Analysing Memory Resour ce Bounds for L ow-L evel Programs

Wei-Ngan Chid Huu Hai Nguyehh Corneliu Popeda Shengchao Qth

! Department of Computer Science, National University ofg@pore, Singapore
2 Department of Computer Science, Durham University, UK

{chinwn,nguyenh2,corneliu}@comp.nus.edu.sg

Abstract

Embedded systems are becoming more widely used but these sys

tems are often resource constrained. Programming modelssiee
systems should take into formal consideration resourcek as
stack and heap. In this paper, we show how memory resource
bounds can be inferred for assembly-level programs. Oerénice
process captures the memory needs of each method in terims of t
symbolic values of its parameters. For better precision nfer
path-sensitive information through a novel guarded exgioesfor-
mat. Our current proposal relies on a Presburger solverptuca
memory requirements symbolically, and to perform fixpoimelg-

sis for loops and recursion. Apart from safety in memory ades,
our proposal can provide estimate on memory costs for engdaedd
devices and improve performance via fewer runtime checamag
memory bound.

1. Introduction

While formal specification and functional correctness [2]have

for a long time been a central focus of the software engineer-
ing community, an orthogonal consideration on resource|aaey
and utilization is gradually gaining importance. This tiés being
driven by the proliferation of resource-constrained mebigvices,
coupled with the high expectations on reliability and ukghirom
consumers. Previous work in this area (amongst the real-tinu
embedded systems community) have mostly focused on real-ti
aspects, with major inroads made in WCET (worst-case eketut
time) domain. In this paper, we focus on memory as a congttain
resource and approach the problem from a program analysis pe
spective. To make it relevant to a wider community, we staH f
mulate our analysis for low-level assembly-like programs.

We consider the determination of memory resource require-
ments for data structures that can be dynamically allocatet!
recycled during program computation. Such memory subsyste
are typically organised into two main componerstsickandheap
Stack is an efficient way for using and recovering memory epac
and is particularly important for method invocations arahgient
data structures. Each method invocation typically reseavigame
of memory on the stack for holding local variables and tharret
address to its caller. Heap is used for more complex datetates

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright© ACM [to be supplied]. .. $5.00.

shengchao.qin@durham.ac.uk

that may live beyond the method calls where they are creétid.
typically used with a garbage collector for recovering dsipakces.

For applications running in resource-constrained envirents,
such as smart cards or embedded devices, it is important to be
fully aware of the memory space needed by each computational
unit. Previous systems have relied on language restri¢dan no
heap allocated objects), profiling, or informal estimatetedict
the amount of memory space required. To minimise errors due t
inadequate memory, developers often over-estimate theomyem
space that is needed. However, this translates into grieatdware
cost without giving any guarantee on memory adequacy.

There are few previous systems for predicting the symbolic
memory usage of programs, especially of low-level programs
Recent works [19, 21] are mostly based on analysing funation
programs where the presence of immutable data structurkssma
such analysis easier to formalise. Even though [5, 4] agetad at
Java-based bytecode programs, their frameworks agaimagbat
bytecode programs are compiled from first-order functiqprat
grams. Other works, such as [13, 28], merely provide a fraonew
for checking that the memory usage of object-oriented aogr
conform to user-supplied memory specifications either ugho
static analysis or runtime checking. However, user-sepphn-
notations may be hard to provide and are likely to be impcatti
for assembly-level programs.

The focus on low-level programs is important for two reasons
Firstly, they can represent the intermediate form for aetgrof
higher-level languages. Secondly, resource usage mayfdieaf
by optimising compilers which can render memory analysesedo
at the source level possibly unsafe to use. In this paper, alkeem
the following major contributions:

e Memory Bounds: We infermemory upper boundsm stack and
heap usage for each computation unit where possible. Our in-
ference is formulated for low-level assembly-like progsaifo
make this task tractable, we organise the inference mesfmani
as a multi-pass process where analysis from a previous pass
may be embedded in code for subsequent passes.

Guarded Expression: Our inference is path-sensitive as it
takes into account dynamic tests from conditionals. Weeaehi
this through a novejuarded expression formhich can capture

a more precise symbolic condition for each memory use/bound
We also provide a set of normalisation rules for the simglific
tion of this guarded form.

Fixpoint Analysis: A key technical challenge for memory anal-
ysis is the handling of recursion and loops. We show how con-
ventional fixpoint techniques may be deployed. Our innavati

is towards dfixpoint analysishat separates out the inference
mechanism into several stages yielding: (i) input/outpld-r
tion for abstract program states, (ii) net memory usage(iéhd
memory bound for high watermark.

e Prototype: We build aprototype systenand use it to infer

Stack inference may also be analysed in a similar way, except

memory bounds for a set of small benchmark programs. The that net usage at method boundary is always zero due to perfec

prototype and experiments provide evidence on the viglfit
our proposal.

We believe that our memory inference system is useful for em-
bedded software systems because: 1) such software ofteatepe
on platforms with limited memory, and 2) failing, becauseirof
sufficient memory, can have costly real-world consequerities
next section describes technical challenges in accuratellysing
stack/heap behaviour where possible, and outlines thelbwer
ference system. This is followed by details of the key phasesir
proposed system, including: (i) frame inference, (ii) st state
inference, (iii) stack inference, and (iv) heap inference.

2. Our Approach

Our goal is to develop a formal system that can preciselyigred
memory requirements prior to execution. Such a system nwist b
provably sound and use only safe approximations. Sevesakss
make this task challenging, which we shall highlight in thé-
tion. To keep our discussion at a high level, we shall confime o
examples to programs that are written in a source level iatjper
language. Their translation to assembly programs and gubsé
analyses are straightforward but tedious for human uraledstg.

2.1 Memory Usage and Bounds

Due to allocation and recovery, our system is expected & imfo
key metrics for each computation unit:

e Memory Usageto explore net usage at the end of its computa-
tion

e Memory Boundto represent high watermark of memory usage
at all points over its computation

Both metrics are computed in a conservative matter. White ne

space recovery for each method call. However, commandptiisat
and pop data from the stack (including parameter passinty) wi
affect the stack’s usage and must be symbolically tracedhteir
high bounds.

2.2 Dealing with Explicit Disposal for Heap Memory

To support compile-time analysis of heap recovery, theecadr
least two possible solutions, namely: (i) use explicit disgd (ii)
use region-based memory. The first solution [13] uses a apeci
dispose command to help recover each heap object that is no
longer required, where possible. The second solution [21pi
use region-based memory to group objects with differeatitifes
under separate regions, that can then be recovered wheheier
lifetimes expire. Both these solutions can be consideredras
over-approximation for recovery that can be achieved by age
collection, provided that dangling references are eithaided
during disposal or suitably marked for the garbage collecto

We have opted for the first solution in our paper, as it can help
achieve fine-grain heap recovery. However, automaticafigiiting
dispose commands is challenging since we have to minimise on
memory leaks and must also ensure that they are safe for igemor
accounting purpose. For example, we should not dispose olb-an
ject more than once, and we should not applgpose for anull
reference since this does not result in any memory recokemy-
ever, itis safe to forget (or delay) the invocation dfispose com-
mand for a dead object, but this could result in a higher egtoh
heap bound.

