protocol efficiently. LDS in-
corporates processing of two different data structures and
collision management to speed up in-network aggregation
convergence.

• We design a distributed data streaming application, GM,
that uses LDS as the underlying primitive. The design
of GM also incorporates additional application logic to
enhance its performance.

• We have implemented LDS and the distributed data
streaming application using it on Contiki OS. LDS has



been ported to run on TelosB and CC2650 SensorTag.
In the evaluation performed on the Indriya2 testbed [15],

we show that LDS can reduce the completion times by up to
66% using Arctium [16] as the baseline.

II. RELATED WORK

Many approaches have been presented to reduce the traffic
by incorporating processing on the data streams [11]–[14].
These approaches look at monitoring based on a threshold
function, looking for the largest set or the most frequent items,
etc., While these approaches present many interesting and
useful algorithms, they do not touch on the networking aspect
of practical WSN deployments.

Recently, researchers have presented some practical de-
signs and implementations of network aggregation approaches
in WSN based on synchronous transmission (Glossy [17]).
Chaos [8] and A2 [9] are many-to-many data aggregation
protocols that can be used to address agreement problems.
The implementation of Paxos, a consensus protocol, on a
wireless network is presented in WPaxos [10]. Further, a
general monitoring threshold function approach which is based
on geometric monitoring [11] is presented in [16]. However,
these protocols are limited in terms of the type of in-network
data aggregation utilized and supported.

Inspired by the previous work, we design the sum of
unique items on top of our implementation of a many-to-
many communication protocol that is based on capture effect
synchronous transmissions and incorporates the decoupling of
the communication and computation that is also implemented
in Mixer [18]. As the sum of unique items can serve as
an underlying primitive for many data streaming distributed
computation approaches, we design and implement Geometric
Monitoring [11] using LDS to demonstrate its benefits.

III. LDS
We describe the challenges of computing the distinct sum

(Duplicate Sensitive Aggregation) using a baseline approach
in § III-A followed by our approach (LDS) in § III-B.

A. Baseline Approach
In this section, we first present a baseline approach whereby

partial sums can be merged only if the partial sums have no
overlapping components.

When a node receives an aggregated value, there are two
possible scenarios based on the properties of the local and re-
ceived aggregated values, namely merge and keep-maximum.

In the merge case, the received aggregated value has no
common component with the local aggregated value. In this
case, the two aggregated values can be merged and we sum
up both aggregated values (received and local).

If the received and local aggregated values are not disjoint,
the values cannot be merged. We simply select the aggregated
value with the most number of components and discard the
other aggregated value. This is the keep-maximum scenario.

Each node will always merge its local value to the result
aggregated value (merged or keep-maximum) if the aggregated
value does not include its local value.

There are four core components to the baseline approach:
• State Stored: Nodes only keep one aggregated value

and its corresponding flag bit vector.
• What to Transmit: There is no need to decide on

what to transmit as nodes have only one aggregated value
(merged or keep-maximum).

• When to Transmit: Nodes decide to transmit in the
next slot if they successfully receive or compute a new
aggregate value. In the case of no new information, nodes
transmit with a low probability.

• Termination: Nodes terminate when the distinct sum is
computed for itself and all its neighbors for predefined
subsequent slots. In the implementation, this is done by
checking the status of a bit vector.

The baseline approach requires minimum processing and
storage. However, with limited aggregation opportunity and
stored state, many communication rounds are wasted as the
local and received aggregate values cannot be merged, and
either the newly received or currently stored aggregate value
has to be discarded.

B. LDS Approach

Several challenges need to be addressed to make the ag-
gregation process more efficient. First, storing and processing
up to 2N entries for a network of size N in order to not
”throwaway” any information received is clearly not scalable.
Second, the amount of processing capability available on the
nodes is limited especially when we run over a communication
layer based on synchronous transmissions. Hence, there is a
need to limit the number of states and the amount of processing
that needs to be done.

