
Automated Specification Discovery in a
Combined Abstract Domain

Guanhua He1, Shengchao Qin1, Wei-Ngan Chin2 and Chenguang Luo3

1 Teesside University, Middlesbrough TS1 3BA, UK
2 National University of Singapore

3 Citigroup Inc.
S.Qin@tees.ac.uk, G.He@tees.ac.uk, chinwn@comp.nus.edu.sg

Abstract. Discovering program specifications automatically for heap-
manipulating programs is a challenging task due to the complexity of
aliasing and mutability of data structures used. This paper describes a
compositional analysis framework for discovering program specifications
in a combined abstract domain with shape, numerical and bag (multi-
set) information. The framework analyses each method and derives its
summary independently from its callers. We propose a novel abstraction
method with a bi-abduction technique in the combined domain to dis-
cover pre/post-conditions which cannot be automatically inferred before.
The analysis does not only prove the memory safety properties, but also
finds relationships between pure and shape domains towards full func-
tional correctness of programs. A prototype of the framework has been
implemented and initial experiments have shown that our approach can
discover interesting properties for non-trivial programs.

1 Introduction

In automatic program analysis, certain kinds of program properties have been
well explored over the last decades, such as numerical properties in linear ab-
straction domain, and shape properties for list-manipulating programs in separa-
tion domain. However, previous works are not sufficient to analyse automatically
program properties in complex mixed domains, especially for programs with so-
phisticated data structures and strong invariants involving both structural and
pure information. Examples of such properties include, that a list remains sorted
during the execution of a program, that a binary search tree is balanced before
and after the execution of a program procedure, and that the elements of a list
remain unchanged after reversing the list. The difficulty is not only due to shar-
ing and mutability of data structures under manipulation, but also the need to
track often closely intertwined program properties, such as structural numerical
information (length and height), symbolic contents of data structures (bag of
values stored in a tree), and relational numerical information (sortedness and
balancedness).

In addition to classical shape analyses (e.g. [1, 5, 13, 27]), separation logic [12,
24] has been applied to analyse shape properties of heap-manipulating programs

in recent years [2, 6, 28]. These works can automatically infer method specifi-
cations for shape properties of programs. A more recent work THOR [15, 16]
also incorporated simple numerical information into the shape domain to allow
automated synthesis of properties like data structure size information.

However, these previous analyses mainly focus on relatively simple proper-
ties, such as pointer safety for lists and list length information. To analyse more
complex properties of heap-manipulating programs, such as sortedness and bal-
ancedness properties, our recent work [22] offers a template-based approach,
whereby users supply shape templates in pre-/post-conditions of procedures and
the analysis infers the missing pure information to complete the given templates.
While that approach does not require an analysis in the combined domain, one of
its limitations is it relies on users to supply the pre-/post-shape templates. If the
supplied templates do not cover all the required heap portion, or are not precise
enough, or even are essentially unsound for the program (an extreme example
being {true} Prog {false}), it will fail to discover the full specifications.

To overcome these limitations, in this paper we propose a direct one-pass
analysis in a combined abstraction with separation, numerical and bag informa-
tion. To the best of our knowledge, this is the first time where such a combi-
nation of domains have been used together for inferring pre/post specifications.
One advantage of doing so is that we do not only analyse functional correct-
ness and memory safety separately, but also find close relationships between
shape and pure (numerical and bag) domains. What we propose is a composi-
tional analysis by abstract interpretation in such a combined domain. That is,
we analyse a program fragment without any given contextual information, and
we analyse each method in a modular way independent of its callers. To gen-
erate pre-/postconditions, our analysis adopts a new bi-abduction mechanism
over the combined domain, which extends the bi-abduction technique proposed
by Calcagno et al. [2]. As in our previous work, our analysis allows users to sup-
ply creatively defined shape predicates, while it does not require users to supply
partial specifications or annotations for program code to be analysed.

In summary, this paper makes the following contributions:

– We have designed a program analysis framework which can discover program
pre/post-conditions (involving heap, numerical and bag properties) automat-
ically without being given any contextual information about the program.

– For such framework, we have described a compositional analysis for abstract
interpretation in a combined pure and shape domain.

– We have defined novel operations for abstraction, join and widening with an
extended bi-abduction technique over the combined domain.

– We have conducted some initial experiments. These experimental results help
us confirm the viability and precision of our solution in finding non-trivial
program specifications.

Outline. The rest of the paper is structured as follows. We first illustrate our
approach informally via two examples (Section 2), and then give our program-
ming and specification languages (Section 3) as well as our abduction mechanism

(Section 4). Formal details about specification discovery are presented in Sec-
tion 5, followed by initial experimental results in Section 6. Lastly, we present
related work and some concluding remarks.

2 The Approach

In the section we will first introduce our specification mechanism, followed by
illustrative examples of our analysis.

2.1 Separation Logic and User-defined Predicates

Separation logic [24] extends Hoare logic to support reasoning about shared
mutable data structures. It provides separation conjunction (∗) to form formulae
like p1∗p2 to assert that two heaps described by p1 and p2 are domain-disjoint. In
our analysis, we use this approach to allow user-defined inductive predicates to
specify both separation and pure properties. For example, with a data structure
definition for a node in a list data node { int val; node next; }, we can define
a predicate for a list with its content as

root::llB〈n, S〉 ≡ (root=null∧n=0∧S=∅)∨
(∃v, q, n1, S1 · root::node〈v, q〉∗q::llB〈n1, S1〉∧n1=n−1∧S=S1t{v})

The parameter root for the predicate llB is the root pointer referring to the
list. Its length is denoted by n, and content is S. A uniform notation p::c〈v∗〉 is
used for either a singleton heap or a predicate. If c is a data node, the notation
represents a singleton heap, p7→c[v∗], e.g. the root::node〈v, q〉 above. If c is a
predicate name, then the data structure pointed to by p has the shape c with
parameters v∗, e.g., the q::llB〈n1, S1〉 above.

If users want to verify a sorting algorithm, they can incorporate sortedness
property as follows:

sllB〈S〉 ≡ (root=null∧S=∅)∨
(root::node〈v, q〉∗q::sllB〈S1〉∧S=S1t{v}∧∀u∈S1·v≤u)

where we use the following shortened notation: (i) default root parameter on
the left hand side may be omitted, (ii) unbound variables, such as q, v and S1,
are implicitly existentially quantified. Later we may also use the underscore to
denote an existentially quantified anonymous variable.

2.2 Illustrative Examples

Example of Filter. Firstly, we illustrate our analysis approach via an example
filter (Figure 1), which selects elements from a list that satisfy certain con-
dition (≤ k). The example is based on the data structure Node, and the shape
predicate is llB as we defined earlier.

1 Node filter(Node x, int k)

2 {

3 if (x == null) {

4 return x;

5 } else if (x.val <= k) {

6 Node t = x.next;

7 x.next = filter(t, k);

8 return x;

9 } else {

10 Node t = x.next;

11 free(x);

12 x = filter(t, k);

13 return x;

14 } }

Fig. 1. Filtering the elements of a list.

