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Abstract
Embedded systems are becoming more widely used but these sys-
tems are often resource constrained. Programming models for these
systems should take into formal consideration resources such as
stack and heap. In this paper, we show how memory resource
bounds can be inferred for assembly-level programs. Our inference
process captures the memory needs of each method in terms of the
symbolic values of its parameters. For better precision, weinfer
path-sensitive information through a novel guarded expression for-
mat. Our current proposal relies on a Presburger solver to capture
memory requirements symbolically, and to perform fixpoint analy-
sis for loops and recursion. Apart from safety in memory adequacy,
our proposal can provide estimate on memory costs for embedded
devices and improve performance via fewer runtime checks against
memory bound.

1. Introduction
While formal specification and functional correctness [17,7] have
for a long time been a central focus of the software engineer-
ing community, an orthogonal consideration on resource adequacy
and utilization is gradually gaining importance. This trend is being
driven by the proliferation of resource-constrained mobile devices,
coupled with the high expectations on reliability and usability from
consumers. Previous work in this area (amongst the real-time and
embedded systems community) have mostly focused on real-time
aspects, with major inroads made in WCET (worst-case execution
time) domain. In this paper, we focus on memory as a constrained
resource and approach the problem from a program analysis per-
spective. To make it relevant to a wider community, we shall for-
mulate our analysis for low-level assembly-like programs.

We consider the determination of memory resource require-
ments for data structures that can be dynamically allocatedand
recycled during program computation. Such memory subsystems
are typically organised into two main components:stackandheap.
Stack is an efficient way for using and recovering memory spaces,
and is particularly important for method invocations and transient
data structures. Each method invocation typically reserves a frame
of memory on the stack for holding local variables and the return
address to its caller. Heap is used for more complex data structures
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that may live beyond the method calls where they are created.It is
typically used with a garbage collector for recovering deadspaces.

For applications running in resource-constrained environments,
such as smart cards or embedded devices, it is important to be
fully aware of the memory space needed by each computational
unit. Previous systems have relied on language restriction(e.g. no
heap allocated objects), profiling, or informal estimate topredict
the amount of memory space required. To minimise errors due to
inadequate memory, developers often over-estimate the memory
space that is needed. However, this translates into greaterhardware
cost without giving any guarantee on memory adequacy.

There are few previous systems for predicting the symbolic
memory usage of programs, especially of low-level programs.
Recent works [19, 21] are mostly based on analysing functional
programs where the presence of immutable data structures makes
such analysis easier to formalise. Even though [5, 4] are targeted at
Java-based bytecode programs, their frameworks again assume that
bytecode programs are compiled from first-order functionalpro-
grams. Other works, such as [13, 28], merely provide a framework
for checking that the memory usage of object-oriented programs
conform to user-supplied memory specifications either through
static analysis or runtime checking. However, user-supplied an-
notations may be hard to provide and are likely to be impractical
for assembly-level programs.

The focus on low-level programs is important for two reasons.
Firstly, they can represent the intermediate form for a variety of
higher-level languages. Secondly, resource usage may be affected
by optimising compilers which can render memory analyses done
at the source level possibly unsafe to use. In this paper, we make
the following major contributions:

• Memory Bounds: We infermemory upper boundson stack and
heap usage for each computation unit where possible. Our in-
ference is formulated for low-level assembly-like programs. To
make this task tractable, we organise the inference mechanism
as a multi-pass process where analysis from a previous pass
may be embedded in code for subsequent passes.

• Guarded Expression: Our inference is path-sensitive as it
takes into account dynamic tests from conditionals. We achieve
this through a novelguarded expression formwhich can capture
a more precise symbolic condition for each memory use/bound.
We also provide a set of normalisation rules for the simplifica-
tion of this guarded form.

• Fixpoint Analysis: A key technical challenge for memory anal-
ysis is the handling of recursion and loops. We show how con-
ventional fixpoint techniques may be deployed. Our innovation
is towards afixpoint analysisthat separates out the inference
mechanism into several stages yielding: (i) input/output rela-
tion for abstract program states, (ii) net memory usage, and(iii)
memory bound for high watermark.



• Prototype: We build a prototype systemand use it to infer
memory bounds for a set of small benchmark programs. The
prototype and experiments provide evidence on the viability of
our proposal.