We tackle these challenges to implement the distinct sum by
keeping a small number of states. In addition, we implement
a state maintenance logic to merge and discard these states.
The details of the state stored are as follows:

State Stored: We observe that the smallest unit of the
aggregated distinct sum is the single values (values with a
single node’s contribution). Single values are often more useful
than combination values. Thus, we design the data structure
to keep track of two kinds of data. The first part stores only
single values. The size of this part of the state is up to N .
However, note that it is unnecessary, in fact highly unlikely, to
need to store all N values before completing the network-wide
aggregation. The other part stores the different combinations
of aggregated values. In principle, the size of these combined
values can vary from 1 to 2N . However, we will show in the
evaluation that a (very) small number suffice. The logic for
state maintenance is presented in Section III-B1.

Other components, when to transmit and termination, are
the same in LDS and the baseline approach. For what to
transmit, nodes send their value without aggregation at the start
of the communication round. This helps to disseminate useful
information in the network and to have a good distribution of
the data which can help in building more different aggregated
values. After that, nodes will send the aggregated value with
the maximum number of nodes contributed to it.



1) State Maintenance Logic: During the update phase and
for each newly received packet, the processing is separated
into two parts. The first part decodes and stores more single
values. The second part merges new and stored aggregated
values.

• Decode single values: Each node checks if the received
packet has a single contributor or if a node can decode
a single value out of the stored single values and the
received aggregated value. In the case whereby a node
receives or calculates a new single value, this value is
stored in the single values data structure.

• Merge different combinations: The received aggregated
value is merged with all the values in the single values
data structure, without replication. The result is stored in
the combined values data structure. After that, nodes go
through the items in the combined values data structure
and try to merge them (merge of mutual disjoint items).
If a node can merge two entries, it stores the result in
the combined values data structure. If the new item does
not exist in the combined values data structure, the new
aggregated value is stored if storage space is available or
it replaces an aggregated value with fewer components.
In the case of a tie, the oldest value is replaced.

As LDS needs to store some amount of states, we investigate
how the size of the states stored affects the performance. To
study the performance running on a large network, we run
an experiment of LDS on the Cooja simulator using 100 sky
motes randomly placed in an area of 250,000 m2. The median
completion times of storing 1 and 25 combined values are
similar at around 30 slots. Hence, the storage size of the
combined values data structure can be set to a very small
value. Finally, we observe that the average number of single
values solved before completion is 14.72. This is much less
than the 100 single values available in the network. The result
indicates that in-network aggregation is a much more dominant
factor than accumulating sufficient single values.

IV. EVALUATION

The performance of LDS is evaluated on the Indriya2
testbed [15]. Indriya2 has two types of motes namely, TelosB
and CC2650 SensorTag deployed indoors over three floors.
During the evaluation, Indriya2 has 40 TelosB and 17 CC2650
SensorTag. There are two parts to the evaluation. We first
evaluate the performance of different features of LDS. Then,
we compare the performance of running GM using LDS to
Arctium [16].

A. Impact of LDS’s Components

In this section, we evaluate the impact of different compo-
nents of LDS on performance. We run five different versions,
each removing a single feature from the original version
(LDS), starting with LDS:

• LDS The original version with all the features running.
• No single value extraction (ext ones) Nodes maintain

the single bit structure but they stop trying to extract
single values from the received combinations.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

LDS ext-ones largest myone ones

Fu
ll c

om
pl

et
io

n 
tim

e 
(s

ec
)

LDS and disabled features

Fig. 1. LDS’s different design elements completion time on Indriya2 testbed.

• Send random entries instead of the largest (largest)
Nodes send random entries from their buffer instead of
always sending the sum with the largest number of values.

• Remove sending node’s value (myone) Nodes do not
always send their values in the first few slots.

• Remove states separation (ones) Nodes do not explic-
itly maintain separate data structures for single values.

