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Abstract. Automatically verifying heap-manipulating programs is a
challenging task, especially when dealing with complex data structures
with strong invariants, such as sorted lists and AVL/red-black trees. The
verification process can greatly benefit from human assistance through
specification annotations, but this process requires intellectual effort
from users and is error-prone. In this paper, we propose a new approach
to program verification that allows users to provide only partial specifi-
cation to methods. Our approach will then refine the given annotation
into a more complete specification by discovering missing constraints.
The discovered constraints may involve both numerical and multi-set
properties that could be later confirmed or revised by users. We further
augment our approach by requiring only partial specification to be given
for primary methods. Specifications for loops and auxiliary methods can
then be systematically discovered by our augmented mechanism, with
the help of information propagated from the primary methods. Our work
is aimed at verifying beyond shape properties, with the eventual goal of
analysing full functional properties for pointer-based data structures. Ini-
tial experiments have confirmed that we can automatically refine partial
specifications with non-trivial constraints, thus making it easier for users
to handle specifications with richer properties.

1 Introduction

Human assistance is often essential in (semi-) automated program verifica-
tion. The user may supply annotations at certain program points, such as loop
invariants and/or method specifications. These annotations can greatly narrow
down the possible program states at that point, and avoid fixed-point calculation
which could be expensive and may be less precise than the user’s insight.

However, an obvious disadvantage of user annotation concerns its scalability,
since programs to be analysed may be complicated and with significant diversity.
Therefore, it may be unreasonable to expect user to provide specification for
every method and invariant for every loop when verifying larger software systems.
Furthermore, to err is human. A programmer may under-specify with too weak
a precondition or over-specify with too strong a postcondition. Such mistakes
could lead to failed verification, and it may be difficult to distinguish between a
real bug or an inappropriate annotation.

⋆ This work is supported in part by EPSRC project EP/G042322 and MoE ARF grant
R-252-000-411-112.
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To balance verification quality and human effort, we provide a novel ap-
proach to the verification of heap manipulating programs, which has long since
been a challenging problem. To deal with such programs, which manipulate
heap-allocated shared mutable data structures, one needs to keep track of not
only “shape” information (for deep heap properties) but also related “pure”
properties, such as structural numerical information (size and height), relational
numerical information (balanced and sortedness properties), and content infor-
mation (multi-set of symbolic values). Under our framework, the user is expected
to provide partial specifications for primary methods with only shape informa-
tion. Our verification will then take over the rest of the work to refine those
partial specifications with derived (pure) constraints which should be satisfied
by the program, or report a possible program bug if the given specifications are
rejected by our verifier. This is an improvement over previous works [23], where
users must provide full specifications for each method and invariants for each
loop. This is also significantly different from the compositional shape analysis [5,
9, 32]. In spite of a higher level of automation, their analysis focuses on pointer
safety only and deals primarily with a few built-in predicates over the shape
domain only. Our work targets at both memory safety and functional correct-
ness and supports user-defined predicates over several abstract domains (such
as shape, numerical, multi-set).

Our approach allows the user to design their predicates for shapes and relative
properties, to capture the desired level of program correctness to be verified. For
example, with a singly-linked list structure data node { int val; node next; },
a user interested in pointer-safety may define a list shape predicate (as in [5, 9]):

list(p)≡ (p=null)∨(∃i, q · p7→node(i, q)∗list(q))
Note that in the inductive case, the separation conjunction ∗ ([28]) ensures that
two heap portions (the head node and the tail list) are domain-disjoint.

Yet another user may be interested to track also the length of a list to analyse
quantitative measures, such as heap/stack resource usage, using

ll(p, n)≡ (p=null∧n=0)∨(p7→node( , q)∗ll(q, m)∧n=m+1)

Note that unbound variables, such as q and m, are implicitly existentially quan-
tified, and is used to denote an existentially quantified anonymous variable.
This predicate may be extended to capture the content information, to support
a higher-level of correctness with multi-set (bag) property:

llB(p, S)≡(p=null∧S=∅)∨(p7→node(v, q)∗llB(q, S1)∧S={v}⊔S1)

where the length of the list is implicitly captured by the cardinality |S|. A further
strengthening can capture also the sortedness property:

sllB(p, S)≡(p=null∧S=∅)∨(p7→node(v, q)∗sllB(q, S1)∧S={v}⊔S1∧(∀x∈S1·v≤x))

Therefore, the user can provide predicate definitions w.r.t. various correctness
level and program properties, which can be as simple as normal lists or as com-
plicated as AVL trees, depending on their requirements. These predicates are
non-trivial but can be reused multiple times for specifications of different meth-
ods. We have also built a library of predicates with respect to commonly-used
data structures and useful program properties.
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Based on these predicates, the user is expected to provide partial specifi-
cations for some primary methods which are the main objects of verification.
Say, for a sorting algorithm taking x as input parameter that is expected to be
non-null, the user may provide llB(x, S1) as precondition and sllB(x, S2) as post-
condition, and our approach will refine the specification as llB(x, S1) ∧ x6=null
for pre, and sllB(x, S2) ∧ S1=S2 for post. Here we need user annotations as the
initial specification, because we reserve the flexibility of verification w.r.t. differ-
ent program properties at various correctness levels. For example, our approach
can verify the same algorithm, but for different refined specifications, such as:

requires list(x) ∧ x6=null ensures list(x)
requires ll(x, n1) ∧ n1>0 ensures ll(x, n2) ∧ n1=n2
requires llB(x, S1) ∧ x6=null ensures llB(x, S2) ∧ S1=S2
requires llB(x, S) ∧ x6=null ensures ll(x, n) ∧ |S|=n

where the discovered missing constraints are shown in shaded form.
To summarise, our proposal for refining partial specification is aimed at har-

nessing the synergy between human’s insights and machine’s capability at auto-
mated program analysis. In particular, human’s guidance can help narrow down
on the most important of the different specifications that are possible with each
program code, while automation by machine is important for minimising on the
tedium faced by users. Our proposal has the following characteristics:

– Specification completion: We discover three types of constraints added into
the user-given incomplete specification: constraints in the precondition for
memory safety, (relational) constraints in postcondition to link the method’s
pre- and post-states, and constraints that the method’s post-state satisfies.

