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Abstract—While location is one of the most important context
information in mobile and ubiquitous computing, large-scale
deployment of indoor localization system remains elusive.

In this work, we propose PiLoc, an indoor localization system
that utilizes opportunistically sensed data contributed by users.
Our system does not require manual calibration, prior knowledge
and infrastructure support. The key novelty of PiLoc is that it
merges walking segments annotated with displacement and signal
strength information from users to derive a map of walking paths
annotated with radio signal strengths.

We evaluate PiLoc over 4 different indoor areas. Evaluation
shows that our system can achieve an average localization error
of 1.5m.

Index Terms—Indoor Localization, Smart-
phones, Floor Plan

Participatory,

I. INTRODUCTION

Location is one of the most important context information
in mobile and ubiquitous computing. Recently, wireless indoor
localization has attracted extensive research efforts [1]—[11]
due to both the need to support indoor location-based services,
and the fact that GPS does not work well indoors. However,
despite significant progress, an indoor localization system that
can be easily deployed on a large scale remains a challenge.

One important bottleneck that hinders large-scale deploy-
ment of existing indoor localization systems is labor-intensive
site survey and system maintenance. Many of these systems
involve a dedicated offline calibration stage that builds a radio
map to aid localization. This calibration stage involves manual
association of a location to be localized with its corresponding
radio fingerprints. Furthermore, this radio map needs to be
periodically updated to reflect changes in the environment.
The calibration and maintenance effort required make these
systems tedious and difficult to deploy on a large scale.

Recently, researchers have attempted to address this prob-
lem. For example, LiFS [1] records the inter-distances between
fingerprints and uses multidimensional scaling to assign finger-
prints to physical locations with minimum human intervention.
Zee [3] exploits the inertial sensing capabilities of smartphones
and infers location according to the constraints imposed by the
walking trajectory of the user and the floor plan. There are
also approaches that try to minimize the fingerprint collection
effort by utilizing the signal propagation models [12], [13].
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However, all these approaches [1], [3], [12], [13] require
knowledge of the floor plan. UnLoc [2] attempts to reduce the
need for floorplan by requiring the identification of sufficient
landmarks.

All these recent research developments have shown that
calibration effort can be reduced with either prior knowledge
of accurate floor plans of the places being measured or the
availability of sufficient number of reliable landmarks. How-
ever, an accurate floor plan or sufficient reliable landmarks
may not always be easily available. In this work, we attempt
to answer the following question: can we design an indoor
localization system that infers the floor plan and automatically
calibrates itself without landmarks?

We propose PiLoc, an indoor localization system that cali-
brates itself through user generated data. PiL.oc is based on the
following observations. First, sensor-enhanced smartphones
are becoming increasingly pervasive. Second, smartphone can
record a user’s movement (distance and direction) together
with names of APs within range and the associated signal
strengths. Finally, it is possible to merge many walking
segments annotated with displacement and signal strength
information from users to derive a map of walking paths
annotated with radio signal strengths. The last observation is
central to the design of PiLoc.

By utilizing opportunistic sensing data contributed by users,
PiLoc requires no prior knowledge about any building or
any user intervention in both the calibration and mainte-
nance stage. It adopts a novel trajectory matching and floor
plan construction algorithm to automatically cluster, filter and
merge all user inputs to automatically construct floor plans for
different indoor areas. Most importantly, radio maps required
for localization are also automatically built and updated in this
process. Piloc requires no special purpose hardware, the only
assumption in PiLoc is the availability of WiFi infrastructure.
While PiLoc itself is a complete indoor localization system,
the automatic floor plan construction algorithm of PiLoc also
provides insight to solving the floor plan acquisition problem
in recent research developments such as LiFS, Zee or other
propagation model based approaches.

We have implemented PiLoc and evaluated it in 4 different
indoor areas covering a total of 5528m?2. PiLoc uses one or
more mobile clients that track user walking trajectories. Each
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client uploads the trajectory data to the server once sufficient
data has been collected. A server program, takes as input the
client trajectory data, generates or updates the floor plan and
radio map. The server also handles localization queries from
the user and returns the user’s current location based on the
radio map constructed. Our experiment shows that PilL.oc can
efficiently generate floor plans and radio maps for different
indoor areas and can achieve an average localization error of
1.5m.

The rest of the paper is organized as follows. We present
related works in Section II and in Section III the overview
of PiLoc. We then describe data collection method in Section
IV, trajectory matching algorithm in Section V, floor plan and
radio map construction in Section VI. Section VII presents
our evaluation results. We finally discuss future extensions in
Section VIII and conclude in Section IX.

II. RELATED WORK
A. Device-free Indoor Localization

In device-free localization, the entity being tracked does not
carry any special device and does not actively participating
in the localization process. Existing device-free localization
systems can generally be categorized as MIMO radar-based
[4], [14] and Radio Tomographic Imaging (RTI) based [5],
[6]. RF-based Device-Free Passive (DfP) localization [15] is
based on the idea that the existence of an entity will affect
RF signal receptions [16], [17]. While this approach requires
no special hardware, the accuracy is lower and the ability to
track multiple entities simultaneously is still limited.