A prior work of ours in [13] handles the automatic insertidn o
dispose commands with the help of an alias/uniqueness type
system which works well for unshared data structures. A cur-
rent limitation is that it cannot handle data structureshwitared
nodes, such as cyclic or graph-like structures. Neversselthe
technique for automatically inserting dispose commands loa

memory usage may be a negative quantity whenever more memoryconsidered to be orthogonal to the technigue for memorynesti

is released than consumed, memory bound is always a notineega
quantity. To compute the latter, we must keep track of memory

tion. Each improvement to automatically inserting disposare
precisely will indirectly result in better memory estinati with-

usage at every possible computation point so as to choose theout the need to modify the underlying estimation techniduehe

maximum one as its high watermark. Consider the hypotHetica
example below :

Usage Bound

(c.d) (c,d)

voidf(cx, cy,dz){ //(0,0) (0,0)
x = new o(); /(10 (1,0)
dispose(z); // (1,—1) (1,0)

y = new o(); 21 (20)
dispose(x); (-1 (2,0)

| dimpose(s) 1 (0-1) (2,0)

Thenew ¢() command is to create a newtype object on the
heap, while thelispose(x) command is to explicitly recover the
object space at referenge The right side of the figure traces the

current heap usage and bound in terms of number of instarfices o

object typesc andd. By tracing through heap usage at each com-
putation point, we arrive at a net heap usag¢ @f, 0), (d, —1)}.
However, heap bound may only be inferred by taking the maxi-
mal of heap usage at all program points. In the above exartise,
bound is{(c, 2), (d,0)}, capturing the high watermarks of tke

andd object types independently. We propose to capture memory

estimation by counting each object type rather than cogmtim-
ber of bytes used, since this is more abstract and be useddelmo
memory fragmentation. If required, the conversion to bytent is
straightforward and has been carried out for our experiment

present moment, our system supports the automatic insesfio
dispose commands, after supplying annotations for alias system
type with uniqueness. This aspect can be further improveten
future but is outside of the scope of the present paper.

2.3 Guarded Expression Form

Conditional branching is essential for writing interegtjprograms
but it affects memory analysis as precision may be lost byenai
solutions. As an example, consider the program code below:

void f1(intmn, cx, cy) {

int v = n+1;

if (v<5){
x = new ¢(); //{(
y = new c(); /14(
dispose(x); //4(
dispose(y); /1(e,

} else {
x = new ¢(); /1{(
dispose(x); //4(
x =new c(); //A(

1

In the then branch of the above code, heap usadé¢dso)}
while heap bound if(c,2)}. In the else branch, heap usage is
{(c, 1)} while heap bound i§(c, 1) }. If we combine the effects of
the two branches by ignoring the conditional test, we{det 1)}

and{(c,2)} for heap usage and heap bound, respectively. How-
ever, this assumes the worse case scenario from both bsarinhe
program analysis, this phenomenon is known as path inggtysit

To provide a path-sensitive analysis, we introduce a newdgeh
expression of the for{g; — B;}i—, whereg; is a boolean ex-
pression guard and$; denotes heap size in bag notation of the
form {(c, s)*}. Here, ¢ denotes object type, andits symbolic
count. For example{(ci,1), (c2,2+r)} denotes a heap space
of one object ofc; and 2+r objects ofc,. Guarded expres-
sions shall be expressed in terms of the input parameters of i

The process requires safe approximation techniques using
hulling and widening that are standard for fixpoint analysis of
relational formulae (see [14, 27, 25]). The hulling opemat{de-
noted above by=;) combines related disjunctive formulae into a
conjunct. The widening operation (denoted above=hy) drops
the sub-formulae that are changed compared to the previgus v
sion. We reach a fixpoint wherec; ;1 (n,r) = rec;(n,r). For
the above example, its fixpoint gives:

rec(n,r) = n<O0Ar=1V n>0Ar=2n+1

method. For our example, a guarded expression for heap usage After that, we build two abstractions to relate input parter(s)

is {n<4—{(c,0)},n>4—{(c, 1)}} while that for heap bound is
{n<4—{(c,2)},n>4—{(c,1)}}. Note our use of the variabie
instead ofv as the latter is not a parameter. The restriction to input
parameters is important for supporting interproceduralyasis.

We provide path-sensitive analysis by tracking the abstrac
states of boolean variables and their relations to othdabias.
Path sensitivity not only adds precision to memory anallgsisis
critical to analysing recursive methods as they are oftgmessed
using conditionals.

2.4 Fixpoint Analysis

Analysing recursive methods is naturally challenginghledry, we
are to trace through every recursive call for memory usages<o
compute suitable high watermark as its memory bound. Hoeve
recursive calls cannot be finitely enumerated. Instead, ave o
apply fixpoint analysis to determine the properties of rsiver
methods through safe approximations.

While the basics of fixpoint analysis are mostly known (seg [1
for conjunctive polyhedra analysis or [27] for disjunctaealysis),
our innovation is in the formulation of key pieces of infortioa
to facilitate memory analysis in a modular fashion. Two pieof
information are crucial, namely: (i) input/output relatito com-
pute abstract program states, and (ii) memory usage/baznodsa
recursive calls. To derive them for each recursive methotb@p),
we first infer a constraint abstraction for each method fromua
tual recursive set. A constraint abstraction is essentallabstract
definition in constraint form that may be recursive. Thiidwed
by conventional fixpoint analysis which can maintain priecivia
disjunctive formulae where needed. Consider:

int £2(int n) {
if (n<0) {return 1}
else { cx = newc(); x = new c();
int v = 2+£2(n—1);
dispose(x); returnv } }

We first build a constraint abstraction for the above metlasd,
follows:

rec(n,r) = n<O0Ar=1V (Ir1-n>0Arec(n—1,r1)Ar=2+r1)

Here,n andr denote the input parameter and the method'’s result,
respectively. Fixpoint analysis would proceed with thet fiersion
rec(n, r) assumed to bealse, and with each subsequent version
;eﬁ,iﬂ (n,r) computed from the previous versieet;(n—1,r1), as
ollows:

reci(n,r) = n<0Ar=1V(3Iri-n>0Areco(n—1,r1)Ar=2+r1)
n<O0Ar=1

n<O0Ar=1V(3r1-n>0Areci (n—1,71)Ar=2+r1)
n<OAr=1V(3r1-n>0A(n—1<0Ar1=1)Ar=2+r1)
n<OAr=1V(0<n<1Ar=2+1)
n<OAr=1V(3r1-n>0Areca(n—1,7r1)Ar=2+r1)
n<OAr=1V (n=1Ar=3) V (n=2Ar=5)

n n<O0Ar=1V (0<n<2Ar=2n+1)

w n<O0ATr=1V (0<n Ar=2n+1)
n<O0Ar=1V(3r1-n>0Arecz(n—1,7r1)Ar=2+r1)
r n<OAr=1V(0<nAr=2n+1)

reca(n,r)

recz(n,r)

recy(n,r)

with heap usage and heap bound, respectively. For heap,wsage
can derive the following recursive formula in guarded egpien
form:

recy(n) = {n<0—{(c,0)} }U({n>0—{(c, 1)} }+recy(n—1))

Fixpoint analysis on the above abstraction results in tHevie
ing heap usage in symbolic form:

recy(n) = {n<0—{(c,0)}, n>0—{(c,n)}}

There is a net allocation of onetype object per recursive
call. Hence, we have a net heap allocatiomaf-type objects for
inputn>0. For heap bound, we can derive the following recursive
formula in guarded expression form:

reca(n) = {n<0—{(c,0)}}u{n>0—{(c¢,2)}}
U ({n>0—{(c, 2)} }+recr(n—1))

Fixpoint analysis on the above abstraction results in thevie
ing symbolic heap bound:

recp(n) = {n<0—{(c,0)}, n>0—{(c,2n)}}

The high watermark o2n c-type objects is pushed up by two
allocations of objects prior to each recursive call; whsitbe deal-
location (viadispose) occurs only after the return from recur-
sion. Note that our analysis tolerates memory leakage (fross-
ing dispose commands) by reporting a higher bound than strictly
required. For this example, a missitfjspose for the first object
constructed byiew has resulted im extrac-type heap objects for
both the estimated heap usage and heap bound. Though canserv
tive, our estimation remains sound and would benefit auticalit
from improvements in insertion @fispose commands.