We believe that our memory inference system is useful for em-
bedded software systems because: 1) such software often operates
on platforms with limited memory, and 2) failing, because ofin-
sufficient memory, can have costly real-world consequences. The
next section describes technical challenges in accuratelyanalysing
stack/heap behaviour where possible, and outlines the overall in-
ference system. This is followed by details of the key phasesof our
proposed system, including: (i) frame inference, (ii) abstract state
inference, (iii) stack inference, and (iv) heap inference.

2. Our Approach
Our goal is to develop a formal system that can precisely predict
memory requirements prior to execution. Such a system must be
provably sound and use only safe approximations. Several issues
make this task challenging, which we shall highlight in thissec-
tion. To keep our discussion at a high level, we shall confine our
examples to programs that are written in a source level imperative
language. Their translation to assembly programs and subsequent
analyses are straightforward but tedious for human understanding.

2.1 Memory Usage and Bounds

Due to allocation and recovery, our system is expected to infer two
key metrics for each computation unit:

• Memory Usage: to explore net usage at the end of its computa-
tion

• Memory Bound: to represent high watermark of memory usage
at all points over its computation

Both metrics are computed in a conservative matter. While net
memory usage may be a negative quantity whenever more memory
is released than consumed, memory bound is always a non-negative
quantity. To compute the latter, we must keep track of memory
usage at every possible computation point so as to choose the
maximum one as its high watermark. Consider the hypothetical
example below :

Usage Bound
(c, d) (c, d)

void f(c x, c y, d z) { // (0, 0) (0, 0)
x = new c(); // (1, 0) (1, 0)
dispose(z); // (1,−1) (1, 0)
y = new c(); // (2,−1) (2, 0)
dispose(x); // (1,−1) (2, 0)
dispose(y); // (0,−1) (2, 0)

}

Thenew c() command is to create a newc-type object on the
heap, while thedispose(x) command is to explicitly recover the
object space at referencex. The right side of the figure traces the
current heap usage and bound in terms of number of instances of
object typesc andd. By tracing through heap usage at each com-
putation point, we arrive at a net heap usage of{(c, 0), (d,−1)}.
However, heap bound may only be inferred by taking the maxi-
mal of heap usage at all program points. In the above example,this
bound is{(c, 2), (d, 0)}, capturing the high watermarks of thec
andd object types independently. We propose to capture memory
estimation by counting each object type rather than counting num-
ber of bytes used, since this is more abstract and be used to model
memory fragmentation. If required, the conversion to byte count is
straightforward and has been carried out for our experiments.

Stack inference may also be analysed in a similar way, except
that net usage at method boundary is always zero due to perfect
space recovery for each method call. However, commands thatpush
and pop data from the stack (including parameter passing) will
affect the stack’s usage and must be symbolically traced fortheir
high bounds.

2.2 Dealing with Explicit Disposal for Heap Memory

To support compile-time analysis of heap recovery, there are at
least two possible solutions, namely: (i) use explicit disposal (ii)
use region-based memory. The first solution [13] uses a special
dispose command to help recover each heap object that is no
longer required, where possible. The second solution [21] is to
use region-based memory to group objects with different lifetimes
under separate regions, that can then be recovered whenevertheir
lifetimes expire. Both these solutions can be considered asan
over-approximation for recovery that can be achieved by garbage
collection, provided that dangling references are either avoided
during disposal or suitably marked for the garbage collector.

We have opted for the first solution in our paper, as it can help
achieve fine-grain heap recovery. However, automatically inserting
dispose commands is challenging since we have to minimise on
memory leaks and must also ensure that they are safe for memory
accounting purpose. For example, we should not dispose of anob-
ject more than once, and we should not applydispose for anull
reference since this does not result in any memory recovery.How-
ever, it is safe to forget (or delay) the invocation of adispose com-
mand for a dead object, but this could result in a higher estimated
heap bound.