– Flexibility: We allow the user to define their own predicates for the program
properties they want to verify, so as to provide different levels of correctness.
Meanwhile we aim at, and have covered much of, full functional correctness
of pointer-manipulating programs such as data structure shapes, pointer
safety, structural/relational numerical constraints, and bag information.

– Reduction of user annotations: Our approach uses program analysis tech-
niques effectively to reduce users’ annotations. As for our experiments, the
user only has to supply the partial specifications for primary methods, and
the analysis will compute pre- and postconditions for loops and auxiliary
methods as well as refine primary methods’ specifications.

– Semi-Automation: We classify our approach as semi-automatic, because the
user is allowed to interfere and guide the verification at any point. For in-
stance, they may provide invariant for a loop instead of our automated in-
variant generation, or choose some other constraints as refinement from what
the verification has discovered.
We have built a prototype implementation and carried out a number of exper-

iments to confirm the viability of the approach as described in Section 5. In what
follows, we will first depict our approach informally using a motivating exam-
ple and present technical details thereafter. More related works and concluding
remarks come after the experimental results.Technical details not covered here
can be found in our report [27].



4 S. Qin, C. Luo, W.-N. Chin and G. He

2 Illustrative Example

We illustrate our approach with an example. We show how our analysis infers
missing constraints to improve the user-supplied incomplete specification, and
how it analyses the while loop without user-annotations.

0 data node2 { int val; node2 prev; node2 next; }

1 node2 sdl2nbt(node2 head,

node2 tail)

2 requires sdlB(head, p, q, S)
3 ensures nbt(res, Sres)
4 {node2 root = head;

5 node2 end = head;

6 while(end != tail) {

7 end = end.next;

8 if (end != tail) {

9 end=end.next; root=root.next;}

10 }

11 if (head == root) root.prev = null;

12 else root.prev = sdl2nbt(head,root);

13 node2 tmp = root.next;

14 if (tmp == tail) root.next = null;

15 else { tmp.prev = null;

16 root.next = sdl2nbt(tmp, tail);}

17 root;}

Fig. 1. The method to convert a sorted doubly-linked list to a node-balanced tree.
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Fig. 2. sdl2nbt

The method sdl2nbt (Fig 1) converts
a doubly-linked sorted list into a node-
balanced binary search tree, as indicated
by the shape-only specification in lines 2
and 3. It first finds the “centre” node in
the list (root), where the difference be-
tween numbers of nodes to the left and to
the right of the centre node is at most one
(lines 5-10), as Fig 2 (a) shows. It then ap-
plies the algorithm recursively on both list segments to the left and to the right
of the centre node, and regards the centre node as the tree’s root, whose left
and right children are the resulted subtrees’ roots from the recursive calls (lines
11-17), as in Fig 2 (b) and (c). As the data structures of doubly-linked list and
binary tree are homomorphic (line 0), the algorithm reuses the nodes in the input
instead of creating a new tree, making itself in-place. The parameter head in line
1 denotes the first node of the input list, and tail is where the last node’s next
field points to. When using this method tail should be set as null initially.

The predicate for doubly-linked sorted list (segment) is defined as follows:

sdlB(root, p, q, S) ≡ (root=q ∧ S=∅) ∨ (root 7→node2(v, p, r) ∗
sdlB(r, root, q, S1) ∧ root 6=q ∧ S={v} ⊔ S1 ∧ (∀x∈S1·v≤x))

where the parameters p and q denote resp. the prev field of root and the next
field of the last node in the list, and S represents the list’s content. And below
is the predicate specification for node-balanced binary search trees:

nbt(root, S) ≡ (root=null ∧ S=∅) ∨
(root 7→node2(v, p, q) ∗ nbt(p, Sp) ∗ nbt(q, Sq) ∧ S={v} ⊔ Sp ⊔ Sq ∧

(∀x∈Sp·x≤v) ∧ (∀x∈Sq·v≤x) ∧ −1≤|Sp|−|Sq|≤1)

where S captures the content of the tree. We require the difference in node
numbers of the left and right sub-trees be within one, as the node-balanced
property indicates.
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To refine sdl2nbt’s specification, our analysis proceeds in two steps. Firstly,
starting from the partial precondition (line 2 of Fig 1), a forward analysis is
conducted to compute the postcondition of the method in the form of a constraint
abstraction [15]. This constraint abstraction is effectively a transfer function for
the method, which may be recursively defined (e.g. in this example). Secondly,
instead of a direct fixpoint computation in the combined abstract domain (with
shape, numerical and bag information), a “pure” constraint abstraction (without
heap shape information) is derived from the generated constraint abstraction and
the user-given partial postcondition. This pure constraint abstraction is then
solved by fixpoint solvers in pure (numerical/bag) domains, such as [24, 25].