Our analysis aims at finding sound and precise specification (summary) (Pre,
Post) of the method. Before the analysis, we use a pair (emp, false) as an initial
pre-/post-condition of the method, which means we have no knowledge about the
program’s requirement or effect yet. During the analysis, we use a pair of states
(Pre, Curr) to keep trace of the precondition we discovered and the current state
we reached, respectively. If the current precondition is not sufficient to operate
the program command, we use an abductive inference mechanism to synthesise
a candidate precondition M as the missing precondition. At the beginning of
the analysis, this pair is (emp, emp). We iterate the method body by symbolic
execution for a number of passes until the pre-/post-condition reaches a fixed
point. To ensure convergence, we have designed operations of abstraction, join
and widening over both shape and pure domains to achieve the fixed point.

For the example filter, the analysis starts with (emp∧x=x′∧k=k′, emp)
before line 2 in the first iteration, where we use primed variables to keep track
of the current value of program variables, and unprimed variables to keep the
initial value in the precondition. (Since the value of k is not changed during the
program execution, we omit k=k′ in the presentation.) The branch from line 5
to line 13 is “short-circuited” in the first iteration, as the current Post of the
method (false) is applied as the effect of the recursive call. To enter line 4, the
condition x == null needs to be satisfied with precondition. We apply abduction
mechanism and discover x=null to add to precondition. After executing return

x, we have an initial summary of the method:

(Pre1,Post1) := (emp∧x=null∧x=x′, emp∧res=null∧res=x′∧x=x′), (1)

where res denotes the value returned by the program.
In the second iteration, the specification (1) is updated as a new summary of

the method. The starting point of the analysis is reset to (emp, emp). By executing
the branch in line 4, we have the same result as summary (1). The expression
x.val tries to access a field of x, by abduction, x::Node〈fv0, fp0〉 is added to Pre,
where fv0 and fp0 are fresh logical variables. After line 8, the paired state is
(x::Node〈fv0, fp0〉∧fv0≤k∧x=x′, x::Node〈fv0, fp0〉∧t=fp0∧fv0≤k∧x=x′). Now
we can use the summary (1) for the method call, which requires t=null, i.e.
fp0=null to be added to Pre and returns t=fp0 to be added to Curr. Note that
x::Node〈fv0, fp0〉 as the frame part is discovered by bi-abduction. The frame
part is not altered by the method call and passed to the post-state of this call.
As fp0 is a reachable variable from program variable x, we add fp0=null to

Pre, instead of t=null. After line 8, the summary of the branch from lines 5 to
8 is found:

(x::Node〈fv0, null〉∧fv0≤k∧x=x′, res::Node〈fv0, null〉∧fv0≤k∧res=x′∧x=x′)
(2)

Similarly, the summary of line 9 to 14 is calculated as

(x::Node〈fv0, null〉∧fv0>k∧x=x′, emp∧fv0>k∧res=null∧x′=null) (3)

By joining the formulae (1), (2) and (3), and eliminating intermediate logical
variables, we update a new summary for the method

(Pre2,Post2) := (Pre1 ∨ x::Node〈fv0, null〉∧x=x′, (4)

Post1∨emp∧fv0>k∧res=null∧x′=null∨res::Node〈fv0, null〉∧fv0≤k∧res=x′)

Based on specification (4), a third iteration of symbolic execution is accom-
plished, with abstract specification as

(Pre3,Post3) := (Pre2 ∨ x::Node〈fv0, fp0〉 ∗ fp0::Node〈fv1, null〉∧x=x′,

Post2 ∨ res::Node〈fv0, null〉∧fv0≤k∧fv1>k∧res=x′ (5)

res::Node〈fv0, fp0〉 ∗ fp0::Node〈fv1, null〉∧fv0≤k∧fv1≤k∧res=x′)

Comparing with summary (4), we discover it is possible that x points to
a list with two nodes in the precondition. If we continue with this trend, we
will get longer formulae to cover successive iterates and more additional logical
variables. Following such trend, the analysis will be an infinite regress. There-
fore, we first apply abstraction to the precondition against with the given pred-
icate llB to eliminate the logical variables, so the heap part x::Node〈fv0, fp0〉 ∗
fp0::Node〈fv1, null〉 is abstracted as x::llB〈n1, S1〉∧n1=2∧S1={fv0, fv1}. Before
we join this with Pre2, the heap formula x::Node〈fv0, null〉 in Pre2 can be uni-
fied as x::llB〈n1, S1〉∧n1=1∧S1=fv0 and x=null be x::llB〈n1, S1〉∧n1=0∧S1=∅.
Then we join the disjunctive formulae if they have the same shape and widening
with the Pre2 to have the precondition as x::llB〈n1, S1〉. By applying similar
operators to postcondition, a new summary is produced:

(Pre3,Post3) := (x::llB〈n1, S1〉∧0≤n1,
res::llB〈n2, S2〉∧0≤n2≤n1∧(∀v∈S2·v ≤ k)∧(∀v∈(S1−S2)·v>k)∧S2⊆S1) (6)

Following a similar symbolic execution process with the method summary
(6), we compute a result for the fourth iteration to be the same as the last one,
namely (6), which is a fixed point desired for our method summary. Note that
we eliminate x′ as an existentially quantified variable in the postcondition, since
x is a call-by-value parameter.

The essential steps to terminate the search for suitable preconditions are ab-
straction and widening. Both operators are tantamount to weakening a state,
and they are over-approximation and sound for synthesis of postcondition. How-
ever, when such steps are applied to synthesis of precondition, it may make the
precondition too weak to be sound. So after the analysis, we shall use a forward
analysis process to check the discovered summary.

Example of Merge. Another motivating example we shall present is merge,
which has been declared as an unverified example in [3], since their method do
not keep track of values stored in the list. This example (Figure 2) merges two
sorted lists into one sorted list. If either of the input list is empty, then the other
list is returned; if not, we select the smallest element of both sorted lists, and
make the next field of the smallest node points to the result of merging the tail
list of this node with the other list. The shape predicate selected for this example
is sls which keeps track on both the minimal (sm) and maximal (lg) values of
a sorted list.

sls〈n, sm, lg, p〉 ≡ root::Node〈sm, p〉 ∧ n=1 ∧ lg=sm ∨
root::Node〈sm, q〉 ∗ q::sls〈n1, s1, lg, p〉 ∧ n=n1+1 ∧ sm≤s1 ∧ s1≤lg

1 Node merge(Node x, Node y)

2 {

3 if (x == null) {

4 return y;

5 } else if (y == null) {

6 return x;

7 } else

8 if (x.val <= y.val) {

9 Node t = x.next;

10 x.next = merge(t, y);

11 return x;

12 } else {

13 Node t = y.next;

14 y.next = merge(x, t);

15 return y;

16 } }

Fig. 2. Merging two sorted lists.

