
Behaviors and Effectiveness of Rerouting: a Study
Mun Choon Chan

School of Computing
National University of Singapore

chanmc@comp.nus.edu.sg

Yow-Jian Lin
Telcordia Technologies

yjlin@research.telcordia.com

Abstract—
Rerouting has been used in traffic management to perform

dynamic load balancing. The aim of rerouting is to reassign
path/bandwidth allocations of current traffic trunks in a network
in order to minimize the probability of blocking future resource
requests. In this work, we are interested in investigating how the
effectiveness of rerouting can be affected by the characteristic of
the underlying network topology.

In order to evaluate the blocking performance achievable by
rerouting, we established baseline measures through two resource
allocation algorithms: a shortest distance path algorithm (SDP),
that represents the best common practice without rerouting, and
a global rerouting algorithm that is based on a provably ε-optimal
algorithm for multi-commodity flow problem. We proposed two
rerouting algorithms based on the basic SDP algorithm that
selects for rerouting either from traffic trunks with the same
source-destination pairs (local rerouting) or from all traffic
trunks (global rerouting).

Our results show that the effectiveness of rerouting is highly
related to the average node degree. As the connectivity of a
graph increases, rerouting tends to be more effective. However,
rerouting does not always perform better when connectivity
is increased. Significant performance improvement only occurs
within a relatively small range of connectivities when a rerouting
algorithm like SDP-LR is able to find alternative paths and SDP
cannot.

Furthermore, local reroutng is sufficient to exploit most of the
benefits of rerouting and it is not necessary to utilize much more
computationally intensive global rerouting algorithms. Finally,
we investigate the rerouting frequency vs. blocking trade-off
and show that for local rerouting, the best performance can be
achieved by a rerouting frequency of only 30%.

I. INTRODUCTION

This paper presents our study of rerouting approaches in
Multi-Protocol Label Switching (MPLS) [1] capable data
networks. With MPLS, it is possible to support Quality-of-
Service (QoS) based on a single routing framework over a
broad spectrum of network technologies. Studies on traffic
engineering in MPLS have focused on two issues: resource
allocation and reliability. The issue in resource allocation con-
cerns the optimal use of network resources, such as bandwidth,
in order to reduce the rate of blocking resource requests. The
issue in reliability is the provisioning of alternate paths for
each traffic trunk, subject to link and node fault assumptions.
A traffic trunk is an aggregation of traffic flows of the same
class which are placed inside a label switched path. Rerouting
a traffic trunk to its alternate path occurs only when a link or
a node in its primary path has failed.

While rerouting in the presence of failure has been studied
extensively, rerouting as a way to improve resource utilization,

thus minimize blocking ratio, has not been actively studied
in the context of data network. While rerouting techniques
have been applied to circuit switching in telecommunication
networks, rerouting in this domain tends to focus on a certain
class of network topologies where there is a clearly defined
set of primary paths. Rerouting often involves simply moving
traffic trunks routed on alternate back to the primary paths [2].
For simple topologies, it is proven that rearranging allocated
traffic trunks for every traffic arrival and departure minimizes
the blocking probabilities [3]. However, it is not clear how
such rerouting would work in a more general network.

Rerouting as a resource allocation mechanism has its share
of practical concerns. For example, excessive packet drop
and/or reordering can occur during rerouting; finding and
moving potentially large number of traffic trunks online is
also operationally undesirable [4]. Nonetheless, these concerns
are manageable. A packet buffering mechanism at source and
destination nodes in the network can reduce packet loss and/or
reordering during traffic trunk rerouting. An example of how
this can be achieved is presented in [5] for ATM networks.
Moreover, carefully designed rerouting selection and execution
algorithms can help minimize the number of rerouting and
traffic distribution during route switching-over.

We believe that with the proper design and planning, rerout-
ing can be a useful resource allocation tool. It is the goal of
this paper to explore how effective rerouting can help improve
resource utilization and blocking ratio, and whether rerouting
remains effective if the frequency of rerouting is reduced.

In this work, we are particularly interested in how the
effectiveness of rerouting can be affected by the characteristic
of the underlying network topology. As a result, we studied the
performance of the various rerouting algorithms using different
network topologies.