As for the example, when the forward analysis reaches the while loop at line
6, it discovers that the loop has no user-supplied annotations. In that case, it uses
an augmented technique (details follow slightly later) to synthesise the loop’s pre-
and post-shapes, and invoke the analysis procedure recursively to find additional
pure constraints. In this way, we can infer the while loop’s postcondition as

sdlB(head, null, root, Sh) ∗ sdlB(root, p, tail, Sr) ∧
end=tail ∧ S=Sh⊔Sr ∧ (∀x∈Sh, y∈Sr·x≤y) ∧ 0≤|Sr|−|Sh|≤1

(1)

which indicates that the original list starting from head is cut into two sorted
pieces with a cutpoint root. Meanwhile, the essential constraint (the underlined
part, saying the list segment beginning with head is at most one node shorter
than that with root) to ensure the node-balanced property is derived as well.

When the symbolic execution finishes, it generates the following constraint
abstraction as the postcondition of the method:

Q(head, p, q, S, res, Sres) ::= (†)
root7→node2(v, null, null)∧head=root=res∧tmp=q=tail∧p=null∧S={v}

∨ head7→node2(s, null, root) ∗ root7→node2(v, resh, null) ∧ res=root ∧
tmp=q=tail ∧ p=null ∧ S={s, v} ∧ s≤v

∨ root7→node2(v, resh, resr) ∗ Q(head, p, root, Sh, resh, S
h
res) ∗

Q(tmp, null, tail, Sr, resr, S
r
res) ∧ head6=root ∧ root=res ∧ tmp6=tail ∧

q=tail ∧ S=Sh⊔{v}⊔Sr ∧ (∀x∈Sh, y∈Sr·x≤v≤y) ∧ 0≤|Sr|−|Sh|≤1

where the first two disjunctive branches are base cases of the method’s invocation
(where there are only one and two nodes in the returned tree res, respectively),
and the last denotes the effect of recursive calls combined into the postcondition
(where root’s both branches are node-balanced trees). Note that the two Q’s
in the last branch correspond to the invocations of sdl2nbt in lines 12 and 16.
Constraints of some logical variables (like Sres) will not show up until the next
step.

In the second step, to derive the definition of the pure constraint abstraction
P from the above post-state Q, we use each disjunctive branch of Q to entail
the user-given post-shape (with appropriate instantiations of the parameters).
During this process, all occurrences of Q are replaced by the post-shape conjoined
with the P according to the entailment relation

Q(head, p, q, S, res, Sres) ⊢ nbt(res, Sres) ∧ P(head, p, q, S, res, Sres)

The obtained frames (from the Sleek prover [23]) are used to form (via disjunc-
tion) the definition of P:
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P(head, p, q, S, res, Sres) ::= (‡)
head=root=res ∧ tmp=q=tail ∧ p=null ∧ S=Sres={v}

∨ head6=root ∧ res=root ∧ tmp=q=tail ∧ p=null∧S=Sres={s, v} ∧ s≤v
∨ P(head, p, root, Sh, resh, S

h
res) ∧ P(tmp, null, tail, Sr, resr, S

r
res) ∧

head6=root ∧ root=res ∧ tmp6=tail ∧ q=tail ∧ S=Sh⊔{v}⊔Sr ∧
Sres=S

h
res⊔{v}⊔S

r
res ∧ (∀x∈Sh, y∈Sr·x≤v≤y) ∧ 0≤|Sr|−|Sh|≤1

We then use pure fixpoint solvers to obtain a closed-form formula p=null ∧
q=tail ∧ S=Sres ∧ |S|≥1 for P, and refine the method’s specifications as

requires sdlB(head, p, q, S) ∧ p=null ∧ q=tail ∧ |S|≥1
ensures nbt(res, Sres) ∧ S=Sres

which proposes more requirements in the precondition, as the head’s prev field
should be null, and the whole list’s last node’s next field must point to tail

for termination. Meanwhile, there should be at least one node in the list for
memory safety. With those obligations, the method guarantees that the result
is a node-balanced binary search tree, with the same content as the input list.1

Analysis for the while loop. The while loop in sdl2nbt (lines 6-10) discovers
the centre node of the given list segment referenced by head. It traverses the list
segment with two pointers root and end. The end pointer goes towards the list
segment’s tail twice as fast as root. When end arrives at the tail of the segment
(tail), root will point to the list segment’s centre node.

Instead of requiring users to supply the loop invariant, our analysis regards
the loop as a tail-recursive method and computes its specifications based on the
program state in which the loop starts. Our analysis first synthesises its pre- and
post-shapes, and then continues the analysis in the same way as for the main
method. The pre-shape can be abstracted from the program state in which the
loop starts. The post-shape synthesis is done by checking the symbolic execu-
tion result of the loop body (unrolled once) against possible abstracted shapes.
For this example, we first generate shape candidates according to the variables
accessed by the loop, such as (a) sdlB(head, ph, qh, Sh) ∗ sdlB(root, pr, qr, Sr),
and (b) sdlB(head, ph, qh, Sh)∗nbt(root, hr, br, Sr). Then the unrolled loop body
is symbolically executed to filter out those shapes that are not valid to be an
abstraction of postcondition. For this example, executing the loop body yields

head 7→node2(v, p, end) ∧ head=root ∧ end=tail ∨
head 7→node2(vh, p, root) ∗ root7→node2(vr, head, end) ∧ end=tail

(2)

where (b) is directly filtered out since (2) ⊢ (b) ∗ true fails. However (a) remains
a candidate, as (2) ⊢ (a) ∗ true holds. Therefore, regarding (a) as a possible post-
shape, we can employ the same approach to generate a constraint abstraction
for the while loop, and solve it to obtain formula (1) in page 5.