Each loop can be considered a special case of tail recursion
and is similarly handled. In case a method definition has a loo
containing a self (or mutual) recursive call, the methodigthop
are considered to be in mutual recursion.

25 A Structured Assembly Language

We shall formalise our inference system for a small assettalnly
guage. To keep our presentation simple, we provide a conditi
statement (with two branches) andigile loop structure. In re-
ality, most low-level programs are organised as blocks sfrirc-
tions and allow conditional jumps to these blocks througigpam
labels. This block-level view does not cause any major teethn
difficulty but may obscure our exposition. Furthermores téelpful

to recover higher-level language constructs when directblysing
assembly-level codes, as advocated in [6]. For pedagagiaabns,
we propose using a more structured assembly language, aihd om
features relating tgsr-like subroutines. Our low-level language is
given in Figure 1.

For each method, we expect types of parameters and the result
to be declared. Furthermore, a symbdHenoting the number of
local variables including parameters) is easily precomguor
each method. The stack frame of each method call is orgaased
shown in Figure 2. The parameters are assumed to occupyghe fir
n slots of the local variables section starting at positiofftis is

P:=My,...,M,
M =t m(te, .., tn) L {E}
E:=Cmd | Ei;Ez | if E; Ex | whileE
Cmd::= load(t) i | store(t)i | invokem | const(t) k
| newc | disposec
t :=bool | int | float | ref | void | ---
c€ ObjType (Setof Object Types)
¢pe F (Presburger Constraint)
s=bl g1 A2 |d1 V2| g |[In-d|Vn-o
b e BExp (Boolean Expression)
= true | false | s1=s2 | s1<s2 | s1 <s2
s € AExp (Arithmetic Expression)
= K | | ks | s14s2 | —s | maxX(s1,s2) | min(s1,s2)

wherek ™™ is an integer constantr; is a size variable

Figurel. Syntax for a Assembly-like Language

followed by anothei—n slots for other local variables before the
operand stack of the frame. In addition, each frame alscagut
previous frame pointer and its caller’s return address.

The 1load(t)i in-
struction is intended to
transfer a value of-type
in the local variable at
position i to the top of
the (operand) stack. The
const(t) k instruction
places a constant value
on the top of the stack.
The store(t)i moves
a value from the top
of the stack to a speci-

top of
stack

callee
frame

prev frame ptr =T

return address

operands

local variables
caller / 41 :

frame | - fied local variable. The
.| parameters invoke m instruction
: calls a methodm after

1 : le—]
0| prev frame ptr 4— its arguments are placed
on the stack. On return
from the callee, the argu-

ments are removed and

1 return address

Figure 2. Stack Frames

a result is placed on the

more sophisticated constraint domains. Presburger atibmrep-
resents a good middle ground that is expressive yet pradiea
spite the possibility of exponential-time complexity, allmuiilt
solver, like Omega [26] that is used by our prototype, care giv
mostly fast execution times when handling medium-sizedhier
lae. We believe that the key to good performance is to exploi-
ularity that our approach offers. For example, we breakgeléix-
point analysis to several smaller ones, and also limit tke sf
inferred constraints via safe approximation (using cortwalking),
where possible.

2.6 Multi-PassInference

We present our inference as a modular multi-pass systenakBre
ing a complex inference system into smaller phases can i§ympl
our formalisation considerably. The first phase is to buitdhde-
pendency graph that will group each set of mutual recursigthm
ods for simultaneous inference. After that, we determiaelgheap
bounds through four main stages, namely:

e frame bound inference
e abstract state inference
e stack inference
e heap inference

The final target of our inference system is a set of annotation
for each method declaration. Given a method:

t m(i’17 ..,tn) l { . }

Our system infers the following extended declaration fahea
method processed:

tm(ty, .., tn) L dpr; F; dpo; S; Hpo; Mpo {- - .}
whereF is its frame boundg,, its preconditiongy, its postcondi-

tion, S its stack boundHp, its net heap usage, andl,, its heap
bound.

3. FrameBound Inference

For our low-level language, each method call is expectedacep
parameters, local variables and an operand stack into itsstack
frame. This frame has a bounded size that can be inferred. We
propose inferring the size of each stack frame using rulehef
following form:

LTFEE~ ATy, F
wherel indicates size of the local variables area in the frameland

stack. Both the condi- (respI';) captures the types of elements in the current frame before
tionalif and_while loop (resp. after) the execution & For example[’ = [t1,...,%,]
commands expect a boolean test to be already in the data stackjenotes there are elements on the stack, where the element at

which can help direct the control-flow of the program.

Thenew ¢ command allocates an object of ixeype in the heap
with its new reference placed on the stack, while diepose ¢
command recovers space fordype object from the heap whose
reference is on top of the stack. Note thatenotes the static type
of the object in question. Since allocation view always use the
exact type, while that bdispose may actually recover a larger

the top is of type:, and the element at the bottom is of type F
denotes the (high watermark of) stack frame size inferrdarsior
E.

While such a computation (on frame bound) is common in
bytecode compilers/verifiers, we re-cast them in our fraotew
to facilitate subsequent more sophisticated abstraa atad stack
inference mechanisms. One novelty we introduce is to emed t

subtype (from an OO source language), our estimation of heap currenttop frame pointer(denoted by an integer offset) at each
usage via these two commands are conservative, and henté sou program point into an intermediate ca8leFor each code fragment

While we support objects in our language, we shall omit tetai

E with stack framel’, we embed its currentop frame pointer

on how fields are declared and accessed as they can be ihdirect p=|T'| into an intermediate code &g, E»), and recursively foEx.

supported through primitive methods. Furthermore, in tresent
work, we currently only tracked the values of program vddab
and immutable fields, but not mutable fields. A short consitien
on how mutable fields can be tracked via strong update teghsiq
is discussed later in Sec 7.