Four algorithms are evaluated in this work. The first routing
algorithm is a variant of the shortest distance path (SDP)
algorithm [6]. The next two algorithms are rerouting al-
gorithms based on the SDP algorithm that allow different
degree of rerouting complexities. The fourth algorithm is a
global rerouting algorithm that serves as a baseline for the
performance of any rerouting algorithm. In order to accept a
new request, this global rerouting algorithm attempts to reroute
any number of traffic trunk for any source-destination pairs
such that enough capacity can be found. The algorithm is
based on an ε-optimal algorithm for multi-commodity flow
problem [7].

Our results show that, the effectiveness of rerouting is

highly related to the average node degree. For graphs that
are more sparsely connected, rerouting is not effective. As the
connectivity of the graphs increase, rerouting tends to be more
effective. However, the amount of improvement varies and
higher connectivity does not always imply larger improvement.
Rerouting is significantly better only in a relatively narrow
range of connectivities. In addition, when rerouting is effec-
tive, it is sufficient to consider only a limited set of traffic
trunks for rerouting and a rerouting frequency of 30% (over
all requests) is sufficient to exploit most of the benefits of
rerouting.

The paper is organized as follow. Section II briefly describes
related work. Section III presents the system model and
the rerouting algorithms, followed by experimental results in
Section IV. Concluding remarks are in Section V.

II. RELATED WORK

Rerouting is often used in conjunction with restoration to
recover from network element failures and has been exten-
sively studied [8], [9]. The key issue is the interdependence
between the selection of alternate routes and the amount of
reserved spare capacities. In the event of (single) link link or
node failure, there should be sufficient resources to reroute all
affected flows to their backup routes.

Another common application of rerouting is in the support
of mobile communications over wireless networks. In mobile
networks, it is often necessary to reroute on-going connections
to/from mobile users as these users move among different
base stations. The important issues are low hand-off latency,
efficient routes and limited disruption to traffic flows [10].

In circuit-switched networks, it is well-known that dynamic
routing can provide significant throughput gain over fixed
routing. A comprehensive review of dynamic routing can
be found in [11]. A way to further improve the throughput
of dynamic routing is the use of rerouting. The underlying
topology is (usually) a fully-connected mesh network. When
a new call p is blocked on its direct path, a call that is using
the congested link as its alternate path is randomly chosen and
rerouted to its direct path. If rerouting fails, the call p is placed
on the least loaded alternate path. If no such path exists, p is
blocked.

In this paper, we studied the effectiveness of rerouting
on general network topologies. There are no pre-determined
path selections, neither are there designations of primary and
alternate paths, as is the case in [13] and [2]. Rather, we
rely on the basic principle behind the shortest distance path
algorithm for both initial routing on flow arrival and rerouting
on departure.

III. SYSTEM MODEL AND ALGORITHMS

A service provider network consists of a set of edge routers
and core routers. Bidirectional links of various capacities (link
bandwidth) connect the routers. Customer traffic flows arrive
at one edge router (i.e, ingress) and leave at another edge
router (i.e., egress) through a traffic trunk. In general, flows
may require different quality of services (QoS) treatments.

Let the set of edge routes be E and the set of QoS classes be
Q. Each flow class FCi = (si, di, qi), where si, di ∈ E, si �=
di and qi ∈ Q, defines a class of flows that share the same
ingress-egress pair (si, di) and the same service quality qi. Let
N be the number of edge routers in the domain and S be the
maximum number of QoS classes for each (si, di) pair. The
maximum number of flow classes in the domain is N × (N −
1) × S.

A bandwidth broker is responsible for assigning a path, thus
the bandwidth of each link along the path, to carry the traffic
of each flow.

We assume that a set of feasible paths exists for supporting
flows of each class FCi. In a practical implementation,
network administrators may prefer to consider only a subset
Pi of the paths feasible to the class FCi.