A prior work of ours in [13] handles the automatic insertion of
dispose commands with the help of an alias/uniqueness type
system which works well for unshared data structures. A cur-
rent limitation is that it cannot handle data structures with shared
nodes, such as cyclic or graph-like structures. Nevertheless, the
technique for automatically inserting dispose commands can be
considered to be orthogonal to the technique for memory estima-
tion. Each improvement to automatically inserting disposemore
precisely will indirectly result in better memory estimation, with-
out the need to modify the underlying estimation technique.At the
present moment, our system supports the automatic insertion of
dispose commands, after supplying annotations for alias system
type with uniqueness. This aspect can be further improved inthe
future but is outside of the scope of the present paper.

2.3 Guarded Expression Form

Conditional branching is essential for writing interesting programs
but it affects memory analysis as precision may be lost by naive
solutions. As an example, consider the program code below:

void f1(int n, c x, c y) {
int v = n+1; //{(c, 0)}
if (v<5) {
x = new c(); //{(c, 1)}
y = new c(); //{(c, 2)}
dispose(x); //{(c, 1)}
dispose(y); //{(c, 0)}

} else {
x = new c(); //{(c, 1)}
dispose(x); //{(c, 0)}
x =new c(); //{(c, 1)}

}}

In the then branch of the above code, heap usage is{(c, 0)}
while heap bound is{(c, 2)}. In the else branch, heap usage is
{(c, 1)} while heap bound is{(c, 1)}. If we combine the effects of
the two branches by ignoring the conditional test, we get{(c, 1)}



and{(c, 2)} for heap usage and heap bound, respectively. How-
ever, this assumes the worse case scenario from both branches. In
program analysis, this phenomenon is known as path insensitivity.

To provide a path-sensitive analysis, we introduce a new guarded
expression of the form{gi → Bi}

n
i=1 wheregi is a boolean ex-

pression guard andBi denotes heap size in bag notation of the
form {(c, s)∗}. Here,c denotes object type, ands its symbolic
count. For example,{(c1, 1), (c2, 2+r)} denotes a heap space
of one object ofc1 and 2+r objects of c2. Guarded expres-
sions shall be expressed in terms of the input parameters of its
method. For our example, a guarded expression for heap usage
is {n<4→{(c, 0)},n≥4→{(c, 1)}} while that for heap bound is
{n<4→{(c, 2)}, n≥4→{(c, 1)}}. Note our use of the variablen
instead ofv as the latter is not a parameter. The restriction to input
parameters is important for supporting interprocedural analysis.

We provide path-sensitive analysis by tracking the abstract
states of boolean variables and their relations to other variables.
Path sensitivity not only adds precision to memory analysisbut is
critical to analysing recursive methods as they are often expressed
using conditionals.

2.4 Fixpoint Analysis

Analysing recursive methods is naturally challenging. In theory, we
are to trace through every recursive call for memory usage soas to
compute suitable high watermark as its memory bound. However,
recursive calls cannot be finitely enumerated. Instead, we have to
apply fixpoint analysis to determine the properties of recursive
methods through safe approximations.

While the basics of fixpoint analysis are mostly known (see [14]
for conjunctive polyhedra analysis or [27] for disjunctiveanalysis),
our innovation is in the formulation of key pieces of information
to facilitate memory analysis in a modular fashion. Two pieces of
information are crucial, namely: (i) input/output relation to com-
pute abstract program states, and (ii) memory usage/bound across
recursive calls. To derive them for each recursive method (or loop),
we first infer a constraint abstraction for each method from amu-
tual recursive set. A constraint abstraction is essentially an abstract
definition in constraint form that may be recursive. This is followed
by conventional fixpoint analysis which can maintain precision via
disjunctive formulae where needed. Consider:

int f2(int n) {
if (n≤0) {return 1}
else { c x = new c(); x = new c();
int v = 2+f2(n−1);
dispose(x); return v } }

We first build a constraint abstraction for the above method,as
follows:

rec(n, r) = n≤0∧r=1 ∨ (∃r1·n>0∧rec(n−1, r1)∧r=2+r1)