We run using 16 TelosB acting as sources in a network of
size 40 motes on the Indriya2 testbed. We measure the full
completion time for each setting. The reported result for each
set is computed based on an average of at least 110 rounds.

Figure 1 shows the median latency of each set with the
error bars showing the minimum and maximum completions
time in seconds. As expected, the results in the figure show
that removing any of the features increases the latency. Based
on the increase in latency, the feature that has the largest
impact is the separate storage for the single and combination
values. This can be explained by the understanding that single
values, being the smallest component of the distinct sum, are
significantly useful for completing the sum.

B. Geometric Monitoring Application

In this section, we evaluate the performance of the GM
algorithm introduced in [11] running using LDS. GM uses
local constraints to suppress communication. Our objective is
to show that the performance of such an application can be
improved due to the ability to perform in-network aggregation.

We use Arctium [16] as the baseline protocol in this
evaluation. The high-level design of Arctium is to run GM
on top of Crystal [19]. In Crystal, a fixed initiator (sink) starts
the communication with a synchronous flood. After that, all
the source nodes start Glossy rounds competing to deliver
their values to the sink. The sink receives one of them with
a high probability which in turn initiates a Glossy round to
acknowledge the value received and the corresponding sender
will stop sending its value in the subsequent rounds.

Arctium reduces Crystal communication by coalescing val-
ues from multiple sources into a single data packet when these
values meet at a common node. Arctium does not perform
additional computation for in-network aggregation. On the
other hand, in LDS, nodes aggregate different values in the



0

0.2

0.4

0.6

0.8

1

1.2

1 4 8 12 16

Fu
ll c

om
pl

et
io

n 
tim

e 
(s

ec
)

Number of concurrent sources 

GM/LDS (T) Arctium (T) GM/LDS (T+S)

Fig. 2. GM/LDS and Arctium completion time against the number of
concurrent sources on Indriya2 testbed. T - TelosB mote; S - CC2650
SensorTag.

network. In addition, in Arctium, nodes deliver their data to a
fixed gateway which will send back the calculated sum to all
the nodes. In LDS, each node computes and shares the sum
based on received data in a many-to-many fashion.

In the experiment, we set Arctium’s coalescing buffer size
to two (two messages can be combined into one packet)
as recommended [16] and all other settings are set to the
suggested default values. The default slot length in Arctium is
5ms for the transmission slot and 7ms for the acknowledgment
slot. In LDS, we set the combined values storage size to 5 and
we set the slot length to 5ms. The slot length in LDS is defined
by a single packet transmission (1.5ms), a time gap (2ms), and
a single packet reception (1.5ms). We run the experiments for
at least 110 rounds. We vary the number of sources to be 1,
4, 8, 12, and 16.

Figure 2 shows the median completion time of executing
GM using LDS and Arctium running on TelosB (T) nodes on
the Indriya2 testbed. For GM/LDS, the network has a total
of 40 TelosB nodes and up to 16 monitoring nodes. Non-
monitoring nodes simply act as relays. For Arctium, one node
serves as the sink and there are up to 16 monitoring nodes.
Again, non-monitoring nodes act as relays. The error bars in
the figure represent the minimum and maximum completion
times.

As shown in the figure, for the case with 1 source, the
completion times for GM/LDS and Arctium are similar. This
is expected as there is no aggregation with a single source.
As the number of sources increases, the gain of in-network
aggregation becomes more obvious. For 16 sources, the me-
dian completion time of GM/LDS is up to 64% smaller than
Arctium. It is expected for Arctium’s completion time to
increase with increasing the number of sources as more and
more nodes compete to deliver their data to the sink. On
the other hand, a higher number of sources provide more
opportunities for data aggregation in LDS.