We consider only the rerouting of traffic trunks, which are
placed inside a LSP and assume that changes in traffic trunks
occurs at a much slower time scale than customer traffic
flows arrival. A traffic trunk request f arrives at an ingress
router asking for a path to carrying b units of bandwidth
of flow class FCi traffic. Once the request is granted, f is
assigned an LSP p ∈ Pi provisioned for flow class FCi.
We use bw(f), fc(f), sp(f) to represent the requested/granted
bandwidth, the flow class, and the assigned label switched path
of traffic trunk f , respectively.

Let Fi = {f | fc(f) = FCi} be the set of admitted traffic
trunk of the class FCi.

Let B(l) be the capacity of a link l in the network. At
any time the residual capacity r(l) of the link l is r(l) =
B(l) − ∑

(bw(f)), where f ∈ {fi | l ∈ sp(fi)}. Note that
l ∈ p means the path p includes the link l. To serve a new
traffic trunk request f , the bandwidth broker must find a path
p provisioned for the flow class fc(f), such that the residual
capacity r(l) of every link l ∈ p is larger than or equal to the
requested bandwidth bw(f) of f .

A. Shortest Distance Path (SDP) Algorithm

The path selection algorithm has to balance resource usage
during light load and to conserve resources by choosing a short
path for each traffic trunk during heavy load. The algorithm
chosen for accepting new request arrivals is a utilization-based
shortest path algorithm called the shortest-distance path algo-
rithm (SDP) [14]. The path cost function is slightly different
from that of [14]. Instead of letting the cost of link l be
1/rl, where rl is the residue capacity, we define our link cost
to be e(−(r(l)/B(l))). This allows us to incorporate elements
of widest-shortest path (WSP) into the SDP algorithm. Let
Dist(sp(fi)) be the distance of a path sp(fi).

Dist(sp(fi)) =
∑

l∈sp(fi)

e−(r(l)/B(l)) (1)

SDP finds a feasible path with the shortest (or smallest) path
distance for a given traffic trunk request f of class fc(f). If
the bandwidth broker can find one such path, it accepts the
request and deducts the allocated bandwidth from the residual

capacity of each link along the path. Otherwise, the broker
blocks the request.

If rerouting is permissible, a request that is blocked based
on current residual bandwidth may be accepted by moving the
assigned path of another flow.

In the rest of this section, we present three rerouting
schemes. Two of the rerouting schemes are used in addition
to SDP to improve performance.

B. SDP with Local Rerouting (SDP-LR)

The SDP-LR algorithm relies on SDP to find a path for
new traffic trunk request. In addition, upon each traffic trunk
departure, it attempts to reroute a traffic trunk of the same
flow class to a shorter distance path. Note that the distance
reflects the degree of congestion along a path. Consider the
case when a traffic trunk fd ∈ Fi departs. With the availability
of the new bandwidth, we find a traffic trunk for rerouting in
the following way.

S
¯
DP-LR(δ)
for each traffic trunk f in Fi

calculate the distance Dist(sp(f))
find the new path, sp’(f), using SDP
assuming f is rerouted

calculate the new distance Dist(sp’(f))
select fmax where Dist(sp(fmax)) -

Dist(sp’(fmax)) is the largest
if Dist(sp(fmax))-Dist(sp’(fmax)) > δ

reroute fmax

This rerouting procedure has a number of advantages. First,
it is relatively simple to implement and run. Next, there is
a maximum of only one reroute per departure. (The total
number of departures is smaller or equal to the total number
of arrivals). Recall that rerouting traffic trunks within the
same flow class in an MPLS network can be done by simply
changing the label on each incoming packet. The disruption
to existing traffic is thus minimum and the actual rerouting
process is fairly simple and straightforward. By rerouting the
path with the largest decrease in distance (or cost), we achieve
the goal of reducing the overall network resource usage.

Finally, it is not necessary to perform rerouting on every
departure. For example, if the decrease in path distance of
fmax, δ, is marginal, it may not be worthwhile to perform
rerouting. In Section IV, we investigate ways to reduce the
number of rerouting by performing rerouting only when δ is
larger than a tunable threshold.