Suppose after the third iteration of symbolically executing the code, we have
generated a precondition, as follows:

x=null ∨ y=null ∨ x::Node〈xv1, xp1〉∗y::Node〈yv1, yp1〉
∧ (xv1≤yv1∧xp1=null ∨ xv1>yv1∧yp1=null) (7)

∨ x::Node〈xv1, xp1〉∗xp1::Node〈xv2, xp2〉∗y::Node〈yv1, yp1〉
∧ (xv1≤yv1∧(xv2≤yv1∧xp2=null ∨ xv2>yv1∧yp1=null)) (8)

∨ x::Node〈xv1, xp1〉∗y::Node〈yv1, yp1〉∗yp1::Node〈yv2, yp2〉
∧ (xv1>yv1∧(xv1≤yv2∧xp1=null ∨ xv1>yv2∧yp2=null)) (9)

Branch (8) says that the program only touches the second node of x if xv1≤yv1.
If xv2≤yv1, xp2 should be null; otherwise yp1 must be null to guarantee the
termination of the method and memory safety. Branch (9) states a similar con-
dition when touching the second node of y. This formula is very precise, but not
scalable if the analysis is continued. According to the given user-defined predi-
cate sls, we could abstract the shapes of x and y to be a sorted list. However,
the formula is not sufficient to do that, i.e. the sortedness information about x

and y is missing. This missing information is the numerical relation between xv1
and xv2 in x, and yv1 and yv2 in y. The guidance for this abstraction comes from
the predicate sls. We use such user-defined predicates to infer data structure
properties that are anticipated from some program codes. By applying abstrac-
tion (equipped with abduction mechanism) against the predicate sls and then

joining the branches with the same shape, the precondition from two iterations
becomes:

x=null ∨ y=null ∨ x::sls〈xn0, xsm0, xlg0, xp0〉 ∗ y::sls〈yn0, ysm0, ylg0, yp0〉
∧ 1≤xn0≤2 ∧ 1≤yn0≤2 ∧ (xlg0≤ylg0 ∧ xp0=null ∨ xlg0>ylg0 ∧ yp0=null)

Continuing the analysis, the fixed point of the program summary is

(Pre,Post) := (x=null ∨ y=null ∨ x::sls〈xn0, xsm0, xlg0, xp0〉∗
y::sls〈yn0, ysm0, ylg0, yp0〉∧(xlg0≤ylg0∧xp0=null∨xlg0>ylg0∧yp0=null),

x=null∧res=y ∨ y=null∧res=x ∨ x::sls〈xn1, xsm1, xlg1, xp1〉
∗y::sls〈yn1, ysm1, ylg1, yp1〉∧xn1+yn1=xn0+yn0∧xsm1=xsm0∧ysm1=ysm0∧
(xsm0≤ysm0∧res=x∧xp1=y∧xlg1≤ysm1∨xsm0>ysm0∧res=y∧yp1=x∧ylg1≤xsm1)

From this example, we can observe that the memory safety of shape analysis
is related to the values stored in the list. Our analysis can find that only one list
is traversed to its end, i.e. until null is reached, and the other list is partially
traversed till it reaches an element that is larger than the maximal value of the
former list. As captured in the inferred precondition, the rest of the list will
not be accessed by the program. Similarly, the inferred postcondition captures a
fairly precise specification that represents the merged list using two list segments
that either begins from x or from y, depending on which of the two input lists
contains the smaller element.

3 Language and Abstract Domain

To simplify presentation, we employ a strongly-typed C-like imperative language
in Figure 3 to demonstrate our approach. The program Prog written in this
language consists of declarations tdecl, which can be data type declarations datat
(e.g. Node in Section 2), predicate definitions spred (e.g. llB and sls), as well as
method declarations meth. Note that we allow methods to have no specifications,
which are discovered by our analysis then. The definitions for spred and mspec
are given later in Figure 4. Our language is expression-oriented, and thus the
body of a method (e) is an expression formed by program constructors. Note that
d and d[v] represent respectively heap-insensitive and heap sensitive commands.
The language allows both call-by-value and call-by-reference method parameters,
separated with a semicolon (;).

Prog ::= tdecl∗ meth∗ tdecl ::= datat | spred
datat ::= data c { field∗ } field ::= t v t ::= c | τ
meth ::= t mn ((t v)∗; (t v)∗) mspec∗ {e} τ ::= int | bool | void
e ::= d | d[v] | v:=e | e1; e2 | t v; e | if (v) e1 else e2
d ::= null | kτ | v | new c(v∗) | mn(u∗; v∗)
d[v] ::= v.f | v.f :=w | free(v)

Fig. 3. A Core (C-like) Imperative Language.

Our specification language (in Figure 4) allows (user-defined) shape predi-
cates spred to specify program properties in our combined domain. Note that
spred are constructed with disjunctive constraints Φ. We require that the pred-
icates be well-formed [17]. A conjunctive abstract program state σ has mainly
two parts: the heap (shape) part κ in separation domain and the pure part π
in convex polyhedra domain and bag (multi-set) domain, where π consists of
γ, φ and ϕ as aliasing, numerical and multi-set information, respectively. The
set of all σ’s is denoted as SH (symbolic heap). During the symbolic execution,
the abstract program state at each program point will be a disjunction of σ’s,
denoted by ∆. Its set is defined as PSH. An abstract state ∆ can be normalised
to the Φ form [17].

spred ::= root::c〈v∗〉 ≡ Φ Φ ::=
∨
σ∗ σ ::= ∃v∗·κ∧π

mspec ::= requires Φpr ensures Φpo

∆ ::= Φ | ∆1∨∆2 | ∆∧π | ∆1∗∆2 | ∃v·∆
κ ::= emp | v::c〈v∗〉 | κ1 ∗ κ2 π ::= γ ∧ φ
γ ::= v1=v2 | v=null | v1 6=v2 | v 6=null | γ1∧γ2
φ ::= ϕ | b | a | φ1∧φ2 | φ1∨φ2 | ¬φ | ∃v · φ | ∀v · φ
b ::=true | false | v | b1 =b2 a ::=s1=s2 | s1≤s2
s ::= kint | v | kint×s | s1+s2 | −s | max(s1,s2) | min(s1,s2) | |B|
ϕ ::= v∈B | B1=B2 | B1<B2 | B1vB2 | ∀v∈B·φ | ∃v∈B·φ
B ::= B1tB2 | B1uB2 | B1−B2 | ∅ | {v}

Fig. 4. The Specification Language.

Using entailment, we define a partial order over these abstract states:

∆ � ∆′ =df ∆
′ ` ∆ ∗ R

where R is the (computed) residue part. And we also have an induced lattice
over these states as the base of fixpoint calculation for our analysis.

The memory model of our specification formulae is similar to the model given
for separation logic [24], except that we have extensions to handle user-defined
shape predicates and related pure properties [17]. In our analysis, all the variables
except the program ones are logical variables. We denote a program variable’s
initial value as unprimed and its current value as primed [17].