3 Language and Abstract Domain

We focus on a strongly-typed C-like imperative language in Fig 3. A program
Prog consists of type declarations tdecl, which can define either data type datat

(e.g. node) or predicate spred (e.g. llB), and some method declarations meth.
The language is expression-oriented, so the body of a method is an expression

1 We will explain how to attach the fixpoint result to both pre and post in Sec 4.
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Prog ::= tdecl∗ meth∗ tdecl ::= datat | spred
datat ::= data c { field∗ } field ::= t v t ::= c | τ
meth ::= t mn ((t v)∗; (t v)∗) mspec∗ {e} τ ::= int | bool | void
e ::= d | d[v] | v=e | e1; e2 | t v; e | if (v) e1 else e2 | while (v) {e}
d ::= null | kτ | v | new c(v∗) | mn(u∗; v∗)
d[v] ::= v.f | v.f :=w | free(v)

Fig. 3. A Core (C-like) Imperative Language.

composed of e (the recursively defined program constructor) and d and d[v] (atom
instructions/expressions). We also allow both call-by-value and call-by-reference
method parameters (which are separated with a semicolon ;).

spred ::= pred(v∗) ≡ Φ
mspec ::= requires Φpr ensures Φpo

∆ ::= Q(v∗) | Φ | ∆1∨∆2 | ∆∧π | ∆1∗∆2 | ∃v·∆
Φ ::=

∨
σ∗ σ ::= ∃v∗·κ∧π

Υ ::= P(v∗) |
∨

ω∗ | Υ1∧Υ2 | Υ1∨Υ2 | ∃v·Υ
κ ::= emp | v 7→c(v∗) | pred(v∗) | κ1 ∗ κ2

ω ::= ∃v∗·π π ::= γ∧φ
γ ::= v1=v2 | v=null | v1 6=v2 | v 6=null | γ1∧γ2
φ ::= ϕ | b | a | φ1∧φ2 | φ1∨φ2 | ¬φ | ∃v · φ | ∀v · φ
b ::=true | false | v | b1=b2 a ::=s1=s2 | s1≤s2
s ::= kint | v | kint×s | s1+s2 | −s | max(s1,s2) | min(s1,s2) | |B|
ϕ ::= v∈B | B1=B2 | B1<B2 | B1⊑B2 | ∀v∈B·φ | ∃v∈B·φ
B ::= B1⊔B2 | B1⊓B2 | B1−B2 | {} | {v}

Fig. 4. The Specification Language.

Our specification language (in Fig 4) allows (user-defined) shape predicates
to specify both separation and pure properties. The shape predicates spred are
constructed with disjunctive constraints Φ. We require that the predicates be
well-formed [23]. A conjunctive abstract program state, σ, is composed of a heap
(shape) part κ and a pure part π, where π consists of γ, φ and ϕ as aliasing,
numerical and bag information, respectively. We use SH to denote the set of
such conjunctive states. During the symbolic execution, the abstract program
state at each program point will be a disjunction of σ’s, denoted by ∆. Note
that constraint abstractions (e.g. Q(v∗)) may occur in ∆ during the analysis. A
closed-form ∆ (containing no constraint abstractions) can be normalised to the
Φ form [23]. Pure constraint abstraction P is analogously defined to Q.

Our memory model is adapted from that of separation logic [28], except that
we consider memory cells to be structured records. The detailed model definitions
can be found in Nguyen et al. [23]. Meanwhile, for program variables in abstract
states, we use unprimed ones to denote their initial values and primed ones for
current values [23, 27].

4 The Analysis

In this section, we first formulate the main analysis for (primary) methods
with given shape specifications. We then show how the analysis is extended to
handle auxiliary methods (including loops) without user annotations.
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4.1 Refining Specifications for Primary Methods

The algorithm for refinement (CA Gen Solve) is given in Fig 5. As illustrated
in Section 2, the analysis proceeds in two steps for a primary method with shape
information given in specification, namely (1) forward analysis (at lines 1-2) and
(2) pure constraint abstraction generation and solving (at lines 3-10).

Algorithm CA Gen Solve(T ,mn, e, Φpr,Φpo,u
∗,v∗)

1 ∆ := Symb Exec(T ,mn, e, Φpr)

2 if ∆ = fail then return fail end if

3 Normalise ∆ to DNF, and denote as
∨m

i=1 ∆i

4 w∗:={u∗,v∗,v′∗}∪ pureV({u∗,v∗,v′∗}, Φpr∨Φpo)

5 ∆P := Pure CA Gen(Φpo, Q(w
∗)::=

∨m

i=1 ∆i)

6 if ∆P = fail then return fail end if

7 π := Pure CA Solve(P(w∗)::=∆P)

8 R := t mn ((t u)∗; (t v)∗) requires
! ex quan(Φpr, π) ensures ex quan(Φpo, π)

9 if Verify(T ,mn,R) then return T ∪ {R} \
! { tmn ((t u)∗; (t v)∗) requiresΦpr ensuresΦpo }

10 else return fail end if

end Algorithm

Algorithm Symb Exec

! (T ,mn, e, Φpr)

11 errLbls := ∅

12 do

13 (∆, l) := |[e]|mn

T
(Φpr, 0)

14 if l>0∧l /∈errLbls then

15 Φpr:=ex quan(Φpr,∆);

16 errLbls := errLbls∪{l}

17 else if l>0 ∧ l∈errLbls
! then return fail

18 end if

19 while l > 0

20 return ∆

end Algorithm

Fig. 5. Refining method specifications.