B. Device-based Indoor Localization

Device-based indoor localization aims to locate a device
or a human subject carrying a device. Generally, these
approaches can be categorized into four categories based
on the system requirements and the underlying techniques
used: infrastructure-based, fingerprint-based, propagation
model-based and SLAM-based.

Infrastructure-based. These systems rely on special-purpose
infrastructures deployed to locate the target device. Early
systems utilize short range infrared [18] or RFID [19] and
perform localization based on proximity. Cricket [20] uses
radio and acoustic transmission and exploits Time Difference
of Arrival (TDoA) in the signals. Recent developments
explore multiple-input, multiple-output (MIMO) techniques
using commodity APs and Angle of Arrival (AoA) to
provide fine-grained localization [7]. While these techniques
provide centimeter-level accuracy [7], [8], [20], the need
for special-purpose infrastructure and high deployment cost
hinder their large-scale deployment.

Fingerprint-based. A significant portion of research works
in indoor localization exploit RF signal fingerprint-based
approach. The basic idea is to fingerprint each location
of interest and locate the device using nearest neighbor
matching. The underlying assumption of these approaches

is that unique signatures can be found to fingerprint each
location. Most of these works use WiFi Receive Signal
Strength (RSS) as the fingerprint [21], [22]. Recent works
propose other forms of fingerprints such as FM Radio [9] and
physical layer information Channel Frequency Response [23].
SurroundSense [10] generalizes the concept of fingerprint and
explores ambient information such as noise, light color, etc.
Fingerprint-based techniques reduce the deployment cost by
leveraging the existing infrastructures and can achieve meter-
level accuracy. However, fingerprint-based technique suffers
from high calibration cost as a labor-intensive site-survey
process is typically required in the offline phase to construct
the fingerprint database (radio map) for each known location.
The static radio map is also vulnerable to environmental
dynamics, resulting in high maintenance effort. PiLoc aims
to eliminate these overheads.

Propagation Model-based. In trying to reduce the calibration
effort, some researchers propose the signal propagation model-
based technique to estimate the RSS value at a given location
based on the theoretic model instead of manually tagging
[12], [13], [24]. One popular model is log-distance path
loss (LDPL) [12], which estimates RSS value based on
the propagation distances. RADAR [21] also provides a
model-based approach to estimate the RSS value based on the
AP locations and floor plans. EZ [12] further improves it and
only need to measure the signal strength at a few locations.
Compared to the fingerprint-based techniques, model-based
techniques typically reduces calibration effort at the cost of
reduced accuracy. For most of these systems, AP locations or
accurate floor plans need to be given.

SLAM-based. Simultaneous Localization and Mapping
(SLAM) techniques have been extensively studied by re-
searchers in the robotic community. SLAM relies on landmark
detection by camera, laser or other ranging sensors and accu-
rate controlled movement of robots. Several works have been
proposed to leverage the idea of SLAM by combing WiFi and
IMU sensors on smartphones. Zee [3] exploits dead-reckoning
and infers location according to the constraints imposed by
the floor plan. However, it requires an accurate floor plan
which is normally not available in practice. UnLoc [2] further
exploits dead-reckoning and learn indoor landmarks that exist
in the environment to aid localization and requires at least
one ground truth location of the landmark. LiFS [1] exploits
Multidimensional Scaling (MDS) to match fingerprints with
actual location using walking step information. These works
successfully reduce effort in generating the radio maps pro-
vided that accurate indoor floor plans are given. Kim [25]
proposes an autonomous fingerprinting method but requires
the strong assumption that the initial location and direction
of the user is known a priori. Recently, Walkie-Markie [11]
proposes an algorithm to map pathways using WiFi-Marks.
PiLoc is different from other approaches in that it requires
no prior knowledge of the environment (e.g., floor plans) or
landmarks and combines element of SLAM and fingerprinting
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Fig. 1: Overview of PiLoc

to collect, cluster, match, and merge user contributed data to
generate and update floor plans and radio maps for localiza-
tion.

III. PILOC OVERVIEW

The PiLoc architecture is shown in Figure 1. PiLoc exploits
crowdsourcing to trace user walking trajectories using Inertial
Measurement Unit (IMU) sensors equipped in the smart-
phones. IMU collects angular velocity and linear acceleration
data which are utilized as inputs to the system.

To enable localization, we require that one or more users
carrying smartphones with the data collection application
enabled walk on various parts of the indoor area to be localized
and upload the annotated walking trajectories collected. An
annotated walking trajectory consists of discrete walking steps,
which further consist of displacement vectors (distance and
direction) and the WiFi fingerprints associates with the steps.
There is no restriction on the walking patterns and each walk-
ing trajectory can cover any part of the area. The limitation is
that we can only localize areas that are covered by at least one
walking trajectory and localization accuracy improves with
more trajectories. These user contributed walking trajectories
are used as inputs to construct or update the floor plan of the
area covered by user movements.