4 Bi-Abduction

In this section we introduce our bi-abduction algorithm for discovering missing
information in precondition. The bi-abduction extends previous works [2, 7, 23]
with more power to work over our combined domain.

Given σ and σ1, bi-abduction aims to find the anti-frame σ′ and frame part
σ2 such that

σ ∗ [σ′] � σ1 ∗ σ2
where σ and σ1 can be considered as the current program state and the re-
quirement of next instruction, respectively, σ′ is the missing part which will be

σ 0 σ1 ∗ true σ1 ` σ ∗ σ′ σ ∗ σ′ ` σ1 ∗ σ2

σ ∗ [σ′] � σ1 ∗ σ2

Residue

σ 0 σ1 ∗ true σ1 0 σ ∗ true σ0 ∈ unroll(σ) data no(σ0) ≤ data no(σ1)

σ0 ` σ1 ∗ σ′ or σ0 ∗ [σ′0] � σ1 ∗ σ′ σ ∗ σ′ ` σ1 ∗ σ2

σ ∗ [σ′] � σ1 ∗ σ2

Unroll

σ 0 σ1 ∗ true σ1 0 σ ∗ true σ1 ∗ [σ′1] � σ ∗ σ′ σ ∗ σ′ ` σ1 ∗ σ2

σ ∗ [σ′] � σ1 ∗ σ2

Reverse

σ 0 σ1 ∗ true σ1 0 σ ∗ true σ ∗ σ1 ` σ1 ∗ σ2

σ ∗ [σ1] � σ1 ∗ σ2

Missing

Fig. 5. Bi-Abduction rules.

propagated back to the precondition and make the analysis continue, and frame
part σ2 is the residue from σ. The bi-abduction rules are exhibited in Figure 5.

The first rule Residue triggers when the LHS (σ) does not imply the RHS
(σ1) but the RHS implies the LHS with some formula (σ′) as the residue.
This rule is quite general and applies in many cases. For the example emp 0
x::Node〈xv, xp〉, the RHS can entail the LHS with residue x::Node〈xv, xp〉. The
abduction then checks whether σ plus the frame information σ′ implies σ1 ∗ σ2
for some σ2 (emp in this example), and returns x::Node〈xv, xp〉 as the anti-frame.

The second rule Unroll deals with neither side implies the other, e.g. for
x::sls〈xn, xsm, xlg, null〉 as LHS and ∃p, u, v·x::node〈u, p〉 ∗ p::node〈v, null〉 as
RHS. As the shape predicates in the antecedent σ are formed by disjunctions
according to their definitions (like sls), its certain disjunctive branches may
imply σ1. As the rule suggests, to accomplish abduction σ ∗ [σ′] � σ1 ∗ σ2, we first
unfold σ (σ0 ∈ unroll(σ)) and try entailment or further abduction with the results
(σ0) against σ1. If it succeeds with a frame σ′, then we confirm the abduction by
ensuring σ ∧ σ′ ` σ1 ∗ σ2. For the example above, the abduction returns xn=2

as the anti-frame σ′ and discovers the nontrivial frame u=xsm ∧ v=xlg ∧ u≤v
(σ2). Note the function data no returns the number of data nodes in a state, e.g.
it returns one for x::node〈v, p〉 ∗ p::llB〈n, T〉. (This syntactic check is important
for the termination of the abduction.) The unroll unfolds all shape predicates
once in σ, normalises the result to a disjunctive form (

∨n
i=1 σi), and returns the

result as a set of formulae ({σ1, ..., σn}).
In the third rule Reverse, neither side entails the other, and the second rule

does not apply, for example ∃p, u, v, q · x::node〈u, p〉 ∗ p::node〈v, q〉 as LHS and
∃S·x::sls〈3, xsm, xlg, xp〉 as RHS. In this case the antecedent cannot be unfolded
as they are already data nodes. As the rule suggests, it reverses two sides of the
entailment and applies the second rule to uncover the constraints σ′1 and σ′.
Then it checks that the LHS (σ), with σ′ added, does imply the RHS (σ1) before
it returns σ′. For the example above, the anti-frame is q::Node〈w, xp〉∧u≤v∧v≤w
to establish the three node sorted list.

When an abduction is conducted, the first three rules should be tried first; if
they do not succeed in finding a solution, then the last rule Missing is invoked
to add the consequence to the antecedent, provided that they are consistent. It
is effective for situations like x::node〈 , 〉 0 y::node〈 , 〉, where we should add
y::node〈 , 〉 to the LHS directly (as the other three rules do not apply here).

The abduction procedures presented in earlier work [23, 22] have mainly fo-
cused on discovering pure information with the assumption that either complete
or partial shape information is available. Our bi-abduction algorithm presented
in this paper generalises them to cater for full specification discovery scenarios,
whereby, we do not have the hints to guide the analysis anymore due to the
absence of shape information; but at the same time we can have more freedom
as to what missing information to discover. One observation on abduction is
that there can be too many solutions of the anti-frame σ′ for the entailment
σ1 ∗ σ′ ` σ2 ∗ true to succeed. Therefore, we define “quality” of anti-frame solu-
tions with the partial order � defined in the last section, i.e. the smaller (weaker)
one in two abduction solutions is regarded as better. We prefer to find solutions
that are (potentially locally) minimal with respect to � and consistent. How-
ever, such solutions are generally not easy to compute and could incur excess
cost (with additional disjunction in the analysis). Therefore, our abductive infer-
ence is designed more from a practical perspective to discover anti-frames that
should be suitable as preconditions for programs, and the partial order � sounds
more like a guidance of the decision choices of our abduction implementation,
rather than a guarantee to find the theoretically best solution.

5 Analysis Algorithm

Our proposed analysis algorithm is given in Figure 6. The algorithm takes three
input parameters: T as the program environment possibly with some of the
method specifications in the program and ready for newly inferred specifications
to be added in, the procedure to be analysed t mn ((t x)∗; (t y)∗) {e}, and the
upper bound of shared logical variables that we keep during the analysis n.

Our analysis is based on the abstract interpretation framework. It has two
distinct features: the abduction exploited in the abstract semantics, and the
specifically designed operations (absa, join and widen) over this combined do-
main.4 At the beginning, we initialise the iteration variable (i) and the states
to record the computed pre- and postconditions (Prei and Posti). We use emp

as the initial precondition because we know nothing about the footprint of the
code. The initial postcondition is set to false denotes the top element of the
lattice of our abstraction domain.

Each iteration starts at line 1. Firstly we calculate the pre- and post-conditions
for the program based on the last iteration’s result, with a forward analysis using
the abduction-based semantics (line 3). We perform abstraction on both pre- and
postconditions obtained to preserve shape domain’s finiteness. If the symbolic
execution cannot continue due to a program bug, or if we find our abstraction
cannot keep the number of shared logical variables/cutpoints (counted by cp no)
within a specified bound (n), then a failure is reported (line 5). Otherwise the
obtained results are joined with the results from last iteration (line 6), and a
widening is conducted over both to ensure termination of the analysis (line 8).