C. SDP with Global Rerouting (SDP-GR)

SDP-GR is very similar to SDP-LR. The only difference
being the candidate set for rerouting. Recall that the set of
candidates for rerouting in SDP-LR is restricted to the set of
traffic trunks from the same flow class. Therefore, the utility of
SDP-LR may be limited if the average number of traffic trunks
in a flow class is small or a better fmax can be found from
other flow classes. Therefore, in SDP-GR, the candidate set is
increased by considering all existing traffic trunks instead of

just traffic trunks from the same flow class. However, expand-
ing the candidate set to all traffic trunks requires substantially
more searching and the rerouting process is also more difficult
to handle without flow disruption. Nevertheless, it is instructive
to consider the potential performance improvement of SDP-
GR.

D. Rerouting Using a Fast Approximation Algorithm for
Multi-commodity Flow Problem (MCR)

As a comparison to the proposed rerouting algorithms,
we also considered a global rerouting algorithm based on a
fast polynomial approximation algorithm for multi-commodity
flow problem [7]. In order to use the solution of a multi-
commodity flow problem for flow placement, we map each
flow class and its aggregated demand into a commodity and
its associated demand. Finding an optimal route placement
thus becomes equivalent to finding an optimal solution for
multi-commodity flow problem. With a large number of flow
classes (commodities) and flow requests for each flow class,
the fast approximation algorithm allows us to obtain an ε-
optimal solution in a reasonable time frame. Note that if there
is a feasible route placement for all flows, then the optimal
solution to the multi-commodity flow problem will be one of
them. An ε-optimal solution will be a feasible route placement
most of the time, too, provided ε is small enough.

Our rerouting algorithm is thus as follows. MCR is invoked
when we failed to find a path for a new request based on
residual bandwidth using SDP. The number of traffic trunks
that may have to be rerouted can be large and potentially
all existing traffic trunks need to be rerouted. In addition,
using MCR, flows within a flow class may be splitted among
different paths. Due to space limitations, we will not present
the details of the approximation algorithm. Interested readers
should refer to [7].

It is important to mention while MCR is an optimal al-
gorithm for placing all active flows known at the time of a
new request, it is only a local optimal. Over the lifetime of
many requests, MCR may not provide the minimum blocking
probability. This is because if MCR allows the admission of a
traffic trunk by moving existing trunks to longer routes, while
other algorithms rejected the request, there can be blocking of
more future requests since the network resource is used less
efficiently with longer routes.

IV. SIMULATION RESULTS

The simulation program implements all 4 algorithms pre-
sented in Section III and is written in C.

In order to investigate the impact of topology on rerouting,
we used two different set of topologies, random topologies
and hierarchical topologies. Results for random graphs are
presented in Section IV-A and hierarchical graphs in Section
IV-B. Since rerouting comes at a cost to the network, in
Section IV-C, we studied how rerouting frequency can be
reduced and the trade-off between rerouting frequency and
blocking ratio.

In the simulations, traffic trunks within a flow class arrive
as a Poisson process and have exponential holding time with
mean of 1 time unit. All traffic trunk requests are of unit size 1.
While this is a simplification, when there are a large number of
requests per traffic class, this is a reasonable assumption. The
arrival rates are different for different sets of experiments (or
graphs) and are chosen so that the blocking ratios are between
0% to 10% in most of the simulations.

All link capacities are of integer units. Simulation duration
is 5000 call arrivals. Statistics for the first 2000 calls are
ignored and only the last 3000 calls are considered.

A. Rerouting with Random Topologies

This section presents the effect of rerouting under different
load conditions using random topologies.

All random graphs have 20 nodes and the three set of
random graphs have 40, 80 and 190 bi-directional links.
Therefore, the first two sets of graphs have an average degree
of 4 and 8. 10 graphs are generated in these two sets. There is
only one element in the last set, where all nodes are connected
forming a complete graph.

For each of these random graphs, we experimented with the
4 different algorithms presented in Section III.

In each simulation, there are 10 source-destination pairs,
all with the same Poisson arrival rate. The holding time is
exponentially distributed with mean of 1 time unit. The call
arrival rates for the set of random graphs with 40 links is set
to 50 calls per time unit and the link capacities are set to 50.
The call arrival rates for the set of random graphs with 80
links is set to 80 calls per time unit and the link capacities are
set to 30. Finally, for the complete graph, the call arrival rate
is 80 calls per time unit and the link capacities are set to 10.
In the simulation, all traffic trunks are unidirectional.