The key challenge in PiLoc is how to combine these user
generated trajectories into a floor plan suitable for localization.
There are three main components. First, a clustering algo-
rithm that uses AP signal strength and movement vector to
separate these walking trajectories into disjoint sets that cover
different indoor environments. The second component takes
the disjoint segments generated in the previous component
and finds segments that match again based on movement
vectors and AP signals. The matching is based on path
and radio signal similarity measures between two different
trajectories segments within the same cluster. Finally, in the
third component, we merge multiple trajectories to build floor
plans. In the following sections, we present details of these
three components.

IV. DATA COLLECTION
A. Fingerprint Collection

Data collection does not have to be performed specifically
for localization purposes. Instead, users equipped with smart-
phones walk around the targeted indoor environment as part
of their daily activities. PiLoc opportunistically collects users’
walking trajectories 7' = {7;,¢ = 1,2,...,m}. Each walking
trajectory 7; is determined by two stationary points detected
by the phone accelerometer. 7; = {s1, S2, ..., S }, in which s;
is a discrete walking step detected by the linear accelerations
from the corresponding phone accelerometer input. Besides
stride length and heading direction, WiFi RSS fingerprints
are collected as well between each two consecutive steps and
automatically associate with each step recorded. The heading
direction of each step is obtained by converting the linear ac-
celeration from the phone coordinate to the world coordinate.
Therefore, each step s; = {ID;,x;,y;, fi} consists of four
elements, global step identifier ID;, horizontal displacement
x;, vertical displacement y; and (radio) fingerprints f;. 2D
displacements x; and y; are calculated based on the headings
(angle relative to the earth North) and stride lengths to identify
the relative physical 2D position of the current step with
respect to the first step s; in the same trajectory. Fingerprints
fi = {r1,7a, ..., } represents the WiFi RSS measured at step
i, where r; is the received signal strength of AP; detected.

After collecting sufficient walking trajectories marked with
corresponding fingerprints, PilLoc is able to construct floor
plans and radio maps for the covered area. The speed of data
collection is capped by typical human walking speed. If we
consider an indoor area with 100m of walk way and an average
walking speed of 4km/h, we can over lkm in 15min or the
entire walkway of 100m 10 times.

B. Inertial Sensing

Dead-reckoning with smartphones has been exploited in
several previous works [1]-[3], [11], [26]. One significant
challenge with dead-reckoning is the accumulated error over
time. Therefore, it can only be used to track user for a short
period of time or error needs to be corrected frequently.
This problem makes it very challenging to align and merge
different user traces, especially to construct floor plans. This
is also one major challenge in PiLoc. Several works have
been done to improve the accuracy of dead-reckoning with
arbitrary phone placements [3], [27], [28]. Walking steps
can be efficiently detected using a threshold based sliding
window algorithm [29]. In our experience, step detection is
very accurate and most of the time we can detect exact step
counts even after several hundred steps. Headings angles can
be inferred by combining linear acceleration, compass and
gyroscope readings [27]. However, stride length varies for
different users. In order to take into account this variation,
we adopt the assumption from [3] that stride length follows
gaussian distribution and use the default stride length with an
additional 15% gaussian noise.

As we will show later, error in dead-reckoning is corrected
in PiLoc by combining data from many trajectories in the
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Fig. 2: Examples of Trajectories and Clustering

merging process. In addition, outliers in the data will be
filtered out in PiLoc’s merging and filtering process if these
data do not match well with other data collected.

V. TRAJECTORY MATCHING
A. Clustering

As data collected from different users cover different parts
of different locations, it is necessary to perform an initial level
of data clustering to group data into smaller, related groups
based on approximate locations and movement vectors.

To illustrate the procedure, consider as input, the four
trajectories 71, 7o, 73 and 74, as shown in Figure 2.

1) AP Clustering: The goal of signal clustering is to divide
all trajectories into geographically separated clusters. Each
walking trajectory covers a particular indoor environment, and
this clustering finds non-overlapping clusters based on the AP
information. Given n trajectories inputs from all participating
users, the AP clustering finds a clustering with [ clusters
C ={ecy,ca, ..., }, such that:

ViVj APSet(c;) N APSet(c;) =0,1<i#j <l (1)

in which APSet(c;) returns the set of all APs which appear
in at least one of the fingerprints in the trajectories of cluster
c;. AP clustering therefore separates trajectories collected in
different indoor environments which have different sets of APs
into different clusters. As an example, the four trajectories
shown in Figure 2 will be separated into three clusters. The
APs in each of the three clusters are {71}, {72, 73} and
{m4}. The corresponding set of APs are {AP1}, {AP2, AP3,
AP4, AP5} and {AP6, AP7} respectively. As an illustration
of the overall effect, as shown in Figure 3, traces collected
in 3 buildings are separated into 3 different clusters after AP
clustering. Instead of relying on the fluctuating signal strength,
AP clustering only detects the existence of APs and provides a
more reliable clustering. Though AP clustering only provides
floor level granularity, the light-weighted clustering is still an
important technique to efficiently categorize the big trajectory
data once the system is deployed at scale.