4 Note that our analysis uses lifted versions of these operations (indicated by †), which
will be explained in more details later.

Fixpoint Computation in Combined Domain
Input: T , t mn ((t x)∗; (t y)∗) {e}, n
Local: i := 0; Prei := emp; Posti := false;
1 repeat

2 i := i+ 1;

3 (Prei,Posti) := |[e]|AT (emp, emp);

4 (Prei,Posti) := (absa
†(Prei), abs

†Posti);

5 if Prei=false or Posti=false or cp no(Prei)>n or cp no(Posti)>n
· then return fail end if

6 Prei := join†(Prei−1,Prei);

7 Posti := join†(Posti−1,Posti);

8 Prei := widen†(Prei−1,Prei);

9 Posti := widen†(Posti−1,Posti);

10 until (Prei,Posti) = (Prei−1,Posti−1)

11 T ′ := T ∪ {t mn ((t x)∗; (t y)∗) requires Prei ensures Posti {e}};
12 Post = |[e]|T ′Prei;

13 if Post = false or Post 0 Posti ∗ true then return fail

14 else return T ′

15 end if

Fig. 6. Main analysis algorithm.

Finally we judge whether a fixed-point is already reached by comparing the cur-
rent abstract state with the one from previous iteration (line 10). The last few
lines (from line 11) are for soundness purposes. We will run a forward analysis
over the method body with the discovered specifications to see whether they are
sound. If so then the analysis succeeds; otherwise fail is returned.

As aforementioned, the kernel of our analysis include the abstract semantics
with abduction, and the abstraction, join and widening operators, which are
elaborated respectively in what follows.

5.1 Abstract Semantics

As shown in the algorithm, we use two kinds of abstract semantics to analyse
the program: an abstract semantics with abduction to derive the specification
for the program (line 3), and another underlying semantics to ensure soundness
for the analysis result (line 11). As the first semantics is in fact based on the
second one, we will first define the second semantics followed by the first one.

The type of our underlying semantics is defined as

|[e]| : AllSpec→ PSH → PSH

where AllSpec contains procedure specifications (extracted from the program
Prog). For some expression e, given its precondition, the semantics will calculate
the postcondition.

The foundation of the semantics is the basic transition functions from a
conjunctive abstract state (σ) to a conjunctive or disjunctive abstract state (σ
or ∆) below:

unfold(x) : SH→ PSH[x] Unfolding

exec(d[x]) : AllSpec→ SH[x]→ SH Heap-sensitive execution

exec(d) : AllSpec→ SH→ SH Heap-insensitive execution

where SH[x] denotes the set of conjunctive abstract states in which each element
has x exposed as the head of a data node (x::c〈v∗〉), and PSH[x] contains all
the (disjunctive) abstract states, each of which is composed by such conjunctive
states. Here unfold(x) rearranges the symbolic heap so that the cell referred to
by x is exposed for access by heap sensitive commands d[x] via the second tran-
sition function exec(d[x]). The third function defined for other (heap insensitive)
commands d does not require such exposure of x.

The unfolding function is defined by the following two rules:

isdatat(c) σ ` x::c〈v∗〉 ∗ σ′

unfold(x)σ σ

isspred(c) σ ` x::c〈v∗〉 ∗ σ′ root::c〈v∗〉≡Φ
unfold(x)σ σ′ ∗ [x/root, u∗/v∗]Φ

The test isdatat(c) returns true only if c is a data node and isspred(c) returns
true only if c is a shape predicate.

The symbolic execution of heap-sensitive commands d[x] (i.e. x.fi, x.fi := w,
or free(x)) assumes that the rearrangement unfold(x) has been done prior to
the execution:

isdatat(c) σ ` x::c〈v1, .., vn〉 ∗ σ′

exec(x.fi)(T)σ σ′ ∗ x::c〈v1, .., vn〉 ∧ res=vi

isdatat(c) σ ` x::c〈v1, .., vn〉 ∗ σ′

exec(x.fi := w)(T)σ σ′ ∗ x::c〈v1, .., vi−1, w, vi+1, .., vn〉

isdatat(c) σ ` x::c〈u∗〉 ∗ σ′

exec(free(x))(T)σ σ′

The symbolic execution rules for heap-insensitive commands are as follows:

exec(k)(T)σ σ ∧ res=k exec(x)(T)σ σ ∧ res=x

isdatat(c)

exec(new c(v∗))(T)σ σ ∗ res::c〈v∗〉

t mn ((ti ui)
m
i=1; (t′i vi)

n
i=1) requires Φpr ensures Φpo ∈ T

ρ = [x′i/ui]
m
i=1 ◦ [y′i/vi]

n
i=1 σ ` ρΦpr ∗ σ′

ρo = [ri/vi]
n
i=1 ◦ [x′i/u

′
i]
m
i=1 ◦ [y′i/v

′
i]
n
i=1 ρl = [ri/y

′
i]
n
i=1 fresh logical ri

exec(mn(x1, .., xm; y1, .., yn))(T)σ (ρlσ
′) ∗ (ρoΦpo)

Note that the first three rules deal with constant (k), variable (x) and data node
creation (new c(v∗)), respectively, while the last rule handles method invocation.
In the last rule, the call site is ensured to meet the precondition ofmn, as signified
by σ ` ρΦpr ∗ σ′. In this case, the execution succeeds and the post-state of the
method call involves mn’s postcondition as signified by ρol ◦ ρoΦpo.

A lifting function † is defined to lift unfold’s domain to PSH:

unfold†(x)
∨
σi =df

∨
(unfold(x)σi)

and this function is overloaded for exec to lift both its domain and range to PSH:

exec†(d)(T)
∨
σi =df

∨
(exec(d)(T)σi)

Based on the transition functions above, we can define the abstract seman-
tics for a program e as follows (where loops are already translated into tail-
recursions):

|[d[x]]|T∆ =df exec†(d[x])(T) ◦ unfold†(x)∆

|[d]|T∆ =df exec†(d)(T)∆

|[e1; e2]|T∆ =df |[e2]|T ◦ |[e1]|T∆
|[x := e]|T∆ =df [x′/x, r′/res](|[e]|T∆) ∧ x=r′ fresh logical x′, r′

|[if (v) e1 else e2]|T∆ =df (|[e1]|T (v∧∆)) ∨ (|[e2]|T (¬v∧∆))

Next we define the abstract semantics with abduction used in our analysis,
whose type is

|[e]|A : AllSpec→ P(SH× SH)→ P(SH× SH)

It takes a piece of program and a specification table, to map a (disjunctive) set
of pair of symbolic heaps to another such set (where the first in the pair is the
accumulated precondition and the second is the current state).