Here,n andr denote the input parameter and the method’s result,
respectively. Fixpoint analysis would proceed with the first version
rec0(n, r) assumed to befalse, and with each subsequent version
reci+1(n, r) computed from the previous versionreci(n−1, r1), as
follows:

rec1(n, r) = n≤0∧r=1∨(∃r1·n>0∧rec0(n−1, r1)∧r=2+r1)
= n≤0∧r=1

rec2(n, r) = n≤0∧r=1∨(∃r1·n>0∧rec1(n−1, r1)∧r=2+r1)
= n≤0∧r=1∨(∃r1·n>0∧(n−1≤0∧r1=1)∧r=2+r1)
= n≤0∧r=1∨(0<n≤1∧r=2+1)

rec3(n, r) = n≤0∧r=1∨(∃r1·n>0∧rec2(n−1, r1)∧r=2+r1)
= n≤0∧r=1 ∨ (n=1∧r=3) ∨ (n=2∧r=5)
=h n≤0∧r=1 ∨ (0<n≤2∧r=2n+1)
=w n≤0∧r=1 ∨ (0<n ∧r=2n+1)

rec4(n, r) = n≤0∧r=1∨(∃r1·n>0∧rec3(n−1, r1)∧r=2+r1)
=h n≤0∧r=1∨(0<n∧r=2n+1)

The process requires safe approximation techniques using
hulling and widening that are standard for fixpoint analysis of
relational formulae (see [14, 27, 25]). The hulling operation (de-
noted above by=h) combines related disjunctive formulae into a
conjunct. The widening operation (denoted above by=w) drops
the sub-formulae that are changed compared to the previous ver-
sion. We reach a fixpoint whenreci+1(n, r) =⇒ reci(n, r). For
the above example, its fixpoint gives:

rec(n, r) = n≤0∧r=1 ∨ n>0∧r=2n+1

After that, we build two abstractions to relate input parameter(s)
with heap usage and heap bound, respectively. For heap usage, we
can derive the following recursive formula in guarded expression
form:

recH(n) = {n≤0→{(c, 0)}}∪({n>0→{(c, 1)}}+recH(n−1))

Fixpoint analysis on the above abstraction results in the follow-
ing heap usage in symbolic form:

recH(n) = {n≤0→{(c, 0)}, n>0→{(c, n)}}

There is a net allocation of onec-type object per recursive
call. Hence, we have a net heap allocation ofn c-type objects for
inputn>0. For heap bound, we can derive the following recursive
formula in guarded expression form:

recM(n) = {n≤0→{(c, 0)}}∪{n>0→{(c, 2)}}
∪ ({n>0→{(c, 2)}}+recM(n−1))

Fixpoint analysis on the above abstraction results in the follow-
ing symbolic heap bound:

recM(n) = {n≤0→{(c, 0)}, n>0→{(c, 2n)}}

The high watermark of2n c-type objects is pushed up by two
allocations of objects prior to each recursive call; whereas the deal-
location (viadispose) occurs only after the return from recur-
sion. Note that our analysis tolerates memory leakage (frommiss-
ing dispose commands) by reporting a higher bound than strictly
required. For this example, a missingdispose for the first object
constructed bynew has resulted inn extrac-type heap objects for
both the estimated heap usage and heap bound. Though conserva-
tive, our estimation remains sound and would benefit automatically
from improvements in insertion ofdispose commands.

Each loop can be considered a special case of tail recursion
and is similarly handled. In case a method definition has a loop
containing a self (or mutual) recursive call, the method andits loop
are considered to be in mutual recursion.

2.5 A Structured Assembly Language

We shall formalise our inference system for a small assemblylan-
guage. To keep our presentation simple, we provide a conditional
statement (with two branches) and awhile loop structure. In re-
ality, most low-level programs are organised as blocks of instruc-
tions and allow conditional jumps to these blocks through program
labels. This block-level view does not cause any major technical
difficulty but may obscure our exposition. Furthermore, it is helpful
to recover higher-level language constructs when directlyanalysing
assembly-level codes, as advocated in [6]. For pedagogicalreasons,
we propose using a more structured assembly language, and omit
features relating tojsr-like subroutines. Our low-level language is
given in Figure 1.