\’” &@L

Fig. 4: Path Segment Clustering
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2) Path Segment Clustering: Within the same AP cluster,
we further divide a single trajectory into disjoint path seg-
ments. While path segment can take any form in general,
in this work, we consider only two kinds of path segments,
namely: turns and long straight lines. Walking along a straight
path or making corner turns are natural walking patterns in an
indoor environment. A given trajectory 7 = {81, S2, ..., Sn },
can be broken into disjoint path segments (consisting of
either turns and straight lines) S = {s,, sp+1,..., Sq} Where
1 < p < ¢ < n. In dividing the trajectory, we first extract
turns with minimum 5 and maximum 15 steps before and after
the turning. After that, straight line paths containing at least
more than 30 steps are extracted. As an example, consider
the cluster consists of 7 and 735 shown in Figure 2. Only
3 turns, 17, To and T3 are extracted. The fourth corner is
not considered since the path before the turn is too short (less
than 5 steps). Similarly, there is only one straight line segment
(where AP2 is recorded). All other straight path segments are
too short after the turn segments are removed.

We extract these segments from each trajectory and build
second-level clusters C' = {c¢;, ¢;} for each AP cluster in C
based on path segments, where c; is the cluster for turns and ¢;
is the cluster for long straight line segments. After second level
clustering, each cluster ¢; and ¢; contains segments of same
path shape from the same indoor environment. Each segment
S in ¢; or ¢; becomes the basic unit for trajectory matching
in the next step. The overall effect is shown in Figure 4.

B. Matching

A key difference between PilLoc and prior work is that
instead of using WiFi signal or ambient information as
landmarks, we utilize movement displacement (distance and
direction) as well as the associated signal to match different
segments. We found that these parameters can provide high
discriminative power for both dead-reckoning error correction
and trajectory matching.
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1) Path Correlation: Similar to the clustering component,
the trajectory matching algorithm follows a 2-phase scheme.
The first phase is based on a simple but effective idea. When
people walk along the same segment (turns or straight lines),
the evolution of the two trajectories in a 2D plane should
be highly correlated. The path correlation correction can be
measured as:

Corrpain = Corry(S1, S2) + Corry(S1, S2) 2)

For two path segments from the same cluster ¢; or ¢;, S; =

{51, 82, ..., 8n} and Sy = {s}, s}, ...,s),} with same number

of steps n, the pearson correlation can be computed as:

E(Xy — px, ) (X2 — px,)]
O’X1 O'X2

Corrg(S1,52) = 3)
where X1 = {x1,29,...,2,} and Xo = {2}, 2}, ...,/ } are
sequence of horizontal displacements of steps of S; and S
respectively. Similarly, C'orr,, is the correlation of the vertical
displacements of steps of 57 and S5. These displacements can
be computed given the step distance and direction of move-
ment. Corrpqp therefore measures the similarity between two
walking paths in the 2D plane.

Figure 5 shows the CDF of the path correlations for traces
collected from both a large indoor floor level covering 3000
m? and a research lab covering only 120 m?. Since one can
walk along the same path in two directions, we compute the
Corrpetn in both directions as well and take the maximum
of the two as the final path correlation. In both environments
more than 90% of path correlations for correct matches (paths
with same evolution trend in 2D plane) have value greater
than 1.90 (maximum 2). The path correlation is much lower
for incorrect matches, with 90% less than 0.75.

2) Signal Correlation: Path correlation alone is not suffi-
cient for obtaining accurate matches. When path segments are
collected from parallel corridors in the same building, these
segments may have high path correlations. Another feature
exploited in PiLoc is changes in RSS signal along the walking
path. It is observed that there are specific trends in which RSS
signal changes along the same path way. This change is due to
the signal propagation and other environmental obstacles. The

1
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() 3000m? Office Floor

pattern in which RSS signal changes provide another useful
hint to determine matching segments.

One question on using these signal measurements is the
stability of their trend with respect to the changes in phone
model and time. Figure 7 shows the stability of WiFi signal
trends on the same path across 3 different phone models
(Samsung Galaxy S3, S4, and Galaxy Nexus). The trends are
plotted with smoothed curves and are stable across different
phone models for both APs. The variation is also relatively
stable at different period of the day. As shown in Figure 8,
the RSS trends collected for the same walk path from morning
(9am), afternoon (1pm) and in the night (10pm) are also
similar. Another observation is that the similarity for APs
with higher RSS value tends to be higher than those with
lower RSS values. As shown in Figure 7 and Figure 8, the
trend detected for AP1 is more stable than that of AP2. With
these observations, we use signal correlation as a metric to
further measure the similarity between two path segments .Sy
and Ss:

Corrsignal = Zwi : COTT( iv RZQ) ' I( 7i7 R12) (4)

where R\ = {ri,ra,...,7} and R, = {r],rh,..,7}} are

sequence of RSS values of AP; observed in S; and S5 respec-

tively. w; is the weight for AP; and we set w; = ———=——. As
[b i +#RE |

signal strength values are given in negative Valuesl(measured
in dBm), APs with larger average RSS value will have more
weight. Corr(R, RY) is the pearson correlation of two RSS
sequences for AP;. I(R}, R}) is an indicator function used to
decide if an AP; should be included in the computation.