The forward analysis is captured as algorithm Symb Exec to the right of
Fig 5. Starting from a given pre-shape Φpr, it analyses the method body e to
compute the post-state in constraint abstraction form. Due to space constraints,
the symbolic execution rules are given in our technical report [27]. They are
similar to symbolic rules used in [23], except for a novel mechanism to derive
pure precondition, which we refer to as pure abduction.

This pure abduction mechanism is invoked whenever symbolic execution fails
to prove memory safety based on the current prestate. For example, if the current
state is ll(x, n) (a list that is possibly empty) but x7→node( , p) is required by
the next program instruction, our pure abduction mechanism will infer n≥1
to add to the current state to satisfy the requirement. The variable errLbls

(initialised at line 11) is to record the program locations in which previous pure
abductions occurred. Whenever the symbolic execution fails, it returns a state
∆ that contains the pure abduction result and the location l where failure was
detected, as shown in line 13. If the current abduction location l is not recorded
in errLbls, it indicates that this is a new failure. The abduction result is added
to the precondition of the current method to obtain a stronger Φpr, before the
algorithm enters the symbolic execution loop with variable errLbls updated to
add in the new failure location l. This loop is repeated until symbolic execution
succeeds with no memory error, or a previous failure point was re-encountered.
The latter may indicate a program bug or a specification error, or may be due
to the possible incompleteness of the underlying Sleek prover we use.

Back to the main algorithm CA Gen Solve, the analysis next builds a heap-
based constraint abstraction mechanism, named Q(w∗), for the post-state in steps
3-4. This constraint abstraction is possibly recursive. (Definition † in page 5 is an
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example of this heap-based abstraction.) We then make use of another algorithm
in Fig 6, named Pure CA Gen, to extract a pure constraint abstraction, named
P(w∗), without any heap property. (Definition ‡ in page 6 is an instance of this
pure abstraction.) This algorithm tries to derive a branch Pi for each branch
∆i of Q. For every ∆i it proceeds in two steps. In the first step (lines 22-24), it
replaces the recursive occurrence of Q in ∆i with σ ∗ P(w∗). In the second step
(lines 25-26) it tries to derive Pi via the entailment. If the entailment fails, then
pure abduction is used to discover any missing pure constraint σ′

i for ρ∆i to allow
the entailment to succeed. In this case, σ′

i is incorporated into σi (and eventually
Pi). Once this is done, we use some existing fixpoint analysis (e.g. [25]) inside
Pure CA Solve to derive non-recursive constraint π, as a simplification of P(w∗).
This result is then incorporated into the pre/post specifications in line 8, before
we perform a post verification in line 9 using the Hip verifier [23], to ensure the
strengthened precondition is strong enough for memory safety.

Two auxiliary functions used in the algorithm are described here. The func-
tion pureV(V,∆) retrieves from ∆ the shapes referred to by all pointer vari-
ables from V , and returns the set of logical variables used to record numerical
(size and bag) properties in these shapes, e.g. pureV({x}, ll(x, n)) returns {n}.
This function is used in the algorithm to ensure that all free variables in Φpr

and Φpo are added into the parameter list of the constraint abstraction Q. The
function ex quan(∆,π) is to strengthen the state ∆ with the abduction result
π: ex quan(∆,π) =df ∆ ∧ ∃(fv(π) \ fv(∆)) · π. It is used to incorporate the dis-
covered missing pure constraints into the original specification. For example,
ex quan(ll(x, n), 0<m ∧ m≤n) returns ll(x, n) ∧ 0<n.

Algorithm Pure CA Gen(σ, Q(w∗)::=
∨m

i=1 ∆i)

21 for i = 1 to m

22 Denote all appearances of Q(w∗) in ∆i as Qj(w
∗
j ), j = 1, ..., p

23 Denote substitutions ρj = [([w∗
j /w

∗]σ ∗ P(w∗
j ))/Qj(w

∗
j )]

24 Let substitution ρ := ρ1 ◦ ρ2 ◦ ... ◦ ρp as applying all substitutions
! defined above in sequence

25 if (ρ∆i ⊢ σ ∗ σi or ρ∆i ∧ [σ′
i]� σ ∗ σi) and ispure(σi) then Pi := σi

26 else return fail end if

27 end for

28 return
∨m

i=1 Pi

end Algorithm

Fig. 6. Pure constraint abstraction generation algorithm.

Pure abduction mechanism. We use the Sleek prover [23] to check ∆1 en-
tails∆2. If the entailment holds it also derives the frame∆3 such that∆1 ⊢ ∆2 ∗∆3.
However, if it fails, we assume that the shape information is sufficiently provided,
and use our pure abduction mechanism (σ1 ∧ [σ′]� σ2 ∗ σ3 in Fig 7) to discover
missing pure constraints σ′ so that σ1 ∧ σ′ ⊢ σ2 ∗ σ3.