For each method, we expect types of parameters and the result
to be declared. Furthermore, a symboll (denoting the number of
local variables including parameters) is easily precomputed for
each method. The stack frame of each method call is organisedas
shown in Figure 2. The parameters are assumed to occupy the first
n slots of the local variables section starting at position 1.This is



P ::= M1, . . . , Mn

M ::= t m(t1, .., tn) l {E}

E ::= Cmd | E1; E2 | if E1 E2 | while E

Cmd::= load〈t〉 i | store〈t〉 i | invoke m | const〈t〉 k

| new c | dispose c

t ::= bool | int | float | ref | void | · · ·

c ∈ ObjType (Set of Object Types)

φ ∈ F (Presburger Constraint)

::= b | φ1 ∧ φ2 | φ1 ∨ φ2 | ¬φ | ∃n · φ | ∀n · φ

b ∈ BExp (Boolean Expression)

::= true | false | s1 =s2 | s1 <s2 | s1≤s2

s ∈ AExp (Arithmetic Expression)

::= kint | πi | kint∗s | s1+s2 | −s | max(s1,s2) | min(s1,s2)

wherekint is an integer constant; πi is a size variable

Figure 1. Syntax for a Assembly-like Language

followed by anotherl−n slots for other local variables before the
operand stack of the frame. In addition, each frame also contains a
previous frame pointer and its caller’s return address.
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Figure 2. Stack Frames

The load〈t〉 i in-
struction is intended to
transfer a value oft-type
in the local variable at
position i to the top of
the (operand) stack. The
const〈t〉 k instruction
places a constant value
on the top of the stack.
The store〈t〉 i moves
a value from the top
of the stack to a speci-
fied local variable. The
invoke m instruction
calls a methodm after
its arguments are placed
on the stack. On return
from the callee, the argu-
ments are removed and
a result is placed on the
stack. Both the condi-
tionalif andwhile loop

commands expect a boolean test to be already in the data stack
which can help direct the control-flow of the program.

Thenew c command allocates an object of thec-type in the heap
with its new reference placed on the stack, while thedispose c
command recovers space for ac-type object from the heap whose
reference is on top of the stack. Note thatc denotes the static type
of the object in question. Since allocation vianew always use the
exact type, while that bydispose may actually recover a larger
subtype (from an OO source language), our estimation of heap
usage via these two commands are conservative, and hence sound.
While we support objects in our language, we shall omit details
on how fields are declared and accessed as they can be indirectly
supported through primitive methods. Furthermore, in the present
work, we currently only tracked the values of program variables
and immutable fields, but not mutable fields. A short consideration
on how mutable fields can be tracked via strong update techniques
is discussed later in Sec 7.

Lastly, though our symbolic constraint is currently limited to
Presburger arithmetic, our inference framework allows theuse of

more sophisticated constraint domains. Presburger arithmetic rep-
resents a good middle ground that is expressive yet practical. De-
spite the possibility of exponential-time complexity, a well-built
solver, like Omega [26] that is used by our prototype, can give
mostly fast execution times when handling medium-sized formu-
lae. We believe that the key to good performance is to exploitmod-
ularity that our approach offers. For example, we break a large fix-
point analysis to several smaller ones, and also limit the size of
inferred constraints via safe approximation (using convexhulling),
where possible.

2.6 Multi-Pass Inference

We present our inference as a modular multi-pass system. Break-
ing a complex inference system into smaller phases can simplify
our formalisation considerably. The first phase is to build acall de-
pendency graph that will group each set of mutual recursive meth-
ods for simultaneous inference. After that, we determine stack/heap
bounds through four main stages, namely:

• frame bound inference
• abstract state inference
• stack inference
• heap inference

The final target of our inference system is a set of annotations
for each method declaration. Given a method:

t m(t1, .., tn) l {. . .}

Our system infers the following extended declaration for each
method processed:

t m(t1, .., tn) l; φpr;F ; φpo;S;Hpo;Mpo{. . .}

whereF is its frame bound,φpr its precondition,φpo its postcondi-
tion, S its stack bound,Hpo its net heap usage, andMpo its heap
bound.

3. Frame Bound Inference
For our low-level language, each method call is expected to place
parameters, local variables and an operand stack into its own stack
frame. This frame has a bounded size that can be inferred. We
propose inferring the size of each stack frame using rules ofthe
following form:

l, Γ ⊢F E A, Γ1,F

wherel indicates size of the local variables area in the frame andΓ
(resp.Γ1) captures the types of elements in the current frame before
(resp. after) the execution ofE. For example,Γ = [t1, . . . , tn]
denotes there aren elements on the stack, where the element at
the top is of typet1, and the element at the bottom is of typetn. F
denotes the (high watermark of) stack frame size inferred sofar for
E.