(5a)
(5b)

I( ZI’R%): { 1, |uRi_HR%|<URSS
0, otherwise

where orgg is the maximum acceptable difference between
the two mean RSS values of two path segments. The current
value for o pgg is set to SdBm, which has been observe to work
well for different environments. Similar to the path correlation
computation, as movement can occur in both directions on the
same path, we calculate the correlation for both forward and

147



S4-APT — S3-AP1 Nexus-AP1 — AM-APT

1PM-AP1

10PM-AP -+

S4-AP2 rrenee S3-AP2 Nexus-AP2 =+ 9AM-AP2 ——  1PM-AP2 10PM-AP2 —— e
30 30 fr'— —
L 08 -/*_"/

40 8 40
£ = T = ~ & °
5oy ~ S 50 o / e
£ — EN 7 N E
S -60 S -60 B
c c - Q
I 2 S04
&0 &7 3
= = =
R R e e
k= =l I R »
n - F7 T TR e i R o

-90 -90 Big office floor —+—

Small research lab ——
1 L -1
0 5 10 15 20 25 30 0© 5 10 15 20 25 30 02 04 06 08 1
Steps Steps False positive rate

Fig. 7: Stability of Signal Trends

(Phone Varing) (Time Varing)

reverse directions for each pair of segments and the maximum
correlation is used.

Note that not all APs are included in the computation. First,
we exclude APs that appear only in one segment and not in
the other. Second, we also remove APs that appear in less
than 10 steps in either of the two segments. In summary, for
the signal correlation computation, we only consider APs that
appear often enough in both segments and where their average
signal strengths are similar.

In general, the C'orrgignq increases as two trajectory seg-
ments have more common APs and the trends of APs are
similar. Figure 6 shows the signal correlation distribution in
both the 3000 m? office floor and 120 m? research lab. In
both environments more than 42% of signal correlations for
correct matches (same paths) have value greater 0.15. The
signal correlation is much lower for incorrect matches, with
98% less than 0.15.

3) Final Matching: PilLoc combines the discriminative
power of both path and signal correlations in the final matching
to achieve an accurate match. For each pair of segments in the
cluster c¢; or ¢;, we first align them to have same step numbers,
and the turning point is used to align turns segments. In this
way, PiLoc does not require that the starting points and ending
points of the path segments in the matching process to be
the same.We use path correlation threshold o4, and signal
correlation threshold o;gpnq; to find matching pairs.

In order to evaluate the accuracy of our matching algorithm,
we have to obtain the ground truth on how the different
segments match through manual tagging. Figure 9 shows the
receiver operating characteristic (ROC) curve for both large
office floor and small research lab. Both curves show high
performances of matching with large area under the curve. A
good operating point can be chosen using the y = z line. This
operating point provides a guide for choosing the appropriate
thresholds for the path and signal correlation values to use for
matching.

VI. FLOOR PLAN CONSTRUCTION

A. Algorithm

In PiLoc, the inaccuracy in the IMU and WiFi signal
strength measurement places challenges in merging trajectories

Fig. 8: Stability of Signal Trends

Fig. 9: ROC Curve of Final Matching

Algorithm 1: Floor Plan Construction Algorithm

Input: Matching result M, Trajectories set 1" of 1 cluster ¢
Output: Updated displacement matrix My

1
2
3 Initialized displacement matrix Mg;

4 for each matching segment pair (S;, S;) in M do

5 /I Collocate and determine displacements of

6 /I matching steps

7 Set of collocated steps, Smerge, is initially empty;

8 for each matching step pair ($m, sn) in (Si,S;) do
9

Place sy, s, into a single location;

10 New displacement of s, and s,, are average
displacements of s,, and s, to all points in Smerge;

1 S’me'rge = SmeTge U Sn U Sm;

12 end

13 for each step p in T or but not in Spmerge do

14 Displacement of p = average displacements of p to all
points in Smerge;

15 end

16 Update displacement matrix M, based on all new

displacements calculated;
17 end
18 return My;

from different users. PiLoc addresses this challenge by merg-
ing and filtering all users inputs in the floor plan construction
algorithm. The trajectory matching algorithm discussed in the
previous section generates matching pairs for all segments
from the same indoor environment. The output of the matching
algorithm M = {(51,52),...,(5;,S;)} contains pairs of
matched path segments and these matching pairs are used as
inputs to the algorithm.