This semantics also consists of the basic transition functions which compose
the atomic instructions’ semantics and then the program constructors’ semantics.
Here the basic transition functions are lifted as

Unfold(x)(σ′, σ) =df

let ∆=unfold(x)σ and S={(σ′, σ1) | σ1 ∈ ∆}
in if (false /∈ ∆) then S

else if (∆ ` x=a for some a∈SVar) and
(σ′ 0 a::c〈y∗〉 ∗ true for fresh {y∗}⊆LVar)

then S ∪ {(σ′ ∗ x::c〈y∗〉, ∆ ∗ x::c〈y∗〉)}
else S ∪ {(σ′, false)}

Exec(ds)(σ′, σ) =df let σ1=exec(ds)σ in {(σ′, σ1) | σ1 ∈ ∆}
where ds is either d[x] or d when d is not method call

t mn ((ti ui)
m
i=1; (ti vi)

n
i=1) requires Φpr ensures Φpo ∈ T

ρ = [x′i/ui]
m
i=1 ◦ [y′i/vi]

n
i=1 σ ∗ [σ′1] � ρΦpr ∗ σ1

ρo = [ri/vi]
n
i=1 ◦ [x′i/u

′
i]
m
i=1 ◦ [y′i/v

′
i]
n
i=1 ρl = [ri/y

′
i]
n
i=1 fresh logical ri

Exec(mn(x1, .., xm; y1, .., yn))(T)(σ, σ′) =df

{(σ2, ρo(σ′ ∗ σ′1)) |σ2 ∈ (ρlσ1)∗(ρoΦpo)}

A similar lifting function † is defined to lift Unfold’s and Exec’s domains:

Unfold†(x)
∨

(σ′i, σi) =df

∨
(Unfold(x)(σ′i, σi))

Exec†(ds)(T)
∨

(σ′i, σi) =df

∨
(Exec(ds)(T)(σ′i, σi))

Based on the above transition functions, the abstract semantics with abduc-
tion is as follows:

|[d[x]]|AT (∆′, ∆) =df Exec†(d[x])(T) ◦ Unfold†(x)(∆′, ∆)

|[d]|AT (∆′, ∆) =df Exec†(d)(T)(∆′, ∆)

|[e1; e2]|AT (∆′, ∆) =df |[e2]|AT ◦ |[e1]|AT (∆′, ∆)

|[x := e]|AT (∆′, ∆) =df [x′/x, r′/res](|[e]|AT (∆′, ∆)) ∧ x=r′

fresh logical x′, r′

|[if (v) e1 else e2]|AT (∆′, ∆) =df (|[e1]|AT (∆′, v∧∆)) ∨ (|[e2]|AT (∆′,¬v∧∆))

where for assignment we apply the substitution on both abstract states in the
pair.

5.2 Abstraction, Join and Widening

We have specifically designed the abstraction, join and widening operations em-
ployed in our analysis process.

Abstraction function. During the symbolic execution, we may be confronted
with many “concrete” shapes in program states. As an example of list traversal,
the list may contain one node, or two nodes, or even more nodes in the list, which
the analysis cannot enumerate infinitely. The abstraction function deals with
those situations by abstracting the (potentially infinite) concrete situations into
more abstract shapes, to ensure finiteness over the shape domain. Our rationale is
to keep only program variables and shared cutpoints; all other logical variables
will be abstracted away. As an instance, the first state below can be further
abstracted (as shown), while the second one cannot:

abs(x::node〈v1, z0〉 ∗ z0::node〈v2, null〉) = x::llB〈n, S〉 ∧ n=2 ∧ S = {v1, v2}
abs(x::node〈v1, z0〉 ∗ y::node〈v2, z0〉 ∗ z0::node〈v3, null〉) = -

where both x and y are program variables, and z0 is an existentially quanti-
fied logical variable. In the second case z0 is a shared cutpoint referenced by
both x and y, and is therefore preserved. As illustrated, the abstraction transi-
tion function abs eliminates unimportant cutpoints (during analysis) to ensure
termination. Its type is defined as follows:

abs : SH→ SH Abstraction

which indicates that it takes in a conjunctive abstract state σ and abstracts it
as another conjunctive state σ′. Below are its rules.

abs(σ ∧ x0=e) =df σ[e/x0] abs(σ ∧ e=x0) =df σ[e/x0]

x0 /∈ Reach(σ)

abs(x0::c〈v∗〉 ∗ σ) =df σ ∗ true
isdatat(c1) c2〈u∗2〉 ≡ Φ

p::c1〈v∗1〉 ∗ σ1 ` p::c2〈v∗2〉 ∗ σ2 Reach(p::c2〈v∗2〉 ∗ σ2) ∩ {v∗1} = ∅
abs(p::c1〈v∗1〉 ∗ σ1) =df p::c2〈v∗2〉 ∗ σ2

The first two rules eliminate logical variables (x0) by replacing them with
their equivalent expressions (e). The third rule is used to eliminate any garbage
(heap part led by a logical variable x0 unreachable from the other part of the
heap) that may exist in the heap. As x0 is already unreachable from, and not
usable by, the program variables, it is safe to treat it as garbage true, for example
the x0 in x::node〈 , null〉 ∗ x0::node〈 , null〉 where only x is a program variable.

The last rule of abs plays the most significant role which intends to eliminate
shape formulae led by logical variables (all variables in v∗1). It tries to fold data
nodes up to a shape predicate. It confirms that c1 is a data node declaration and
c2 is a predicate definition. The predicate c2 is selected from the user-defined
predicates environments and it is the target shape to be abstracted against with.
The rule ensures that the latter is a sound abstraction of the former by entailment
proof, and the pointer logical parameters of c1 are not reachable from other part
of the heap (so that the abstraction does not lose necessary information). The
function Reach is defined as follows:

Reach(σ) =df

⋃
v∈fv(σ)

ReachVar(κ∧π, v) where σ ::= ∃u∗·κ∧π

that returns all pointer variables which are reachable from free variables in the
abstract state σ. The function ReachVar(κ∧π, v) returns the minimal set of
pointer variables satisfying the relationship below:

ReachVar(κ∧π, v)⊇{v}∪{z2|∃z1, π1·z1∈ReachVar(κ∧π, v)∧π=(z1=z2∧π1)∧
isptr(z2)} ∪ {z2|∃z1, κ1·z1∈ReachVar(κ∧π, v)∧κ=(z1::c〈.., z2, ..〉∗κ1)∧isptr(z2)}

Viz. it is composed of aliases of v and pointer variables reachable from v. The
predicate isptr(x) checks if x is a pointer variable. Note that the pure logic
parameters can be abstracted since the pure relations are kept in pure formulae,
so we do not loss numerical information here. Then the lifting function is applied
for abs to lift both its domain and range to disjunctive abstract states PSH:

abs†
∨
σi =df

∨
abs(σi)

which allows it to be used in the analysis.
It might have already been noticed that we use a specifically designed ab-

straction with abduction for precondition (absa) which is used to discover extra
obligations for the abstraction of precondition. It consists of two rules:

absa(σ) =df abs(σ)

isdatat(c1) c2〈u∗2〉 ≡ Φ
p::c1〈v∗1〉 ∗ σ1 ∗ [σ′] � p::c2〈v∗2〉 ∗ σ2 Reach(p::c2〈v∗2〉 ∗ σ2) ∩ {v∗1} = ∅

absa(p::c1〈v∗1〉 ∗ σ1) =df p::c2〈v∗2〉 ∗ σ2

The first rule makes use of abs and does not find new constraints for precondition.
The second rule tries to abstract the state p::c1〈v∗1〉 ∗ σ1 with a stronger predicate
c2 against which abs failed to abstract, and discovers extra σ′ to be propagated
back to the precondition for the abstraction to succeed. The lifting function for
absa is analogously defined as that for abs.