While such a computation (on frame bound) is common in
bytecode compilers/verifiers, we re-cast them in our framework
to facilitate subsequent more sophisticated abstract state and stack
inference mechanisms. One novelty we introduce is to embed the
current top frame pointer(denoted by an integer offset) at each
program point into an intermediate codeA. For each code fragment
E with stack frameΓ, we embed its currenttop frame pointer
p=|Γ| into an intermediate code as(p, EA), and recursively forEA.
The expressionA is defined inductively as follows:

A ::= (p, EA)
EA ::= Cmd | A; A | if A A | while A

A set of rules for frame bound inference are listed in Figure
3. Being syntax-directed, these rules constitute an inference algo-
rithm. Apart from frame bound inference, we also perform some



[FS−CONST]

k::t Γ1=t:Γ

l, Γ ⊢F const〈t〉 k (|Γ|, const〈t〉 k),Γ1, |Γ1|

[FS−LOAD]

i≤l Γ[i]=t Γ1=t:Γ

l, Γ ⊢F load〈t〉 i (|Γ|, load〈t〉 i), Γ1, |Γ1|

[FS−STORE]

i≤l≤|Γ| Γ1=Γ⊕(i 7→ t) r=|Γ|+1

l, t:Γ ⊢F store〈t〉 i (r, store〈t〉 i), Γ1, r

[FS−DISPOSE]

l≤|Γ| r=|Γ|+1

l, ref:Γ ⊢F dispose c (r, dispose c), Γ, r

[FS−NEW]

Γ1=ref:Γ

l, Γ ⊢F new c (|Γ|, new c), Γ1, |Γ1|

[FS−SEQ]

l, Γ ⊢F E1  A1, Γ1,F1 l, Γ1 ⊢F E2  A2, Γ2,F2

l, Γ ⊢F E1; E2  (|Γ|, A1; A2),Γ2, max(F1,F2)

[FS−IF]

l, Γ ⊢F E1  A1,Γ1,F1 l≤|Γ| |Γ1|=|Γ2|
l, Γ ⊢F E2  A2,Γ2,F2 F3 = max(F1,F2) Γ3=Γ1⊔Γ2

l, bool:Γ ⊢F if E1 E2  (|Γ|+1, if A1 A2),Γ3,F3

[FS−INVOKE]

t m(t1, .., tn) · · · {· · · } ∈ P F=max(|Γ|, |Γ2|)
Γ = [tn, .., t1]+Γ1 l≤|Γ1| Γ2=t:Γ1

l, Γ ⊢F invoke m (|Γ|, invoke m), Γ2,F

[FS−WHILE]

l≤|Γ| l, Γ ⊢F E A, bool:Γ,F

l, bool:Γ ⊢F while E (|Γ|+1, while A), Γ,F

[FS−METH]

l, [⊤]li=n+1
+[tn, . . . ,t1] ⊢F E A, t:Γ,F |Γ|=l

⊢F t m(t1, .., tn) l {E} t m(t1, .., tn) l;F+2 {A}

Figure 3. Frame Bound Inference

checks to ensure that there is no underflow of the operand stack
and that simple type safety exists. Also, each frame of a method
call is not affected by the operations of its callees as the latter
have their own stack frames. Thus, frame bound inference is intra-
procedural in nature, and there is no need to apply fixpoint analysis
here. To account for the presence of the return address and a pointer
to the previous stack frame, we add2 to the inferred frame bound
in [FS−METH]. Furthermore, most types occupy a word per value,
except forvoid which takes no space, andlong anddouble which
take two words per value. For ease of presentation, we shall assume
that each type (includingvoid and return address) takes a word per
value on the stack frame. Our implementation computes the actual
size for each type. Note from[FS−WHILE] that execution of while
loops do not cause any increase in the frame size. Furthermore, the
testl≤|Γ| is to ensure that current stack frame does not underflow
into the area that has been reserved for local variables.