Initialization. PiLoc merges and generates floor plans for
all trajectories T' collected in the same indoor environment,
i.e., in the same AP cluster ¢ as discussed in Section V-Al.
In the initialization phase, PiLoc builds a displacement matrix
M. Given two steps with global ID ¢ and j, each belonging
to one of the two matching segment pairs, the entry M[i][j]
gives the 2D displacement (x,y) between the positions indi-
cated by the two steps as (z; — 2;,y; — ;). The displacement
between two steps can only be measured if there are common
matching path segments that can relate them. The displacement
is “undefined” if the steps are from two different trajectories
with no relationship.

148



\2|/1

d12<(d12+d52)/2

Taz(d14+d54)12
4

(b) 1,5 merge together
5)—~C@H—0

d’13 = [d13+d53+ (d’12+d23)+(d 14+d43))/4

(a) New matching segments

03 (d’12+d’14)/2 gg

(c) New displacements cal-
culated for 2 and 4

(d) New displacement calculated
for 3
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Iteration. In the iteration phase, each matching segment
pair (.S;, S;) is taken into account to update the displacement
matrix. Recall that matching segments have the same number
of steps. For each pair of matching steps (s, s5), we “move”
the starting position of these steps so that they start at the same
point. Then, we compute the new displacements by finding the
average displacements of these steps to those steps whose new
displacements have been determined. The detail algorithm is
shown in the Algorithm 18.

As an illustration, consider Figure 10. The trajectory con-
sists of five steps {1,2,3,4,5}. S; = {1,2} and So = {5,4}
are the only pair of matching segments in this example.
The algorithm first computes the starting (relative) position
of the first matching steps. Figure 10(a) shows the original
displacements of the points in the trajectory.

In Figure 10(b), the starting point of the first pair of
matching steps {1, 5} are considered to be at the same location
(shown as 1’ and 5’ in the figure). In order to calculate the new
displacements for the next pair of matching steps {2, 4}, which
is again assumed to be collocated, the new displacements d’
and d}, are computed as M, as shown in Figure
10(c).

After the new displacements for all matching steps in this
segments have been computed, the displacement of all the
other steps are updated. As shown in Figure 10(d), the dis-
placement d5 is determined by averaging the displacements
to all four matched steps.

Since the matching pair can either be from the same
trajectory or different trajectories, the floor plan construction
algorithm works for both intra-graph merging and inter-graphs
merging. As shown in Figure 11, the trajectory is refined
internally and merged with itself using the algorithm. The error
cumulated in dead-reckoning is corrected using data within
the same trajectory. Figure 12 shows the merging of different
trajectories collected from the same floor. Note that since each
step carries fingerprint data in the floor plan constructed, it
naturally can serve as the radio map to handle localization
queries and decide the current user location in the map. Since
the merging algorithm works for all geographically separated
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Fig. 12: Inter Trajectory Merging

clusters, floor plans and radio maps are generated for all
different indoor environments covered by the participating
users.

The maps generated are relative maps, i.e., the locations
in the map are not associated with the absolute location yet.
To map the floor plan to the real locations in the indoor
environment, PilLoc only requires at least one point to be
associated with a GPS coordinate. This point becomes a global
reference point and all the locations of the rest points in the
maps can be fixed.

B. Floor Plan Filtering

Filtering is required to remove the noisy samples and
trajectories in the floor plan construction process. Trajectories
that have no matching segments are first filtered out after
the matching process. Therefore the outlier trajectories will
not be reflected in the final results. To further smooth the
constructed floor plans, we adopt a grid-based filtering scheme.
The generated floor plans are divided into 1 x 1m? grids.
We observed that most grids that contain correct walking
trajectories have more steps than the average number of steps
over all grids in the floor plans generated by the trajectory
merging algorithm. In the final floor plan constructed, all grids
with number of steps less than the averaged will be removed.
To smooth the floor plan constructed, morphological operators
dilation and erosion [30] are used, and the extracted contour
from the erosion result are used as the smoothed walking
paths.

C. Floor Plan Evolution

To reflect the environmental changes and new user inputs,
the floor plan generated needs to be periodically updated. One
important feature of PiLoc is the floor plans will keep evolving
with continuous incoming of user inputs. And the evolvement
is also fully automatic. In PiLoc, the floor plan is updated
every 10 minutes to handle the new user input. All new data
will be clustered into the existing clusters or new clusters (e.g.,
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new floors) may be generated. As shown in Figure 13, the
floor plan is updated every 10 minutes to generate an evolving
indoor map. The radio maps are also updated in the same
process to keep an up-to-date localization database.

D. PiLoc Localization

PiLoc adopts fingerprint-based approach for indoor local-
ization. The radio maps is automatically built and updated by
merging user contributed walking data. In this way, PiLoc is
able to handle localization queries and return the user location
using the radio map and input fingerprints. Previous works
such as RADAR [21] utilizes the fingerprint database by using
the nearest neighbors from the query point to the reference
points in the database as the similarity metric.