Our pure abduction deals with three different cases. The first rule (R1) applies
when the LHS (σ) does not entail the RHS (σ1) but the RHS entails the LHS
with some pure formula (σ′) as the frame; e.g. in ll(x, n) 0 x7→node( , null),
the RHS can entail the LHS with pure frame n=1. The abduction then checks to



10 S. Qin, C. Luo, W.-N. Chin and G. He

ensure ll(x, n)∧ n=1 ⊢ x7→node( , null)∗σ2 for some σ2, and returns the result
n=1. Note the check ispure(σ′) ensures that σ′ contains no heap information.

σ 0 σ1 ∗ true σ1 ⊢ σ ∗ σ′ ispure(σ′) σ ∧ σ′ ⊢ σ1 ∗ σ2

σ ∧ [σ′]� σ1 ∗ σ2

(R1)

σ 0 σ1 ∗ true σ1 0 σ ∗ true σ0 ∈ unroll(σ) data no(σ0) ≤ data no(σ1)
(σ0 ⊢ σ1 ∗ σ

′ or σ0 ∧ [σ′
0]� σ1 ∗ σ

′) ispure(σ′) σ ∧ σ′ ⊢ σ1 ∗ σ2

σ ∧ [σ′]� σ1 ∗ σ2

(R2)

σ 0 σ1 ∗ true σ1 0 σ ∗ true σ1 ∧ [σ′
1]� σ ∗ σ′ ispure(σ′) σ ∧ σ′ ⊢ σ1 ∗ σ2

σ ∧ [σ′]� σ1 ∗ σ2

(R3)

Fig. 7. Pure abduction rules.

In the second rule (R2), neither side entails the other but the LHS term could
be unfolded. An example is σ = sllB(x, S), σ1 = x7→node(u, p) ∗ p7→node(v, null).
As the shape predicates on the LHS are of disjunctive forms (i.e. sllB in σ),
certain branches of σ may entail σ1. As the rule suggests, to accomplish abduc-
tion σ ∧ [σ′]� σ1 ∗ σ2, we first unfold σ and try entailment or further abduction
with the results (σ0) against σ1. If it succeeds with a pure frame σ′, then we
confirm the abduction by checking σ ∧ σ′ ⊢ σ1 ∗ σ2. For the example above, the
abduction returns |S|=2 (σ′) and discovers the nontrivial frame S={u, v} ∧ u≤v
(σ2). Note that function data no returns the number of data nodes in a state,
e.g. it returns one for x7→node(v, p)∗ll(p, m). (This syntactic check is important
for the termination of the abduction.) The unroll operation unfolds all shape
predicates once in σ, normalises the result to a disjunctive form (

∨u

i=1 σ
i), and

returns the result as a set of formulae ({σ1, ..., σu}).

In the third rule (R3), neither side entails the other and the LHS term cannot
be unfolded. e.g., σ = x7→node(u, p) ∗ p7→node(v, null), σ1 = ∃S · sllB(x, S). In
this case, the rule swaps the two sides of the entailment and applies the second
rule to uncover the pure constraints σ′

1 and σ′. It checks that adding σ′ to the
LHS (σ) entails the RHS (σ1) before it returns σ

′. For the example, the abduction
returns u≤v which is essential for the two nodes to form a sorted list (RHS).

4.2 Inferring Specifications for Auxiliary Methods and Loops

For auxiliary methods2, we conduct a pre-analysis (Fig 8) to synthesise the
pre- and post-shapes before we conduct the refinement analysis from Fig 5. Loops
are dealt with by analysing their tail-recursive versions in the same way. This
approach alleviates the need for users to provide specification annotations for
both loops and auxiliary methods.

The pre-shape synthesis algorithm SynPre (Fig 8 left) takes in as input the set
of shape predicates (S), the auxiliary method name (f), its formal parameters
(u∗, v∗), the current symbolic state in which f is called (σ), and the correspond-
ing actual parameters (x∗, y∗) of the invocation. The algorithm first obtains
possible shape candidates from the parameters u∗, v∗ with ShpCand (line 1),

2 In practice, we treat methods without user-specified shape specifications as auxiliary.
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Algorithm SynPre

! (S, f, u∗, v∗, σ, x∗, y∗)

1 C := ShpCand(S, u∗, v∗)
2 for σC ∈ C do

3 if σ 0 [x∗/u∗, y∗/v∗]σC

4 thenC:=C\{σC} end if

5 end for

6 return C

end Algorithm

Algorithm SynPost (T ,S, f, e, Φpr, u
∗, v∗)

7 C := ShpCand(S, u∗, v∗)

8 T ′:=T ∪{f(u∗,v∗) requiresΦpr ensures false {e}}

9 ∆ := Symb Exec(T ′, f, syn unroll(f, e), Φpr)

10 for σC ∈ C do

11 if ∆∧[σ] ⋫ σC then C := C\{σC} end if

12 end for

13 return pair spec list(Φpr, C)
end Algorithm

Fig. 8. Shape synthesis algorithms.
then picks up a sound abstraction for the method’s pre-shape with entailment,
and filter out the ones which fail (line 4). Finally the pre-shape abstraction is re-
turned. While we use an enumeration strategy here, the number of possible shape
candidates per type is small as it is strictly limited by what the user provides in
the primary methods, and then filtered and prioritised by our system.