Lastly, though our symbolic constraint is currently lintiteo
Presburger arithmetic, our inference framework allowsttbe of

The expressio is defined inductively as follows:
A == (p, Ep)
En ==Cmd| A/A | if AA | while A
A set of rules for frame bound inference are listed in Figure

3. Being syntax-directed, these rules constitute an infexalgo-
rithm. Apart from frame bound inference, we also perform som

FS—CONST]| [Fs—LoAD] [FS—STORE]
kit Ti=t:T i<l Tli]=t Ti=tT i<ISID] Ty=T@®(i—t) r=|T|+1

I,T' g const(t) k ~ (|T'|, const(t) k), "1, |T'1]

[Fs—DISPOSE] [FS—NEW
I<|T| r=|T"|+1 Ii=ref:I"

[,T' g load(t) i ~ (|T'|, load(t) i), 1, |T1|

I, t:T g store(t) i ~ (r,store(t) i), 1,7

[Fs—SEQ]
LT e Er~ AT, Fr LT bR Bo ~ Ao, T2, Fo

[Fs-1F
[,DFp B~ AT, Fr IK|D] Ty |=(Ts
I,DFp Ea ~ Ag, T2, Fo F3 =max Fi,F2) I'z=I'1Uls

l,ref:I" bg dispose ¢ ~» (r,disposec),I',7 [,I' g newc ~> (|I'|,newc), 'y, ||

I,T Fg E1; Ex ~ (|0, Ar; Ag), T2, maX(F1, Fa)
FS—INVOKE]

tm(ty, . tn) - {---} € P F=max|l|,[I'z])
= [tn, ..,t1]+F1 lS‘Fl‘ To=t:T"1

l,bool:I" Fg if By Ex ~» (|T'|+1,1if A1 A2), '3, F3

[Fs—WHILE]
I<|T| I,T Fg E ~> A bool:T, F

LT i+, - 1] FE E~s A BT, F

[,I' g invoke m ~~ (|I'|, invoke m), I'2, F

[FS—-METH]
ID|=t

[,bool:l" kg while E ~» (|T'|+1,while A), I, F

Fe tM(t1, o tn) L{E} ~ tm(t1, . tn) |; F+2 {A}

Figure 3. Frame Bound Inference

checks to ensure that there is no underflow of the operan# stac
and that simple type safety exists. Also, each frame of a ogeth
call is not affected by the operations of its callees as tlterla
have their own stack frames. Thus, frame bound inferenceria-i
procedural in nature, and there is no need to apply fixpoialysis
here. To account for the presence of the return address asidtaip
to the previous stack frame, we a@do the inferred frame bound
in [rs—METH]. Furthermore, most types occupy a word per value,
except forvoid which takes no space, andng anddouble which
take two words per value. For ease of presentation, we stslhae
that each type (includingoid and return address) takes a word per
value on the stack frame. Our implementation computes thmhc
size for each type. Note frofies—wHiLE] that execution of while
loops do not cause any increase in the frame size. Furtheriar
test/<|T'| is to ensure that current stack frame does not underflow
into the area that has been reserved for local variables.
Notation-wise, we USE :: ¢t to denote thaE is of typet. Given
' = [t1,..,ts], the notationt : I inserts typet to the head of
T, yielding [¢, t1, .., t»]. We use+ to concatenate two sequences.
For example[t1, ta]+[ts, .., tn] = [t1,..,tn]. |I'| represents the
number of elements i, i.e., n. I'[¢] retrieves itsith element,
i.e., t;. d(i—t) returns a sequence similar Fobut with its ith
element replaced by i.e., [t1, .., ti—1, t, tit1, .., tn]. The function
maxn1,n2) returns the maximum of; andn., while function

T, U2 computes the least upper bound of types over sequences of

the same length.

4. Abstract State Inference

We also attach a post-state for the body of ed@cile loop asit
is needed for various fixpoint analyses. Let us examine hoivatt
program state is inferred by our rules. Toenst (t) k instruction
is analysed as follows:

[as—coNsT]
A1 = ANeq (a1, k)
A Fa (p,const(t) k) ~ (p, A, const(t) k), Ay

A new k value of typet is placed on top of the stack at loca-
tion p+1. Our rule addseq, (7,1, k) to the post-state to mirror
this effect. As abstract state is based on integer domagedh
relation converts boolean constants to integers and ignatteer
non-integer types:

eq)ool(v7 true) =df (U = 1)

€1 (v, false) =g (v=0)

e, (v, k) =y (v=1k)

eq, (v, k) =g true, IF t = float | void | ref
The rule forstore(t) 7 instruction is highlighted next:

[AS—STORE
AL = Aopry mi=m,
A Fa (p, store(t) §) ~ (. A, store(t) 7), 3m) - Ar

The current value on top of stae, is copied into location.
To capture state change at this location, we compose theaabst
stateA with the changer;=m, as follows:A oy} m;=m,. Given
an existing state\ and a change wherebyX = {z1,...,z,}

The second stage of our analyser attempts to infer an abstrac denotes the set of variables to be updated, we can define tire co

program state (via strongest postcondition reasoninginvite
chosen abstract domain) at every program point. Each abstede

A is expressed as a Presburger formula over values on the stack

[7p, ..., m1]. Following the primed notation advocated in [18] to
capture state change, we usgto denote the original value of
the stack at location and 7; to denote the latest value at the
same location. Our analyser employs syntax-directed flése
following form:

AbaA~ B A,
whereA (resp.A1) represents the abstract state before (resp. after)
the evaluation ofA. Note that the inpuf is an expression previ-
ously annotated with top frame pointers. The output exprass
B is obtained fromA by inserting the corresponding abstract state
into each program point. It can be inductively defined aofod:

B == (p, A, Eg)
Ee ==Cmd| B;B | if BB | while BA;

position,ox, as follows:

AOX¢:df Ar1..mm - p2 AN p1 @
where r1,...,r, are fresh variables
pr = [wi = riliy 5 p2 = [x] >)iy

Note thatp; andp, are substitutions. Later, we may ysgJps to
combine two substitutions with disjoint domains.
As an example, if the current state is captured usifigmi A
mh=m1+2, then its update by; =} is computed as shown:
(M= ATH=T1+2) 0} T1=Th
= Irr=miATh=m1+2 AT =7}
= wh=m1+2 AT =7h

Furthermore, as a value on the stack is being popped out, we

shall existentially quantify it usingr, - A;. For the above exam-
ple, this leads to:
A7y - (mh=m1 +2AT =75)
=7mi=m1+2

freshr A = pgpr A1 = (37,417, A/\PsﬁpO)A(% nt1=")

[As-LOAD [AS—NEW -DISPOSE] [AS—SEQ]
Ay = A/\ﬂ'p+1—77 I = new c|disposec Abpa Al ~Bi, A1 AjFa Az ~ Bg, Ag
A Fa (p,Toad(t) i) ~ (p, A, load(t) i), A1 Aka(p,I) ~ (p, A1), A A b (p, A3 A2) ~ (p, A, B1;B2), Az
[AS-INVOKE]| AS-METH]
tM(t1..n) L dpr; Fidpo{--- }EP p= [ﬂ'z'_”r n.HL 1U[7rl+1 7] A = N w=n; AFpAA~B, A1 ¢pr = prefixp(erec)

Prec = {m(ﬂ'b < T, 7Tl/+1):A1} ¢po = fixpt(¢rec)

A Fa (p, invoke m) ~» (p, A, invoke m), Ir-Aq

Fa tM(t1n) L F{AY ~> tM(t1.) L dpr; F; dpo{B}

Figure 4. Abstract State Inference

For the conditional construct, we build path sensitivitioiour
rules by addingr, =1 and, =0 to the abstract states of the true
and false branches, respectively:

[As—1F
Imp, (A AT,=1) Fa AL ~ Bi, Ay
Imp,- (A A m,=0) Fa Az ~ Bz, Ag
A I*A (p7 if A1 AQ) ~ (p,A, if Bl BQ)7A1\/A2

A new post-state\; VA, is obtained via a disjunction from
outcomes of the two branches.

The remaining rules for abstract state inference are ligied
Figure 4. For theinvoke m instruction, the postcondition of the
callee is added to the current abstract state. We also chetistire
that the precondition of the callee is met usihg=—- p¢pr.