Such an approach works relatively well for indoor areas with
sparse AP deployments (In RADAR, only three APs are pre-
sented). However, during our data collection we observe that
many indoor environments have very dense AP deployments
(More than 100 in one floor). Nearest neighbor matching
works poorly in the dense AP environment. This is because at
each location smartphones can observe a long list of remote
APs with RSS ranging from -80dbm to -90dbm. The RSS
fluctuations of large number of these remote APs overwhelm
the small set of nearby APs in calculating the similarity.
However, nearby APs are more important in deciding the
current location of the user since high RSS values only covers
a small area for each AP. Based on this observation, PiL.oc uses
the simple but more effective weighted maximum similarity as

the metric:
< 1
WMS = - 6
2 D) ©
where n is the total number of APs, w; = 1/|u;| is the

weight of ith AP and is inverse to the absolute of its mean
value. Therefore nearby APs with higher average RSS value
will have higher weight. r; is the input RSS of AP, and
ri is from the radio map. WMS will get higher value if
the input point and reference have more common APs and
the RSS difference for nearby APs are smaller. The location
will be determined by the maximum WMS matching in the
radio map. The PiLoc localization provides better accuracy
than the conventional approach especially in the dense AP
environment. The evaluation will be discussed in the next
section.

VII. EVALUATION
A. Implementation

PiLoc has both client and server components. The client
performs two functions: data collection and issues localization
query. For data collection, the client runs an Android smart-
phone service in the background to opportunistically collect
walking trajectories and radio fingerprints. For localization,
the client issues queries to the server to localize the phone.
The server collects user uploaded trajectory and fingerprint
data. It uses the data collected to construct and update the
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floor plans periodically for all indoor environments it has data
for. For each localization query, the server first finds out the
correct radio map to use based on the AP clustering result.
Then, the weighted maximum similarity match is used to find
the best matching location of the phone.

B. Data

The experiment data is collected over a one month period
from 4 different areas which cover 5528 m? areas in total. The
layouts are shown in Figure 13 and 14. The sizes of these 4
different floors range from 120 m? to 3000 m?2. The smallest
area of 120 m? involves the inside of a research lab with
lots of partitions which pose a special challenge due to its
very short turns and walk ways. Three different phone models
are used: Google Galaxy Nexus, Samsung S3 and Samsung
S4. All phones run Android OS. An average of 35 APs are
detected in each of the 4 areas. In total, 600 user trajectories
are recorded, which contains 90,000 steps and each step is
associated with direction as well as WiFi fingerprint. In terms
of time, these data corresponds to 700min of data collection.
If collection is done by say 5 users in parallel, data collection
time will be reduced accordingly to 140min.

To increase the fingerprint sampling rate, we only scan
Channel 1 (2412MHz), 6 (2437MHz) and, 11 (2462MHz).
These channels are non-overlapping with the commonly de-
ployed 802.11 b/g/n [31] network. As shown in Figure 15,
these 3 channels cover most of the deployed APs in the
environment we measured. In our scan, we also include
one channel (5240MHz) from the less commonly deployed
802.11a network. By reducing the number of channels scanned
and improving the efficiency of the code, we significantly
increase the sampling rate. On the average, three radio finger-
prints can be collected per step, compared to using the Android
WifiManager which can only collect one sample every three
steps. The average fingerprint per step is computed by combing
all fingerprints collected between two consecutive steps.

C. Performance

1) Evaluation Metrics: We evaluate the overall perfor-
mance of PiLoc by looking at the quality of floor plan
constructed and localization accuracy. Two metrics are used
in the measurement:

o Step Mapping Error (SME). The floor plan constructed

maps steps of walking trajectories into the real floor
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plan. The step mapping error measures how accurate the
trajectories fit the real floor plan. Since fingerprints are
associated with each step, less step mapping error results
in higher fingerprint mapping accuracy, which directly
affects the localization accuracy. The SME is defined as:

SME = |[L(s) - L(s)| )

where L(s), L(s") are mapped location of the step and
the ground truth location of the step respectively. A
smaller SME reflected better matching of the constructed
floor plan to the real one. To establish the ground truth,
locations where each step is taken in the reference floor
plan are manually tagged. Since each step has a globally
unique identifier, the location of one particular step in the
constructed floor plan can be obtained by querying the ID,
and SMEs are measured by calculating the differences
between the estimated step locations and their respective
ground truth locations.

o Localization Error (LLE). LLE measures how well the
location given the localization server matches the ground
truth location of the phone.

LLE = | L(p) — L(p)| ®)

where L(p) is the estimated location and L(p’) is the real
location of the phone. The smaller the euclidean distance,
the better the localization quality.

2) Floor Plan Construction: To measure SME, each step
associated with fingerprints is assigned a global ID. We tagged
the ground truth localization for each collected step and
measure the SME in the constructed floor plan. We plot the
CDF for both the mid-size (900 m?) office floor and 120 m?
research lab.

Figure 16 and 17 shows three different CDF curves for the
office floor and research lab. Each CDF curve corresponds to
different time period of data collection, ranging from 10min
to 30min. For the mid size office area shown in Figure 16,
PiLoc achieves average SME of 1.65m, 1.47m and 1.27m for
10min, 20min and 30min of data collection respectively.