For SDP-LR and SDP-GR, rerouting is performed on depar-
ture as long as there is at least one traffic trunk whose distance
can be decreased by at least 0.5 through rerouting (δ = 0.5).
For MCR, ε = 0.01. This value should be small enough since
the largest link capacity is 50.

Figure 1 shows the blocking ratio with 10 different graphs
using 40 links. In 7 of 10 cases, the performance of SDP is
almost the same as SDP-LR and SDP-GR. Only in random
graphs 2, 4 and 8 are there a significant difference in blocking
ratio. This shows that for graphs with limited connectivity,
rerouting may not provide substantial benefits. The average
improvement of SDP-GR and SDP-LR over SDP is about
3.8% and 2.5% respectively. The performance of MCR is
slightly worse than SDP and as explained in Section III-D is
due to the inefficient use of network resources by long routes.

Figure 2 shows the blocking ratio with 10 different graphs
using 80 links. With a higher degree of connectivity, it can
be observed that the performance gap between the rerouting
algorithms and SDP have increased. Average blocking ratios
over all cases for SDP-LR and SDP-GR is lowered by 5.9%
and 6.2% respectively over SDP. MCR also performs better
than SDP by 4.6%. In fact, MCR performs the best when
blocking ratio is lower, for example in graphs 4, 8 and 9. This

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

B
lo

ck
in

g
R

at
io

 (%
)

SDP SDP-LR SDP-GR MCR

Fig. 1. Blocking ratio of different graphs with 40 links

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

B
lo

ck
in

g
R

at
io

(%
)

SDP SDP-LR SDP-GR MCR

Fig. 2. Blocking ratio of different graphs with 80 links

0

0.5

1

1.5

2

2.5

3

1

SDP
SDP-LR
SDP-GR
MCR

Fig. 3. Blocking ratio of a complete graph

0

1

2

3

4

5

6

40 80 190

SDP
SDP-LR
SDP-GR
MCR

Fig. 4. Average Hop Count

shows that when the network is only slightly congested, MCR
is able to better locate alternate routes, and slight inefficiency
in resource allocation does not cause more rejection of future
requests.

Finally, in Figure 3, we observed the biggest difference be-
tween SDP and all there rerouting algorithms using a complete
graph. Reduction of blocking ratio from SDP is 26%. This
shows that rerouting is most beneficial in highly connected
network since it is able to take advantage of the alternative
paths without causing potential bottlenecks for other traffic
classes.

Taking all together, Figures 1 to 3 clearly show that the
effectiveness of rerouting is strongly influenced by the un-
derlying network topologies. A network with high degree of
connectivity, for example, the network connecting the core
telephone switches, is able to take advantage of rerouting,
while a more sparsely connected network may not. In addi-
tion, the performance gain of SDP-GR over SDP-LR is not
significant.

One way to explain the relationship between topology
and rerouting is to look at the average hop count of paths
computed. Figure 4 shows the average hop count of routes gen-
erated by the different algorithms using different topologies.
As the connectivity increases, the average hop count decreases.
For example, using SDP, the average hop count decreases 30%
going from using 40 links to 190 links. Routes with shorter
hop utilize the network more efficiently and usually lead to
lower blocking. Notice that the average route hop count using
MCR is always the largest and is about 130% to 160% longer
than the routes computed by the other three algorithms. Hence,
while the use of MCR allows more links in the network to
be used, and is optimal for a single request, it also uses
the bottleneck links more inefficiently and can lead to more
blocking in the future.

In the next section, we compare the performance using
larger and more realistic graphs. However, due to the computa-
tional complexity of MCR and SDP-GR, only the performance
of SDP and SD-LR will be considered.