For bothwhile loop and method declaration, we first build a
constraint abstraction before applying fixpoint analyi$isgeded,
to approximate the effect of recursion. The rule for the laop-
struct{as—wHiILE] is more complex than that for method declara-
tion [as—METH] despite the fact that it can be viewed as a special
case of tail recursion. Two features make a loop speciaiil(¥gri-
ables in scope may be regarded as parameters to the loopamatly,
(i) these variables must be considered to be passed byerefer
since their effects are visible outside of the loop.

Given a loop(p,while A), the variablesry, .., 7,1 are in
scope andr, is the boolean test. A corresponding tail-recursive
counterpart to this loop may be written as:

(71, .oy Tp—1)=if (A; (71, .., Tp—1)) nOp
wherenop denotes a skip command. As we have to model the
parameters through a pass by reference mechanism, we seall u
constraint abstraction(m1, .., Tp—1, 71, .., Tp—1) With 71, .., 7p_1
to denote the outputs for the input parameters.., 7,—1. This
is captured by the abstractiafc that is built from Ay (which
captures the poststate Aj and A, (which captures the effect of
conditional prior to termination or loop) in the rule below:

AS—WHILE]

A 7r;—7r1 FAAW B,A1 p=[ri—m]t] 1 freshri, .., rp—1
Ag=mp,=0A AVZ 1 ri=m VT, =1AQ(T oy T T Tp—1)
¢rec={06(7T17- S Tp—1:T1s s Tp—1)=A1AAq} Apos=fiXpt(rec)
Ao=(3my, - AAT,=0)V((3m,, - AAT,=1) Oy mp_1} PApost)

A Fa (p,while A) ~ (p, A,while BAj), Ag

Applying fixpoint analysis to the recursive abstractionegia
postcondition for executing this loop. Note that the alwitstate
(3, - AAT,=0) is to account for the scenario in which the loop
is never executed.

5. Stack Inference

The rationale behind a separate frame inference stage isito |
the effects of primitive operations, suchlsad(t) andstore(t),
to the caller’s local frame area. To support interproceldamnaly-
sis, we must also analyse how method invocations affectltizy
stack. One special feature of the stack is that it has peréeciv-

ery of space at the method call boundary. This means that ther
always zero net stack usage at the end of each method calie€on
guently, we only need to infer stack bound (and not stackejsag
each method declaration. We achieve this through a seteréinte
rules of the form:

atksB~ S

wherea is the arity of the current method, aBds the expression
with top frame pointers and abstract states inserted by prial-
yses. The inferred resuff denotes the high watermark of stack
usage encountered during (i.e. from start to end of) theuti@t
of B. S contains path-sensitive information for stack space. It is
captured by the guarded forfy—s}* whereg is a predicate and
se AExp (from Figure 1) denotes the stack space whésntrue.

The most interesting rule for stack bound inference is that f
method invocation, as shown below:

[ss—1nvOKE]
tmy(ty, .., tn)l; ¢pr,f dpo; S{B}t€P r=p—n+2
p=[mi— T piiliet S1 = enrich(a, A, pS)+r
aks(p, A, invoke my) ~ S;

Note thatp captures the argument substitution process. We
use a special functioanrich(a, A, S) to incorporate path-sensitive
guarded formula into the current abstract stafe, as follows:

enrich(a, A, S) =4 {Imoyy - -

Here,a is the arity of the current method. The existential quaratific
tion 37, ... removes all variables other than, .., 7, from the
guarded formulae. For each method invocation, we have aehoi
of either building the next frame on top of the current framém
mediately above a frame pointer @t n+2, after the removal of

n arguments. In the above rule, we assume that our abstract ma-
chine uses the second convention as this can give a lowet stac
bound. Also, an expressionwithout its guard is an abbreviation

for {true—s}. For exampleenrich(a, A, pS)+r is a shorthand

for enrich(a, A, pS)+{true—r}.

Furthermore, we have the option of mirroring tail-call opiti
sation. Obviously, this depends on whether the particldatract
machine supports it. Assuming it does, we can mark eachdhil ¢
identified with a specialnvoker,;; instruction. For each such in-
vocation, we can build the next stack frame by overwriting¢hr-
rent one. Its effect on the stack can be captured by the ridevbe

ANg—s | (g—s) € 5}

[sS—INVOKE-TAIL]

tml(tl,. tn) dpr; Fi ppo; S{---} € P
P = [ﬂ—l — ﬂ—p n+2]z 1 S enrlcf‘(a A ps)

aks (p, A, invokerqii m1) ~ S1

The rest of the stack inference rules are listed in Figureh®e. T
guarded formulae used in our rules are built from two opesato
namelyU (for upper bound) and- (for summation). Both these
operators are associative and commutative wittlistributing over
U. The guarded formulae can be simplified by the following $et o

[ss—INSTR [ss—sEQ] SS—IF|
I = const(t) k | load(t) i | store(t)i| - -- atsBi ~~ 81 abgBy ~ S atsBi ~~S1 abksBy ~ S
al—s(p,A,I)w{} al—s(p,A,Bl;Bg)wsl U Ss a}—s(p7A,if B1 Bz)wslUSQ
[SS—-WHILE]
aFsB~S [ss—METH]
Srec = {a(m1..mp—1)=SUenrich(p—1, A1 Am,=1,c(m] .7, 1))} nksB~8 Sec= {M(mi.mn)=SU{ppr—F}} Sy = fixpt(Srec)
ats (p,A,while B A1) ~ enrich(a, AAm,=1, fixpt(Srec)) Fs tM(t1..n) 1 dpr; Fs dpo{B} ~> tM(t1..n) L; dpr; F; dpo; Su {B}

Figure5. Stack Bound Inference

normalisation rules: illustrated in the following rule:
{false—s} = {} [HS-SEQ
}p1—>s}$&?z—>s} y i Epl\//\m_)ﬁa)(N a, H by By~ Hi, M1 aHiFn By~ Hay Mo
—8 —S — 81, S
posiUlps) = (e mates: o T 1, 5,81 E) = o, MIM:
U{—p1Ap2—s2} Ultimately, heap usage is affected by two primitive heafrires
{p1—s1}+{p2—s2} = {pP1Ap2—s1+s2} tions, namelyrew anddispose. Their heap effects can be captured
(G1UG2)+G3 = (G1+G3)U(G2+Gs) by the following rules:
The first threeU rules are applied to each set of guarded for- [HS-NEW]
mllJIae rL]mtil r?” guardst;a\re _disjlc?fi_ntdfromder?ch c(>jt_her.bThe tast Hi=H-+enrich(a, A, {(c,1)})
rules show how4- can be simplified, and how- distributes over E A .
U. The third rule may lead to an explosion in the number of cases M (p, Aynew ¢) ~ T, Ha
but these cases may be reduced with the help of the first twes.rul [Hs—DISPOSE]
In particular, the second rule can be viewed as a specialofdbe _ ; A 1
third rule. Furthermore, we may heuristically apply, wheesired, o2 H+enr|cr'(a, Ale, =D}
the following approximation rule: a Hw (p, A, dispose ¢) ~ Hi, H
As before, theenrich function incorporates heap usage effects
{p1—=s1}U{p2—s2} = {p1Vp2—max(si, s2)} by adding the current abstract state into the guards of a heap
As an example, consider the guarded formula below: specification. For heap notation, we define the guard enhaeme
{0<n<5—10}U{3<n<9—20}U{n<3Vvn>9—5} functionenrichas follows:
The first two guards overlap. Applying the third rule, folled/ enrich(a, A, H) =4 {37 11.. -ANg—B | (9—B) € H}
by the second rule gives: . . —
= {0<n<3—10}U{3<n<5—max10,20)} The rest of the heap inference rules are listed in Figure 6. Th
a U{5<”<9—’26}U_{n<3\/n>9’—>5} initial heap usagg0} (used in[as-mETH]) and max function
N {0<n<3—>16}U{3<n<9—>20}U{n<3\/n>9—>5} (used in the definition af)) are defined as:
The first and third guard now overlaps. Applying the thircerul {0} =4 {(c,0)|c € ObjType})
followed by the second rule gives: maxBi,B2) =qs {(c,maxBi(c),B2(c))) | ccObjType}
= {0<n<3—10}U{3<n<9—20}U{n<0Vn>9—5} B(e) =af if (¢, s)€B thens else0
The final normalised form is a guarded expression with disjoi ~ whereObj Type denotes the set of object types used in the current
predicates and captures stack bound after safe approgimati program.
6. Heap Inference 7. Discussion
We organize heap inference as a set of syntax-directed ofitee In this section, we proceed with a brief discussion on twoeieing
form: important issues: (i) soundness of the inference systenh,(ign