As we have ported LDS to run on CC2650 SensorTag, we
experimented to show that GM/LDS can run over a network of
heterogeneous nodes. We run GM/LDS on the Indriya2 testbed
using 16 monitoring nodes with half of the nodes being TelosB

(T) and the other half being CC2650 SensorTag (S) nodes. In
this experiment, the network size increased from 40 TelosB
nodes to also include 17 CC2650 SensorTag for a total of
57 nodes. We performed evaluations with either 1 monitoring
node or 16 monitoring nodes. As shown in Figure 2, the
performance of running LDS on a network of heterogeneous
devices is similar to running it on a single device type.

V. CONCLUSIONS

We have designed LDS, a technique based on synchronous
transmissions to compute distinct sum efficiently. LDS can
serve as a primitive for many distributed approaches to per-
form continuous monitoring. We demonstrate the benefits of
LDS using a general threshold monitoring framework (GM),
showing that continuous monitoring can be achieved efficiently
through in-network aggregation. We believe that LDS opens
up the potential to achieve practical implementation of diverse
classes of applications on WSN.

ACKNOWLEDGMENT

This research was supported by the Singapore Ministry of
Education Academic Research Fund Tier 1 (T1 251RES1910).

REFERENCES

[1] J. Lee, B. Bagheri, and H.-A. Kao, “A cyber-physical systems archi-
tecture for industry 4.0-based manufacturing systems,” Manufacturing
letters, 2015.

[2] E. K. William and M. C. Chan, “Indp: In-network data processing for
wireless sensor networks,” in SECON, 2019.

[3] S. Burdakis and A. Deligiannakis, “Detecting outliers in sensor networks
using the geometric approach,” in ICDE, 2012.

[4] P. Jesus, C. Baquero, and P. S. Almeida, “A survey of distributed data
aggregation algorithms,” IEEE Communications Surveys & Tutorials,
2014.

[5] S. Madden et al., “Tag: A tiny aggregation service for ad-hoc sensor
networks,” ACM SIGOPS Operating Systems Review, 2002.

[6] Y. Yao and J. Gehrke, “The cougar approach to in-network query
processing in sensor networks,” ACM Sigmod record, 2002.

[7] S. R. Madden et al., “Tinydb: an acquisitional query processing system
for sensor networks,” TODS, 2005.

[8] O. Landsiedel, F. Ferrari, and M. Zimmerling, “Chaos: Versatile and
efficient all-to-all data sharing and in-network processing at scale,” in
SenSys, 2013.

[9] B. Al Nahas, S. Duquennoy, and O. Landsiedel, “Network-wide con-
sensus utilizing the capture effect in low-power wireless networks,” in
SynSys, 2017.

[10] V. Poirot, B. Al Nahas, and O. Landsiedel, “Paxos made wireless:
Consensus in the air.” in EWSN, 2019.

[11] I. Sharfman, A. Schuster, and D. Keren, “A geometric approach to
monitoring threshold functions over distributed data streams,” TODS,
2007.

[12] A. Manjhi et al., “Finding (recently) frequent items in distributed data
streams,” in ICDE, 2005.

[13] B. Babcock and C. Olston, “Distributed top-k monitoring,” in SIGMOD,
2003.

[14] P. B. Gibbons and S. Tirthapura, “Distributed streams algorithms for
sliding windows,” in ACM SPAA, 2002.

[15] P. Appavoo et al., “Indriya2: A heterogeneous wireless sensor network
(wsn) testbed,” in TridentCom, 2018.

[16] C. Stylianopoulos et al., “Continuous monitoring meets synchronous
transmissions and in-network aggregation,” in DCOSS, 2019.

[17] F. Ferrari et al., “Efficient network flooding and time synchronization
with glossy,” in IPSN, 2011.

[18] C. Herrmann, F. Mager, and M. Zimmerling, “Mixer: Efficient many-
to-all broadcast in dynamic wireless mesh networks,” in SenSys, 2018.

[19] T. Istomin et al., “Data prediction+ synchronous transmissions= ultra-
low power wireless sensor networks,” in SenSys, 2016.