B. Rerouting with Hierarchical Topologies

We used the gt-itm topology generation software
(http://www.cc.gatech.edu/projects/gtitm) to generate the
hierarchical graphs. A two-level hierarchy is used. There are
10 top level hierarchy, each with 10 nodes, giving a total
of 100 nodes. The node connectivity within a hierarchy is
random. The edge probability at the top level is varied from
0.1 to 1.0 in steps of 0.1, and 10 graphs are generated for
each edge probability. An edge probability of 1 means that
there is an edge between all node pairs in the hierarchy. The
edge probability at the second level is kept constant at 0.6.
Note that in order for rerouting to be useful, multiple paths
between different source and destination pairs must exist.
Hence, the transit-stub model is not used in the rerouting
simulations.

The link capacity of all links are fixed at 30 units. There
are 10 randomly placed source and destination pairs in the

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 B
lo

ck
in

g
R

at
io

Top Level Edge Probability

SDP
SDP-LR

Fig. 5. Average Blocking Ratio

 0

 0.05

 0.1

 0.15

 0.2

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

B
lo

ck
in

g
R

at
io

Top Level Edge Probability

SDP
SDP-LR

Fig. 6. Blocking Ratios of SDP and SDP-LR

simulation and the traffic loads are selected such that the
average blocking ratios for all edge probabilities are between
3% to 10%.

Figure 5 compares the average blocking ratio between SDP
and SDP-LR for different top level edge probabilities. 10
different graphs are used for each edge probability. Note that
the average values cannot be compared among different edge
probabilities since the loadings are different.

For a relatively low edge probability of 0.5 or below, the
improvement of SDP-LR over SDP is minor and ranges from
-0.8% to 4.2%. When the edge probability is set to 0.1, there
is only one possible route across the top level hierarchy.
SDP and SDP-LR have identical performance. When the edge
probabilities is increased to 0.2 and 0.3, SDP-LR performs
slightly better but the improvement is only up to 4.2%.
However, as the edge connectivity increases to 0.4 and 0.5,
the performance gap goes away, showing that SDP is able
to exploit the higher connectivity as well as SDP-LR. For
higher edge probability from 0.6 to 1.0, the improvement of
SDP-LR over SDP is more significant, and ranges from 4.7%

δ=0

δ>3

Fig. 7. Blocking Ratio vs. Rerouting Frequency

to 36%. Interesting, the performance gap exhibits a similar
pattern. The improvement is largest at 0.8 and much smaller
at edge probabilities of 0.6 and 1.0.

Figure 6 compares the actual blocking ratio for each of the
100 simulation runs. The histograms between n1 and n2 are
for edge probability n1. For each edge probability, the data is
sorted according to the blocking ratio for SDP. It can be easily
observed that while there are improvement of SDP-LR over
SDP in many cases, the biggest improvement comes when
edge probability is 0.8. In addition, in over 100 different runs,
SDP-LR performs worst than SDP in only 8 cases.

C. Performance of Rerouting with Different Rerouting Cost

This section reports the trade-off between the number of
rerouting attempts and the resulting performance in terms of
blocking ratio. SDP and SDP-GR are two extreme cases where
in the former case, rerouting never occurs and in the latter case,
rerouting almost always occurs on departure. The question is
whether it is necessary to perform rerouting on all departures.
Clearly, if the traffic trunk targeted for rerouting only uses
a path marginally more expensive than the path of departing
traffic trunk, rerouting may be unnecessary.

Recall that rerouting is executed only when the distance/cost
difference between the original route and the new route is
larger than δ. In this section, we simulate SDP-LR and vary
δ, the threshold for invoking rerouting at departure, between
0 and 19. Setting δ = 0.0 allows rerouting whenever a path
with smaller distance can be found at each departure. On the
other hand, setting δ = 19 is equivalent to running SDP since
there are 20 nodes in the network and e−(r(l)/B(l)) ≤ 1.

Figure 7 shows how blocking ratio varies with rerouting
frequency for SDP-LR in the case of a complete graph (20
nodes, 190 links). When δ is set to 0, up to 93% of the
traffic trunks are rerouted on departure. Interestingly, when
δ is increased to 0.2 (45% are rerouted), the blocking ratio
drops from 2% to 1.8%. This shows that extreme frequent
rerouting may actually be bad since the new routes can
be highly inefficient in terms of resource usage. When δ
is increased beyond 0.5 (33% are rerouted), blocking ratio
increases gradually. When δ is set to 3 or larger, the blocking
ratio is the same as SDP and no rerouting is performed.