To synthesise post-shapes (SynPost, Fig 8 right), we also assign C as possi-
ble shape candidates (line 7). We unroll f ’s body e once (i.e. replace recursive
calls to f in e with a substituted e) and symbolically execute it (line 9), as-
suming f has a specification requires Φpr ensures false (line 8). The postcon-
dition false is used to ensure that the execution only considers the effect of
the program branches with no recursive calls (to f itself). We then use ∆ to
find out appropriate abstraction of post-shape (line 11), which is paired with
Φpr and returned as result. Here we use pure abduction to filter post-shapes to
preserve as many shapes that are potentially refinable as possible. The func-
tion pair spec list(Φpr, C) forms an ordered list of pre-/post-shape pairs, each of
which has Φpr as pre-shape and a Φpo in C as post-shape.

We illustrate our procedure to generate and confirm candidate shape abstrac-
tions (ShpCand) with an example. If we have two parameters x and y with type
node, and two compatible shape predicates llB and sllB, then the list of all pos-
sible shape candidates for the two variables (C) will be [sllB(x, S) ∗ sllB(y, T),
llB(x, S) ∗ sllB(y, T), sllB(x, S) ∗ llB(y, T), llB(x, S) ∗ llB(y, T), sllB(x, S),
sllB(y, S), llB(x, S), llB(y, S), emp]. Elements of this list will be checked against
appropriate abstract states (line 4 in Fig 8 left and line 11 in Fig 8 right) where
most elements should be reduced because they are not sound abstractions. For
example, in the previous list, only llB(x, S) ∗ llB(y, T) remains in the list and
participates in further verification.

The initial experimental results confirm that our shape synthesis keeps only
highly relevant abstractions. For the while loop in Section 2, we filtered out
24 (of 26) abstractions. Generally, in case that there are several abstractions
as candidate specifications, we employ some other mechanisms to reduce them
further. Firstly, we prioritise post-shapes with same (or stronger) predicates as in
precondition since it is more likely that the output will have the same or similar
shape predicates as the input, e.g. x is expected to remain as sllB (or stronger)
if it points to sllB as input. Secondly, we employ a lazy scheme when refining
the synthesised pre/post-shapes (to complete specifications). We retrieve (and
remove) the pre/post-shape pair from the head of the list, (1) use the refinement
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algorithm (Fig 5) to obtain a specification for the auxiliary method, and (2)
continue the analysis for the primary method. If the analysis for the primary
method succeeds, we will ignore all other synthesised pre/post-shapes from the
list. These mechanisms help to keep attempts over candidate specifications at a
minimum level.

Soundness. Based on the soundness of the following: the entailment prover [23],
the abstract semantics (w.r.t. the concrete semantics), the pure constraint ab-
straction generation, and the fixpoint calculation [24, 25], we have

Theorem 1 (Soundness). Our analysis is sound with respect to the underlying

operational semantics.

The proof and more details can be found in the technical report [27].

5 Experiments and Evaluation

We have implemented a prototype system for evaluation. Our experimental
results were achieved with an Intel Core 2 CPU 2.66GHz with 8Gb RAM. The
four columns in Fig 9 describe, resp., the analysed programs, the analysis time
in seconds, and the primary methods’ (given and inferred) preconditions and
postconditions. All formulae with a grey background are inferred by our anal-
ysis. For some programs, we have verified them with different pre/post shape
templates. More results and details are available in the report [27].

The results highlight the refinement of both pre- and postconditions based
on user-provided shape specifications, even for complicated data structures such
as AVL and red-black trees. Firstly, our approach can compute non-trivial pure
constraints for postcondition, e.g. for delete we know the content of the result
list is subsumed by that of the input list, for list-sorting algorithms we confirm
the content of the output is the same as that of the input, and for tree-processing
programs (insert, delete and avl ins), we obtain that the height difference
between the input and output trees is at most one. Meanwhile, we can calcu-
late non-trivial requirements in precondition for memory safety or functional
correctness. As an example, the travrs method, taking in a list with length m

and an integer n, traverses towards the tail of the list for n steps. the analysis
discovers m≥n in the precondition to ensure memory safety. Another example
is the append method concatenating two sorted lists into one. To ensure that
the result list is sorted, the analysis figures out that the minimum value in the
second list must be no less than the maximum value in the first list.

A second highlight is our flexibility by supporting multiple predicates. Our
analysis tries to refine different specifications for the same program at various
correctness levels (with different predicates), e.g. sort insert and append. For
rand insert, which inserts a node into a random place (after the head) of a list,
we confirm that the list’s length is increased by one, but cannot verify the list
is kept sorted if it was before the insertion, as the result indicates.

Another highlight is that we can reduce user annotations by synthesising
specifications for auxiliary methods, given raw specifications of primary methods.
For example, we have analysed a number of list-sorting algorithms with at least
one auxiliary method each. We list two auxiliary methods (merge for merge sort
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Prog. Time Pre Post