Join operator. The operator join is applied over two conjunctive abstract states,
trying to find a common shape as a sound abstraction for both:

join(σ1, σ2) =df

let σ′1, σ
′
2 = rename(σ1, σ2) in

match σ′1, σ
′
2 with (∃x∗1 · κ1 ∧ π1), (∃x∗2 · κ2 ∧ π2) in

if σ1 ` σ2 ∗ true then ∃x∗1, x∗2 · κ2 ∧ (joinπ(π1, π2))
else if σ2 ` σ1 ∗ true then ∃x∗1, x∗2 · κ1 ∧ (joinπ(π1, π2))
else σ1 ∨ σ2

where the rename function avoids naming clashes among logical variables of
σ1 and σ2, by renaming logical variables of same name in the two states with
fresh names. For example it will renew x0’s name in both states ∃x0 · x0=0 and
∃x0 ·x0=1 to make them ∃x0 ·x0=0 and ∃x1 ·x1=1. After this procedure it judges
whether σ2 is an abstraction of σ1, or the other way round. If either case holds,
it regards the shape of the weaker state as the shape of the joined states, and
performs joining for pure formulae with joinπ(π1, π2), the convex hull operator
over pure domain [18, 20]. Otherwise it keeps a disjunction of the two states (as
it would be unsound to join their shapes together in this case). Then we lift this
operator for abstract state ∆ as follows:

join†(∆1, ∆2) =df match ∆1, ∆2 with (
∨
i σ

1
i), (

∨
j σ

2
j) in

∨
i,j join(σ1

i , σ
2
j)

which essentially joins all pairs of disjunctions from the two abstract states, and
makes a disjunction of them.

Widening operator. The finiteness of shape domain is confirmed by the ab-
straction function. To ensure the termination of the whole analysis, we still need
to guarantee the convergence over the pure domain. This task is accomplished
by the widening operator.

The widening operator widen(σ1, σ2) is defined as:

widen(σ1, σ2) =df

let σ′1, σ
′
2 = rename(σ1, σ2) in

match σ′1, σ
′
2 with (∃x∗1 · κ1 ∧ π1), (∃x∗2 · κ2 ∧ π2) in

if σ1 ` σ2 ∗ true then ∃x∗1, x∗2 · κ2 ∧ (widenπ(π1, π2))
else σ1 ∨ σ2

where the rename function has the same effect as above. Generally this operator
is analogous to join; the only difference is that we expect the second operand
σ2 is weaker than the first σ1, such that the widening reflects the trend of such
weakening from σ1 to σ2. In this case it applies widening operation widenπ(π1, π2)

over the pure domain [18, 20]. Therefore, based on the widening over conjunctive
abstract states, we lift the operator over (disjunctive) abstract states:

widen†(∆1, ∆2) =df match ∆1, ∆2 with (
∨
i σ

1
i), (

∨
j σ

2
j) in

∨
i,j widen(σ1

i , σ
2
j)

which is similar as its counterpart of the join operator. These three operations
provides termination guarantee while preserving soundness, as the following ex-
ample demonstrates.

5.3 Soundness and Termination

The soundness of our analysis is ensured by the soundness of the following: the
entailment prover [17], the abstract semantics (w.r.t. concrete semantics), the
abstraction operation over shapes, and the join and widening operators.

Theorem 1 (Soundness). Our analysis is sound following the soundness of
entailment checking, abstract semantics, and the operations of abstraction, join
and widening.

The proof for entailment checking is by structural induction over abstract
domain [17]; for abstract semantics is by induction over program constructors;
for abstraction follows directly the first two; and for join and widening is based
on entailment checking and soundness of corresponding pure operators. Finally,
as abstraction and widening for precondition are essentially unsound, we perform
in the analysis algorithm a final check to ensure soundness, which is guaranteed
by the soundness of abstract semantics.

For the termination aspect, we have the result:

Theorem 2 (Termination). The iteration of our fixpoint computation will
terminate in finite steps for finite input of program and specification.

The proof is based on two facts: the finiteness over shape domain provided by our
restriction on cutpoints, and the termination over numerical domain guaranteed
by our widening operator. The first can be proved by claiming the finiteness of
all possible abstract states only with shape information: recalling our analysis
algorithm where we set an upper bound n for shared cutpoints (logical variables)
we keep in track of, we know that the program and logical variables preserved
in our analysis are finite. Meanwhile all possible shape predicates are limited;
therefore all the shape-only abstract states are finite. The second is proved in
the abstract interpretation frameworks for numerical domains [18, 20]. These two
facts guarantee the convergence of our analysis.

6 Experiments and Evaluation

We have implemented a prototype system and evaluated it over a number of
heap-manipulating programs to test its viability and precision. We used Sleek [17]
as the solver for entailment checking over the heap domain, and Fixcalc [20]
and Fixbag [19] for numerical and bag domain. Our experimental results were

achieved with an Intel Core 2 Quad CPU 2.66GHz with 8Gb RAM. The ex-
periment results are presented in Table 1 which shows respectively the analysed
methods, the number of code lines, and the analysis time in seconds. We have
analysed all of the method successfully, including programs processing AVL tree
with its binary-search and height-balanced properties.

Prog. LOC Time

Single Linked List

create 10 1.12

delete 9 1.20

traverse 9 1.35

length 11 1.28

append 11 1.47

take 12 1.28

reverse 13 1.72

filter 15 2.37

drop 2nd 12 1.42

Sorting algorithm

insert sort 32 2.72

merge sort 78 4.18

quick sort 70 5.72

select sort 45 3.16

Prog. LOC Time

Double Linked List

create 15 1.47

append 24 2.53

insert 22 2.32

Binary Search Tree

create 18 2.58

delete 48 4.76

insert 22 3.57

search 22 2.78

height 15 1.56

count 17 1.63

flatten 32 2.74

AVL Tree

insert 114 27.57

delete 239 34.42
Table 1. Experimental Results.

We note down two observations on the experimental results. The first is that
the analysis may discover more than one specifications for some programs. For
example, if we give two predicates, ordinary linked list and sorted list, for sorting
algorithm, we can obtain two specifications for most of them. The reason is that a
sorted list is also a linked list. When there are more than one predicate definitions
supplied, the analysis can have multiple choices during the abstraction.