For the research lab, PiLoc achieves average SME of 0.54m,
0.6m and 0.46m for 10min, 20min and 30min of data collec-
tion respectively. Surprisingly, the accuracy for the research
lab is better, probably because the step counting mechanism
used incurs much less error for short distances.

3) Localization: Localization evaluation is performed for
the large office floor (3000 m?) and research lab. As shown
in Figure 18, PiLoc achieves an average LLE of 1.37m for the
research lab, with 80% of the errors less than 2.3m.

System Average LLE Effort
RADAR [21] 2~ 5m Site survey
Horus [22] ~ 1lm Site survey
Zee [3] 1~ 3m Floor plan
UnLoc [2] I~ 2m Door localization
LiFS [1] 3~ Tm Floor plan, time-consuming
PiLoc I~ 3m Self-calibrate

TABLE I: Listing of related localization systems
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For the large office floor, the average LLE is 1.58m with
80% of the errors less than 3m.

Table I provides a brief summary and qualitative comparison
between PiLoc and other localization systems. As the evalua-
tions are performed in different settings, the localization errors
listed (obtained from the respective papers) can only provide
a high level guide on the relative performances of the various
systems. Even though PiLoc does not require manual calibra-
tion and landmarks, it could achieve localization accuracy that
are comparable with the other localization schemes.

VIII. DISCUSSIONS
A. Applications

Indoor localization plays a very important role in many real
world applications. For example, location-based services and
location-based advertisements nowadays have gained increas-
ing popularity. However, deploying and maintaining current
indoor localization schemes requires too much effort and that
hinders the development of location-based applications. By
opportunistically collecting walking trajectories from causal
users whose roles are not dedicated to localization, the local-
ization system can be easily built and updated with PiLoc.
For example, the movement of security guards or even any
other users can contribute traces for constructing the indoor
floor plan of any given indoor environment. PiLoc enables
an efficient way to leverage the daily human movements for
localization and has the potential to be deployed in a large
scale.

B. Limitations

PiLoc currently extracts turn segments and line segments for
matching. Extending to more complicated layouts containing
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curve shapes requires extracting additional curve segments.
In Piloc, path correlation and signal correlation are used
for trajectory matching to construct pathway floor plans.
In open spaces where people may not walk along distinct
walkways, path correlation and signal correlation may fail to
differentiate intersecting or parallel aisles that are not separated
by sufficiently large distances. This is one limitation of PiLoc.
However, in practice walking paths inside buildings are often
separated by walls or other obstacles. This will result in
differences in signal correlations that can be distinguished by
PiLoc.

C. Extensions

1) Diverse Floor Plans: In Piloc, path segments are
extracted and clustered for efficient matching. These path
segments reflect the physical layouts of the floor plans. Though
most indoor floor plans have rectangular layouts, there are
indoor layouts that may contain curved walking paths. While
a curved walking path may be captured as a series of straight
lines and turns, the inaccuracy introduced can be substantial.
Hence, to achieve a higher accuracy for these types of floor
plans, we may have to include additional types of walking
paths. Conceptually, adding additional path segment shapes
in PiLoc is straight-forward, though the actual process of
extracting these new shapes may be much more complex.
Nevertheless, once the new paths are extracted, there is no
change in the rest of the algorithms. The current architecture
is thus highly extensible to diverse floor plans.

2) Multiple Floors: Currently, PiLoc constructs floor plans
for different buildings and different floors. Different floor plans
will be constructed for each AP cluster. However, these floor
plans are independent to each other due to lack of links
between each other. A more complete floor plan for the indoor
environment would need to support 3D construction. In PiL.oc,
even though different floors in one building have AP overlaps
and belong to one AP cluster, they don’t have matching pairs
hence multiple floor plans will be returned for all different
floors. To link these floor plans to extend PiLoc from 2D to
3D, additional z-axis information is required. As barometers
are becoming more and more common in current smartphones,
acquiring z-axis (sea level) information would become easier.
However, barometers readings are known to be sensitive to
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environmental changes, especially in the indoor environment
(e.g., air pressure change due to air conditioners). How to
robustly incorporate z-axis into the system is a challenge and
a possible future extension to PiLoc.

3) Multiple Fingerprints: Piloc utilizes WiFi fingerprints
for localization. However, WiFi fingerprints are not tightly
bound to our systems. Different fingerprints such as FM radio
signal [9] or even ambient noise [10] can be associated with
each step and used in the localization phase. Also, to improve
the performance, other fingerprints such as indoor magnetic
fingerprints can also be added into the system to provide more
information.

IX. CONCLUSION

In this paper we propose and evaluate PiLoc, an indoor lo-
calization scheme that takes user walking trajectories as input
and automatically builds and updates the indoor floor plan.
By incorporating radio fingerprints, indoor radio map is also
automatically managed by PiLoc. PiLoc requires no human
intervention and can achieve high localization accuracy with
1.5 meter error on the average. As PiLoc enables minimum
user effort for calibration and maintenance, it has potential for
large scale deployment.
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