abstract states for objects.

aHFnB~H, M We can formulate a safety theorem which proclaims that each
As beforeais the arity of the current methoti (resp.1) denotes method always executes without error from insufficient mgmo
the heap effect before (resp. after) the execution of theqtted) when it is given memory resource equal to (or more than) its
expressiorB, while M indicates the high watermark of heap usage inferred bound.
during the execution d8. For heap space specification, the guarded

formulae is of the forn{ g1 —B1, go—Ba, ...}, where eacly; is a THEOREM 1. Consider progran®” with M as its main method with
predicate, and eadB; denotes heap size in bag notation. body E but without parameters. Suppose a frame bakina stack
While we have formulated heap inference as a single set of boundS, and a heap boundA have been inferred for method M. If
rules, it is really computing two pieces of information, retyn (i) the initial configuration G = ((x, 7,2) : I, w, ret(E), s—F, h)
heap usage, and (i) heap bound. Furthermore, the lattendspn ~ Satisfies the following conditions: (B F > M (2) 7 F s > S,
the former. Our implementation therefore organises tHerénce then the stack spaceand the heap space are adequate for the

stage as two separate tasks whereby heap usage is compiated be €xecution of the program. That is, for a@y= (111, w1, E1, s1, h1)
heap bound. This is mandatory when handling recursive mstho Where G —* C, we haves; > 0, andh, > {0}.

as fixpoint analysis for heap usage must be computed befere th
analysis of heap bound. Furthermore, we have to track hesgeus
(but not heap bound) in a flow-sensitive manner by passing the
heap usage from a prior computation to the next one. Thisss be (f: II,w,E, s,h) — (II1, w1, E1, s1,h1)

Proof Sketch: Consider an operational semantics in small steps of
the following form:

[HS—PRIM]
I = const(t) k | load(t) i | store(t) ¢

a,’H Fy B1 ~» Hi, My

HS-IF]
a,’H Fy By ~ Ha, Mo

a,Htu (p,AI) ~H,H

p—1,H Fn B~ Hy, My
A():A/\ﬂ';,zl Hrec:{a(ﬂ'l, .

a, H tn (p, A, if By B2) ~» H1UH2, M1UM>

HS-WHILE]
Miec={a(m1, .., mp—1)=MiUenrich(p—1 A1/\7r =1, Hi+a(ny,.., 7 e l))}
, Tp—1)=enrich(p—1, Ay Amrp,=0, Hl)uennch(p 1 Al/\w =1, Hita(r, ... m,_q))}

[HS - INVOKE]
tm(t1, .., tn) I; dpr; F; ¢po73 Huth {B}eP
P= [71'1 = 7T —n+i 1 1
Hi=H+enrich(a, A, pH.,) M17H+enr|ch(a,A,th)

a, H bn (p, A,while BAy) ~~ enrich(a, Ao, fixpt(Hrec)), enrich(a, Ao, fixpt(Mec))

[HsS—METH]
n,{0} Fy B ~» H, M
Hiec={mM(71, .., mn)=H} Hpo=TiXpt(Hrec)
Mrec:{m(ﬂ'l, I 7'('77,):./\/1} Mpo:fixpt(Mrec)

a, H tn (p, A, invoke my) ~» Hi, My

Fu o tm(ty, .., tn) I dpr; F; dpo; S {B}
~> tM(t1, -5 tn) 1 dpr; F dpo; S; Hpo; Mpo {B}

Figure 6. Heap Usage and Bound Inference

wheref : IT is the frame of stacks withas its current frame. Each
framef = (=, F,p) contains an arrayr, the frame sizeF, and
a top frame pointep. w represents the heap, akds the expres-
sion to be evaluated. This model contains two runtime imsémn-
tations, namely: available stack)(and available heap spacke).(
Our semantics will flag memory adequacy errors whenewarh
becomes negative. We can formalise a notion of well-fornred a
notations, and then show that our inference algorithm dersuch
annotations. With this, we can prove by co-induction over dp-
erational semantics that each program with well-formedogan
tion never fail due to memory adequacy error, whenever sesffic
heap/stack space are given. Note that conditidisand (2) state
that the available stack and heap spaces in the initial atateot
less than the method’s inferred boundss.

To keep our presentation simple, we have omitted the inéeren
of abstract states for heap allocated objects. A techniwlenge
is to deal with objects that are bothutableand shareable Such
objects are more difficult to track accurately. To deal wthikr,
we have provided an alias type system (similar to that usgti3ip
to identify two main groups of trackable objects (or refers),
namely: (i) references that are unique whose abstractssiatey
change, and (ii) references whose abstract states (fieldsjra
mutable but may be freely shared. For the current work, tbp-pr
erties that we are interested in analysing are mainly smed
properties. For example, consider a binary tree object effo
lowing type declaration:

object BNode { int val;
BNode left;

BNode right}
Two properties we may track for th&Node object type are

wherek; andk, are some integer constants andh denotes the
height of tree atr;. Given another method to sum values of a tree,
followed by the disposal of its nodes:

int sum(BNode t) [, true {
if t==null {return 0}
else {int v=t.val+sum(t.left)+sum(t.right);
dispose(t) ;return v}

Our inference system would derive:

F=ks; ¢ppo=ms=m1.5; S=maxksXmi.h, k3);
‘H={(BNode, —m1.5)}; M={0}

whereks andk, are some integer constants and the bag expression
{(BNode, —m1.s)} denotes the recovery 8Node objects equal to
the size of tree at .