V. CONCLUSION

In the paper, we study how the effectiveness of rerouting
in an MPLS capable data network is affected by the network
topology.

The results suggested that, when the average node degree
is small, most common practices for route placements such
as the shortest distance path (SDP) algorithm yield good
performance in terms of blocking ratio and that rerouting may
not help much. This is due to the fact that the alternative paths
available to each flow class are limited. As a result, rerouting
cannot improve much from what algorithms such as SDP have
accomplished.

The results also indicate that, when the average node
degree increases, the number of available paths increases and
rerouting tends to improve the performance compared to the
SDP algorithm with no rerouting. However, rerouting does not
always perform better with higher connectivity. The largest
performance improvement provided by rerouting occurs only
within a relatively small range of connectivities when SDP-
LR is able to find alternative paths and SDP cannot. In cases
when rerouting is effective, local rerouting is sufficient.

Finally, rerouting frequency can be decreased by increasing
the reroute threshold δ. While this causes some degradation
in performance, changing the threshold δ provides a means of
trading off between rerouting frequency and blocking ratio.

REFERENCES

[1] D. Avduche, J. Malcolm, and J. Agogbua etc., “Requirements for traffic
engineering over mpls,” RFC 2702, IETF, September 1999.

[2] Eric W. M. Wong, Andy K. M. Chan, and Tak-Shing P. Yum, “A
taxonomy of rerouting in circuit-switching networks,” in IEEE Com-
munications Magazine. IEEE, March 1999, pp. 116–122.

[3] Murat Alanyali and Bruce Hajek, “On simple algorithms for dynamic
load balancing,” in Proceedings of the IEEE INFOCOM. IEEE, 1995.

[4] P. Aukia, M. Kodialam, P. Koppol, T. Lakshman, H. Sarin, and B. Suter,
“Rates: A server for mpls traffic engineering,” 2000.

[5] R. Cohen, “Smooth intentional rerouting and its applications in atm
networks,” in Proceedings of the IEEE INFOCOM, 1994, pp. 1490–
1497.

[6] Q. Ma and P. Steenkiste, “On path selection for traffic with bandwidth
guarantees,” 1997.

[7] Tom Leighton, Fillia Makedon, Serge Plotkin, Clifford Stein, Éva
Tardos, and Spyros Tragoudas, “Fast approximation algorithms for
multicommodity flow problems,” Journal of Computer and System
Sciences, vol. 50, no. 2, pp. 228–243, April 1995, Preliminary version
appeared in STOC ’91.

[8] Y. Liu, D. Tipper, and P. Siripongwutikorn, “Approximating optimal
spare capacity allocation by successive surviviable routing,” in Proceed-
ings of the IEEE INFOCOM, Anchorage, Alsaka, April 2001, IEEE.

[9] M. Kodialam and T. V. Lakshman, “Restorable dynamic quality of
service routing,” Communications Magazine, vol. 40, no. 6, June 2002.

[10] R. Ramjee, T.F. LaPorta, J. Kurose, and D. Towsley, “Performance
evaluation of connection rerouting schemes for (atm)-based wireless
networks,” IEEE/ACM Transactions on Networking, vol. 6, no. 3, pp.
249–261, 1998.

[11] G.R. Ash, Dynamic Routing in Telecommunications Network, McGraw
Hill, 1997.

[12] Martha E. Streenstrup ed., Routing in Communications Network,
Prentice Hall, 1995.

[13] C. Casetti ann R. Lo Cigno and M. Mellia, “Load-balancing solutions
for static routing schemes in (atm) networks,” Computer Networks, vol.
34, no. 1, pp. 169–180, 2000.

[14] Qingming Ma, Peter Steenkiste, and Hui Zhang, “Routing high-
bandwidth traffic in max-min fair share networks,” in SIGCOMM, 1996,
pp. 206–217.