List processing programs

sort

insert

0.591 ll(x, n) ∧ n≥1 ll(x, m) ∧ m=n+1

0.504 sll(x, n, xs, xl)∧ v≥xs sll(x, m, mn, mx)∧ xs=mn∧mx=max(xl,v)∧m=n+1

rand

insert

0.522 ll(x, n) ∧ n≥1 ll(x, m) ∧ m=n+1

— sll(x, n, xs, xl)∧ (fail) sll(x, m, mn, mx)∧ (fail)

delete 1.024 sllB(x, S) ∧ |S|≥2 sllB(x, T) ∧ ∃a.S=T⊔{a}

travrs 0.296 ll(x, m)∧ n≥0∧m≥n ls(x, p,k)∗ll(res, r)∧ p=res∧k=n∧m=n+r

append

0.512 ll(x, xn)∗ll(y, yn)∧ xn≥1 ll(x, m) ∧ m=xn+yn

0.948
sll(x, xn, xs, xl)∧ xl≤ys

∗ sll(y, yn, ys, yl)
sll(x, m, rs, rl) ∧ yl=rl ∧ m≥1+yn ∧ m=xn+yn

Sorting (main) llB(x, S) ∧ |S|≥1 sllB(res, T) ∧ T=S (⋆)

merge 4.107 sllB(x, Sx) ∗ sllB(y, Sy) sllB(res, T) ∧ T=Sx⊔Sy

flatten 2.693 bstB(x, S) sllB(res, T) ∧ T=S

Binary tree, binary search tree, AVL tree and red-black tree processing programs

insert 1.276 bt(x, S, h) ∧ |S|≥1 ∧ h≥1 bt(x, T, k) ∧ T=S⊔{v} ∧ h≤k≤h+1

delete 0.970 bt(x, S, h) ∧ |S|≥2 ∧ h≥2 bt(x, T, k) ∧ ∃a.S=T⊔{a} ∧ h−1≤k≤h

search 1.583 bst(x, sm, lg) bst(x, mn, mx) ∧ sm=mn ∧ lg=mx ∧ 0≤res≤1

bst

insert
1.720 bst(x, sm, lg)

bst(x, mn, mx) ∧ (v<sm∧v=mn∧lg=mx∨

lg<v∧v=mx∧sm=mn ∨ sm=mn∧lg=mx)

avl ins 11.12 avl(x, S, h) avl(res, T, k) ∧ T=S⊔{v} ∧ h≤k≤h+1

rbt ins 8.76 rbt(x, S) rbt(res, T) ∧ T=S⊔{v}

Fig. 9. Selected Experimental Results.

and flatten for tree sort) and their discovered specifications. Note that these
sorting algorithms have the same specification for their primary methods (line
⋆). As another example, avl ins also has some auxiliary (recursive) methods
such as calculation of tree’s height, which are automatically analysed as well.

We have also tried our approach over part of the FreeRTOS kernel [2]. For
its list processing programs list.h and list.c (472 lines with intensive manip-
ulation over composite sorted doubly-linked lists) it took 2.85 seconds for our
prototype to refine all the specifications given for the main functions, which
further confirms the viability of our approach.

6 Related Work and Conclusion

Related works. The local shape analysis [9] infers loop invariants for list-
processing programs, followed by the SpaceInvader tool to verify larger industrial
codes [5, 32]. Gulavani et al. [12] propose a stronger bi-abduction algorithm to
compute the shape pre/post-condition at the same time. The SLAyer tool [11]
implements an interprocedural shape analysis. To infer also size information,
THOR [19, 20] is armed with additional numerical analysis to gain better pre-
cision. Gulwani et al. [13] combine a set domain with its cardinality domain
in a general framework. Magill et al. [21] instrument programs with numeri-
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cal instructions from which pure numerical programs are generated for further
analysis. Compared with these, our approach can handle additional data struc-
tures with stronger invariants like sortedness, height-balanced and bag-related
invariants. Relational inductive shape analysis [6] employs inductive checkers to
express shape and numerical information, where they only demonstrate how to
analyse a program with one particular shape. Our previous loop invariant syn-
thesis [26] also infers strong loop invariants. Compared with them, this work is
inter-procedural and addresses specification refinement with pure properties in
both pre- and postconditions in two phases (for shape and pure resp.) with pure
abduction.

There are also other approaches to expressing heap-based domains than sep-
aration logic. Hackett and Rugina [16] can deal with AVL-trees but is customised
to handle only tree-like structures with height property. TVLA [30] can handle
complicated data structure properties like sortedness. Bouajjani et al. [3] syn-
thesise list-related invariants over infinite data domains using graph heap rep-
resentation. Comparatively, separation logic based approach benefits from the
frame rule and local reasoning. Meanwhile, our approach aims at full functional
correctness including both quantitative and content properties of shapes.

Automated assertion discovery techniques [8, 14, 31] mainly find numerical
program properties. Our work is complementary to them as we focus more
on refining specifications for heap-manipulating programs. Semi-automatic ap-
proaches [17, 29] are also used to infer numerical constraints for given type tem-
plates in functional programs, where data structures are mostly immutable.

On the verification side, the Hip/Sleek verification system [23] supports
user-defined shape predicates over a combined domain. The PALE system [22]
transforms constraints in the pointer assertion logic (PAL) into monadic second-
order logic (MSOL) and discharge them with MONA. JML [4] uses model/ghost
fields and model methods to specify/model Java program properties. Jahob [18]
also verifies Java and focuses more on heap shape. Spec# [1] is for C# by enforc-
ing object invariants and method specifications. Havoc [7] is another verification
tool for C language about heap-allocated data structures, using a novel reachabil-
ity predicate. Compared with these works, we can free users from writing whole
specifications by requiring only partial specifications, and omit annotations for
loops and auxiliary methods.

Concluding remarks. We have reported a new approach to program verifica-
tion that accepts partial specifications of methods, and refines them by discover-
ing missing constraints for numerical and bag properties, aiming at full functional
correctness for pointer-based data structures. We further augment our approach
by requiring only partial specification for primary methods. Specifications for
loops and auxiliary methods can then be systematically discovered. We have
built a prototype system and the initial experimental results are encouraging.
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