8. Experiments

A prototype for our inference system has been built to confirm
the viability and practicality of our approach. We have eafr
our experiments to infer stack/heap bounds for a set of gonadl
grams with challenging recursion and for programs from tbie S
mark benchmark suite: Fast Fourier Transform, LU decontioosi
Monte Carlo, Sparse Matrix Multiplication, Successive ORe-
laxation [23]. The system uses the CIL infrastructure [22f&ns-
late the C programs to an intermediate language. An additfme-
processing phase is needed for obtaining code in our asgdeviel
form (e.g. translating away some intraprocedural corftomd. Our
prototype is built using the Glasgow Haskell Compiler [24Pa
makes use of the Omega constraint solving library [26] audete
with the disjunctive fixpoint analyzer from [25]. Our tesaffbrm

number of nodes in the tree and height of the tree. We can definewas a Pentium 2.8 Ghz system with 2GB main memory, running

these two properties by introducing two abstract fieldndh, as
shown in the type declaration below:

object BNode(s, h) where s=1+left.s+right.s
h=14+max1left.h,right.h)

Given a method to compute the height of a tree:

int height(BNode t) [, true {
if t==null {return 0}
else {
int v=1+max(height(t.left), height(t.right));
return v}

Our inference system would derive:

F=ki; ¢ppo=ms=m1.h; S=maxksxmi.h, k1);
H={0}; M={0}

Fedora Linux 4.0.

Figure 7 shows the statistics obtained for each programatbat
inferred. The program size is indicated in terms of numbéines
of C code (Column 2). For each program, we present four timing
measurements. Column 3 represents the time taken by théleemp
tion of the original C program, while Column 4 representstiime
taken by state inference (frame bound inference plus abstate
inference). Column 5 represents the time taken by frame doun
inference, abstract state inference and stack infererastlyi. Col-
umn 8 represents the time taken by frame bound inferencaabs
state inference and heap inference. The time for abstraigt st-

ference roughly correlates with the program size and wigrcthm-

plexity of the relations between program variables. Thetadl
time taken for stack inference was significant due to thengite
use of the stack by all of the programs. The time taken for heap

Benchmark | Source | Compilation | State Inf. Stack Analysis Heap Analysis
Programs (lines) (secs) (sec) Inf.(secs) [Estimation | Execution | Inf.(secs) | Estimation | Execution
ackermann 16 0.047 0.98 1.52 * 248 0.98 0 0
binary search| 31 0.052 0.62 1.14 88 88 0.67 40 40
bubble sort 39 0.052 0.68 1.36 104 104 0.72 40 40
init array 5 0.047 0.23 0.42 64 64 0.26 40 40
queens 39 0.054 1.05 2.26 84 84 1.06 32 32
quick sort 43 0.054 1.66 4.26 624 624 1.68 400 400
FFT 336 0.108 17.52 35.81 856 846 17.74 128 128
LU Decomp. 191 0.080 9.20 27.89 580 580 11.64 480 480
Monte Carlo 36 0.038 0.27 0.33 24 24 0.27 0 0
SOR 84 0.062 2.54 5.09 540 540 2.61 400 400
Sparse Mult. 79 0.062 2.96 5.22 40292 40292 3.92 160800 160800

Figure 7. Experimental Results on Memory Bounds Inference

inference was less substantial, due to the nature of ourrzmug first-order functional language with a resource-aware gymtem
Most of the benchmarks used few heap objects, with the edeept [19]. Similarly, Amadio et al. [4] defined a simple stack maehfor
of the Sparse Multiplication benchmark. a first-order functional language and showed how to perfgpe,t

We also provide results on the precision of our memory bounds size and termination verifications at the bytecode levegifTimain
analysis. For stack analysis (Columns 6,7) and heap asalysi result is a proof that each program with the quasi-integti@t
(Columns 9,10), we report the number of bytes correspontting property that terminates has a polynomial stack bound. However,
the statically computed memory watermark and the actual wa- their focus is on termination verification, rather than attafer-
termark obtained from the execution of the programs. Altlsta ence on stack bounds. Furthermore, heap space was note@usid
usage bounds were successfully captured, except for therAck More recently, Cachera et al. [11] proposed constrainethasem-
mann function which requires a stack space that is expaaddnti ory analysis for a Java-based bytecode language. For a gieen
its parameters’ sizes. This stack bound is beyond the Pmgsbu gram, their loop-detecting algorithm can find methods assttire-

arithmetic form used in our current system. Nevertheldss pat- tions that execute for an unbounded number of times. Thisigac
terns of recursion that we have tested made full use of theepow only used to check if memory usage is theoretically boundedb
of our fixpoint analysis with support for disjunctions antht®nal However, this result is not sufficient for highly constrairsystem
analysis. which requires precise upper bounds on memory usage.

To gain more confidence in our system, we performed one more There were also several works on analysing the stack space
experiment with the Susan program described in [16]. Susan i requirement of interrupt-driven programs. Brylow et alO][pro-
image processing package that uses more heap-allocatgd sor posed stack size analysis using a context-free reachahltjo-
represent patterns for image recognition. To keep our tesul rithm based on model checking. Chatterjee et al. [12] ingattd

linear form, we employed an annotation technique which can fi complexity of the stack boundedness problem and the exadt ma
upper bounds for two constant parameters representingitite w mum stack size problem. These techniques apply to onlyrirger
and the height of the image to be manipulated. With this mlanua stacks (but not the more general runtime stacks), and angréer
annotation, we were able to capture bounds for both stack andgrams without recursive (interrupt) invocations. Staclajmer [1]

heap. Overall, we can conclude that our initial experimghtsugh is a commercial product that can determine worst-case sisage.
preliminary in nature, have confirmed the viability of oupapach. However, it assumes a user-specified limit on recursiontdept

Chin et. al. [13] proposed a modular memory usage verifica-
9. Reated Work tion system for object-oriented programs. The system catlch

whether a certain amount of memory is adequate for safe execu
tion of a given program. However, programmers must provige t
pre/post conditions on memory usage for each method. Witheu
ference, this approach is impractical for low-level pragsa Hof-
mann and Jost [20] proposed a type-based heap space arfatysis

Past research on memory usage prediction [21, 19] mainlyskxt
on functional programs where data structures are mostlyutabhbe
and thus easier to handle. Hughes and Pareto [21] propogpd-a t
checking system on space usage estimation for a first-outher f

tional language, extended with regions. The use of a regintel Java-like source language with explicit deallocation.ilTaealysis

faclllltat.es recovery of heap space. However,.no infereneehi is based on an amortised complexity analysis where a patésiti
anism is proposed and the recovery mechanism used has IC0arse, oo neq to each datum according to its size and layout. stesege
granularity since each region is only deleted when all dbj&t

it ; dead. Hof d Jost [19 d It usage can then be calculated during the type inference basbe
thﬁﬁ'ﬁzeﬂfboejn ds gnr?ﬁgnhzgp ngcEe u]sg;joepgfs%rsig&erlcf)u annotated potential for each input. More recently, Albérgag [3]
tional programs. A key feature of their solution is the usdimf reported a heap space analysis for Java Bytecode. Simikaurto

ear typing which allows the space of each last-use data rearst work, their analysis also makes use of a linear size analysislp
! - > . i ions for data structures under manipalgtough
tor/object to be directly recycled by a matching allocatiwvith recover size relat o g

this approach, memory recovery can be supported within other domains may be also used if appropriate constrainesol
tion but not across functions unless the dead objects aleityp are available. Different from type-based approachesy dreilysis

d. While thei deli ; inf stel is based on a cost model reported in [2]. In their work, th@ppse
patsse . tl ek €ir mode dlnlcolrpqtra dets an l'.r; ercrer;c;er:y . thn?'e{s d to use escape analysis to refine the heap space inferende pwhi
not cover stack usage and IS limited 1o a finear form withas system supports the more fine-grain explicit deallocafftreir fo-
junction. As a result, path sensitivity is not fully expleit.