The other observation concerns the precision of the analysis, which is wit-
nessed by the rich information inferred in the specifications. For precondition,
our analysis discovers sufficient information to guarantee memory safety. For ex-
ample, the preconditions of some programs requires their input data structure
are non-empty in order that memory safety is preserved. For the take program
which traverses the list down a user-specified number n of nodes, we can find
that the list length must be no less than n.

One restriction of our analysis we observed is that it requires a proper pred-
icate to depict the requirement of a program. For example, if we only give an
ordinary linked list for verifying merge sort, it will not succeed, because the
stored value information in the list will not be preserved during the analysis.

7 Related Work and Conclusion

Related works. Dramatic advances have been made in synthesising heap-
manipulating programs’ specifications. The local shape analysis [6] infers loop
invariants for list-processing programs, followed by the SpaceInvader tool to in-
fer full method specifications over the separation domain, so as to verify pointer
safety for larger industrial codes [3, 28]. The SLAyer tool [8] implements an
inter-procedural analysis for programs with shape information. To deal with size
information (such as number of nodes in lists/trees), THOR [16] derives a nu-
merical program from the original heap-processing one in a sound way, such that
the size properties can be obtained by numerical analysis. A similar approach [9]
combines a set domain (for shape) with its cardinality domain (for correspond-
ing numerical information) in a more general framework. Compared with these
works, our approach can discover specification with stronger invariants such as
sortedness and bag-related properties, which have not been addressed in the
previous works. Two more works to be mentioned are relational inductive shape
analysis [4] and our previous inference works [21, 22]. These works can handle
shape and numerical information over a combined domain. However they still
require user annotation for the program code whereas we compute the whole
specification at once.

There are also other approaches that can synthesise shape-related program
invariants other than those based on separation logic. The shape analysis frame-
work TVLA [27] is based on three-valued logic. It is capable of handling compli-
cated data structures and properties, such as sortedness. Guo et al. [10] reported
a global shape analysis that discover inductive structural shape invariants from
the code. Kuncak et al. [14] developed a role system to express and track referenc-
ing relationships among objects, where an object’s role (type) depends on, and
changes according to, the mutation of its referencing. Hackett and Rugina [11]
can deal with AVL-trees but is customised to handle only tree-like structures
with height property. Type-based approaches [25, 26] are also used to infer nu-
merical constraints for given type templates, but limited to capture flow sensitive
constraints. Compared with these works, separation logic based approach bene-
fits from the frame rule with support for local reasoning.

Concluding Remarks. We have reported in this paper a program analysis
which automatically discovers program specifications over a combined separa-
tion and pure domain. The key components of our analysis include an abduction
for precondition discovery, and novel operations for abstraction, join and widen-
ing in the combined domain. We have built a prototype system and the initial
experimental results are encouraging.

Acknowledgement. This work was supported by EPSRC project EP/G042322
and also MoE Tier-2 project R-252-000-411-112.

References

1. Bozga, M., Iosif, R., Lakhnech, Y.: Storeless semantics and alias logic. In: PEPM.
pp. 55–65. ACM (2003)

2. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis
by means of bi-abduction. In: POPL. ACM Press (2009)

3. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis
by means of bi-abduction. Accepted for publication in Journal of the ACM (2011)

4. Chang, B.Y.E., Rival, X.: Relational inductive shape analysis. In: POPL. pp. 247–
260. ACM (2008)

5. Deutsch, A.: Interprocedural may-alias analysis for pointers: Beyond -limiting. In:
PLDI. pp. 230–241 (1994)

6. Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on separation
logic. In: TACAS. pp. 287–302. Springer (2006)

7. Giacobazzi, R.: Abductive analysis of modular logic programs. In: Bruynooghe, M.
(ed.) ILPS’94. pp. 377–391. The MIT Press (1994)

8. Gotsman, A., Berdine, J., Cook, B.: Interprocedural shape analysis with separated
heap abstractions. In: SAS. pp. 240–260. Springer (2006)

9. Gulwani, S., Lev-Ami, T., Sagiv, M.: A combination framework for tracking par-
tition sizes. In: Shao, Z., Pierce, B.C. (eds.) POPL. pp. 239–251. ACM (2009)

10. Guo, B., Vachharajani, N., August, D.I.: Shape analysis with inductive recursion
synthesis. In: PLDI. pp. 256–265. ACM (2007)

11. Hackett, B., Rugina, R.: Region-based shape analysis with tracked locations. In:
POPL. pp. 310–323. ACM, New York, NY, USA (2005)

12. Ishtiaq, S.S., O’Hearn, P.W.: Bi as an assertion language for mutable data struc-
tures. In: POPL. pp. 14–26. ACM (2001)

13. Jonkers, H.: Abstract storage strucutres. In: Algorithmic Languages. North Holland
(1981)

14. Kuncak, V., Lam, P., Rinard, M.C.: Role analysis. In: POPL. pp. 17–32 (2002)
15. Magill, S., Tsai, M.H., Lee, P., Tsay, Y.K.: Thor: A tool for reasoning about shape

and arithmetic. In: CAV. pp. 428–432. Springer (2008)
16. Magill, S., Tsai, M.H., Lee, P., Tsay, Y.K.: Automatic numeric abstractions for

heap-manipulating programs. In: POPL. pp. 211–222. ACM (2010)
17. Nguyen, H.H., David, C., Qin, S., Chin, W.N.: Automated verification of shape

and size properties via separation logic. In: VMCAI. pp. 251–266. Springer (2007)
18. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for

Higher-Order Logic, LNCS, vol. 2283. Springer (2002)
19. Pham, T.H., Trinh, M.T., Truong, A.H., Chin, W.N.: Fixbag: A fixpoint calculator

for quantified bag constraints. In: CAV. pp. 656–662. Springer (2011)
20. Popeea, C., Chin, W.N.: Inferring disjunctive postconditions. In: ASIAN. pp. 331–

345. Springer (2006)
21. Qin, S., He, G., Luo, C., Chin, W.N.: Loop invariant synthesis in a combined

domain. In: ICFEM. pp. 468–484. Springer (2010)
22. Qin, S., Luo, C., Chin, W.N., He, G.: Automatically refining partial specifications

for program verification. In: FM. pp. 369–385. Springer (2011)
23. Qin, S., Luo, C., He, G., Craciun, F., Chin, W.N.: Verifying heap-manipulating

programs with unknown procedure calls. In: ICFEM. pp. 171–187. Springer (2010)
24. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:

LICS. pp. 55–74. IEEE Computer Society (2002)
25. Rondon, P.M., Kawaguchi, M., Jhala, R.: Liquid types. In: PLDI. pp. 159–169.

ACM (2008)
26. Rondon, P.M., Kawaguchi, M., Jhala, R.: Low-level liquid types. In: POPL. pp.

131–144. ACM (2010)
27. Sagiv, M., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3-valued logic.

ACM Trans. Program. Lang. Syst. 24(3), 217–298 (2002)

28. Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn,
P.W.: Scalable shape analysis for systems code. In: CAV. pp. 385–398. Springer
(2008)