Aspinall et al. I5 lied id from proof-carvin ot cus is mainly on heap space inference, while our system éandl
spinall et al. [5] applied ideas from proof-carrying codete the inference for both stack and heap space bounds.

problem of resource certification for mobile code. In thgstem,

memory adequacy proofs are checked at the level of a linggrbd
assembly language with the help of theorem proving teclesigu ! This essentially implies that each definition has some noreasing mea-
However, the system assumes that source programs come from aure.

Independent of our work, Braberman et al. [8] deal with the
memory consumption inference problem (for a Java-like irape
tive language) in the same proceedings by a different approa

where memory bound is modeled using a more expressive poly-

nomial expression that is solved by resorting to Bernsteisid
As an extension to their earlier work [9], their approach riakes
into account object deallocation via region-based membingir
system handles non-recursive programs very well with tie die
Daikon system [15] to generate loop invariants. For rewarpro-
grams, user annotations may be required. Different fromn ek,
our system infers both stack and heap usage bounds for rexurs
methods (and loops) using fixpoint analyses.

10. Concluding Remarks

We have proposed a sound inference system for a structusechas
bly language useful for predicting the amount of memory spac
needed during program execution. Our system can infer beth n
usage and upper bound of stack/heap spaces required, far a re
sonably wide range of programs. We use a special guardedsexpr
sion form to track both memory usage and high watermark in a
path-sensitive manner. Our approach can handle both fenunsd
loops. We use recursive constraint abstraction to modejrpro
state, net memory usage, and memory bound. Their corresmpnd
abstractions are subjected to a set of normalisation rphés; to
conventional fixpoint analysis.

We envision our framework to be most useful whenever mem-
ory resources must be carefully quantified. Possible agidic do-
mains include embedded devices, safety critical systenashih-
reliability server systems where memory footprints aregdightly
accounted for.

Acknowledgement Alexandru Stefan helped with the experiments and pro-
vided insightful feedbacks on the paper. The reviewers dINB8 pro-
vided professional and helpful comments that led to impmets to the
paper’s presentation. This work is supported by A*STAR gFRu252-000-
233-305 and a gift from Microsoft. Shengchao Qin is supbittepart by
the EPSRC project EP/E021948/1.

References

[1] Absint. StackAnalyzer - Stack Usage Analysis. httpwiwabsint.com/
stackanalyzer/.

[2] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardost
Analysis of Java Bytecode. Buropean Symposium on Programming
(ESOP) March 2007.

[3] E. Albert, S. Genaim, and M. Gomez-Zamalloa. Heap Spataysis
for Java Bytecode. IRroceedings of the International Symposium on
Memory Management (ISMM '0;7June 2007.

R. M. Amadio, S. Coupet-Grimal, S. Dal Zilio, and L. Jaked A
Functional Scenario for Bytecode Verification of Resourceiils.
In 18th Int'l Conf. on Computer Science Logic (CSL08pringer,
LNCS, September 2004.

D. Aspinall, S. Gilmore, M. Hofmann, D.Sannella, and tag.
Mobile Resource Guarantees for Smart DevicesntthWorkshop on
Construction and Analysis of Safe, Secure, and Interoper@mart
Devices Springer LNCS, 2004.

G. Balakrishnan, R. Gruian, T. Reps, and T. Teitelbauodé&Surfer/x86-
A Platform for Analyzing x86 Executables. Intl Symp. on Compiler
Construction 2005.

M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# pesgming
system: An overview. lint'l Workshop on Construction and Analysis
of Safe, Secure, and Interoperable Smart Devi&gsinger LNCS,
2004.

[8] V. Braberman, F. Fernandez, D. Garbervetsky, and S.névPara-
metric Prediction of Heap Memory Requirements Phoceedings of

[4

[l

5

—_

[6

—

[7

—

the International Symposium on Memory Management (ISMN] '08
Tucson, Arizona, June 2008.

[9] V. Braberman, D. Garbervetsky, and S. Yovine. A statialgsis
for synthesizing parametric specifications of dynamic memo
consumption.Journal of Object Technology. Special Issue: ECOOP
2005 Workshop FTfIP5(5):31-58, 2006.

D. Brylow, N. Damgaard, and J. Palsberg. Static Chegloh
Interrupt-Driven Software. IrProceedings of the International
Conference on Software Engineering (ICSE;0l9ronto, Canada,
May 2001.

D. Cachera, T. Jensen, D. Pichardie, and G. Schneidertifi€d
Memory Usage Analysis. 1h3th International Symposium of Formal
Methods Europe (FM’05)July 2005.

K. Chatterjee, D. Ma, R. Majumdar, T. Zhao, T. A. Henzngand
J. Palsberg. Stack Size Analysis for Interrupt-Driven Paogs. In
10th Annual International Static Analysis Symposium (8% San
Diego, California, June 2003. Springer-Verlag.

[13] W.N. Chin, H.H. Nguyen, S.C. Qin, and M. Rinard. Memorgdde
Verification for OO Programs. I8tatic Analysis Symposiy@pringer
LNCS, London, UK, September 2005.

[14] P. Cousot and N. Halbwachs. Automatic discovery ofdinestraints
among variables of a program. ACM POPL, pages 84-96, 1978.

[15] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. BaghM. S.
Tschantz, and C. Xiao. The Daikon system for dynamic deieaif
likely invariants.Science of Computer Programmir@p(1-3):35-45,
December 2007.

[16] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudged
T. Brown. MiBench: A free, commercially representative euted
benchmark suite. Idth IEEE International Workshop on Workload
Characteristics2001.

[17] J. V. Guttag and J. J. Horning, editorisarch: Languages and Tools
for Formal SpecificationSpringer-Verlag, 1993.

(10]

(11]

(12]

[18] C. A. R. Hoare and J. He Unifying Theories of Programming
Prentice-Hall, 1998.

[19] M. Hofmann and S. Jost. Static prediction of heap spaege for first
order functional programs. IACM POPL New Orleans, Louisiana,
January 2003.

[20] M. Hofmann and S. Jost. Type-based amortised heapespaalysis.
In European Symposium on Programming (ESQR@nna, Austria,
March 2006.

[21] J. Hughes and L. Pareto. Recursion and Dynamic Datzctires
in Bounded Space: Towards Embedded ML ProgrammindCHRP,
September 1999.

[22] G.C. Necula, S. McPeak, S.P. Rahul, and W. Weimer. CIL:
Intermediate language and tools for analysis and transftiom
of C programs. 2002.

[23] National Institute of Standards and Technology. Jai&8rk bench-
mark for scientific computinthttp: //math.nist.gov/scimark2/.

[24] S. Peyton-Jones and et al. Glasgow Haskell Compilenrilable at
http://www.haskell.org/ ghc.

[25] C. Popeea and W.N. Chin. Inferring disjunctive posttitons.
In Asian Computing Science Conference (ASIAN)ume 4435 of
Lecture Notes in Computer Scienpages 331-345. Springer, 2006.

[26] W. Pugh. The Omega Test: A fast practical integer pnogréng
algorithm for dependence analysi€ommunications of the ACM
8:102-114, 1992.

[27] S. Sankaranarayanan, F. Ivancic, |. Shlyakhter, anGupta. Static
analysis in disjunctive numerical domains. $tatic Analysis
SymposiumSpringer LNCS, August 2006.

[28] M. Sitaraman, G. Kulczycki, J. Krone, W. F. Ogden, andLAN.
Reddy. Performance specification of software components. |
Symposium on Software Reusability: Putting Software Reuse
Context Toronto, Canada, May 2001.