Notation-wise, we useE :: t to denote thatE is of typet. Given
Γ = [t1, .., tn], the notationt : Γ inserts typet to the head of
Γ, yielding [t, t1, .., tn]. We use+ to concatenate two sequences.
For example,[t1, t2]+[t3, .., tn] = [t1, .., tn]. |Γ| represents the
number of elements inΓ, i.e., n. Γ[i] retrieves itsith element,
i.e., ti. Γ⊕(i 7→t) returns a sequence similar toΓ but with its ith
element replaced byt, i.e., [t1, .., ti−1, t, ti+1, .., tn]. The function
max(n1, n2) returns the maximum ofn1 andn2, while function
Γ1⊔Γ2 computes the least upper bound of types over sequences of
the same length.

4. Abstract State Inference
The second stage of our analyser attempts to infer an abstract
program state (via strongest postcondition reasoning within the
chosen abstract domain) at every program point. Each abstract state
∆ is expressed as a Presburger formula over values on the stack
[πp, ..., π1]. Following the primed notation advocated in [18] to
capture state change, we useπi to denote the original value of
the stack at locationi and π′

i to denote the latest value at the
same location. Our analyser employs syntax-directed rulesof the
following form:

∆ ⊢A A B, ∆1

where∆ (resp.∆1) represents the abstract state before (resp. after)
the evaluation ofA. Note that the inputA is an expression previ-
ously annotated with top frame pointers. The output expression
B is obtained fromA by inserting the corresponding abstract state
into each program point. It can be inductively defined as follows:

B ::= (p, ∆, EB)
EB ::= Cmd | B; B | if B B | while B ∆1

We also attach a post-state for the body of eachwhile loop as it
is needed for various fixpoint analyses. Let us examine how abstract
program state is inferred by our rules. Theconst〈t〉 k instruction
is analysed as follows:

[AS−CONST]

∆1 = ∆∧eqt(π
′
p+1, k)

∆ ⊢A (p, const〈t〉 k) (p, ∆, const〈t〉 k), ∆1

A new k value of typet is placed on top of the stack at loca-
tion p+1. Our rule addseqt(π

′
p+1, k) to the post-state to mirror

this effect. As abstract state is based on integer domain, the eqt

relation converts boolean constants to integers and ignores other
non-integer types:

eqbool(v, true) =df (v = 1)
eqbool(v, false) =df (v = 0)
eqint(v, k) =df (v = k)
eqt(v, k) =df true, IF t = float | void | ref

The rule forstore〈t〉 i instruction is highlighted next:

[AS−STORE]

∆1 = ∆ ◦{πi} π′
i=π′

p

∆ ⊢A (p, store〈t〉 i) (p, ∆, store〈t〉 i),∃π′
p · ∆1

The current value on top of stackπ′
p is copied into locationi.

To capture state change at this location, we compose the abstract
state∆ with the changeπ′

i=π′
p as follows:∆ ◦{πi} π′

i=π′
p. Given

an existing state∆ and a changeφ wherebyX = {x1, . . . , xn}
denotes the set of variables to be updated, we can define the com-
position,◦X , as follows:

∆ ◦X φ =df ∃ r1..rn · ρ2 ∆ ∧ ρ1 φ
where r1, . . . , rn are fresh variables

ρ1 = [xi 7→ ri]
n
i=1 ; ρ2 = [x′

i 7→ ri]
n
i=1

Note thatρ1 andρ2 are substitutions. Later, we may useρ1∪ρ2 to
combine two substitutions with disjoint domains.

As an example, if the current state is captured usingπ′
1=π1∧

π′
2=π1+2, then its update byπ′

1=π′
2 is computed as shown:

(π′
1=π1∧π′

2=π1+2) ◦{π1} π′
1=π′

2

≡ ∃r·r=π1∧π′
2=π1+2∧π′

1=π′
2

≡ π′
2=π1+2∧π′

1=π′
2

Furthermore, as a value on the stack is being popped out, we
shall existentially quantify it using∃π′

p · ∆1. For the above exam-
ple, this leads to:

∃ π′
2 · (π

′
2=π1+2∧π′

1=π′
2)

≡ π′
1=π1+2



[AS−LOAD]

∆1 = ∆∧π′
p+1

=π′
i

∆ ⊢A (p, load〈t〉 i) (p, ∆, load〈t〉 i), ∆1

[AS−NEW−DISPOSE]

I = new c | dispose c

∆ ⊢A (p, I) (p, ∆, I), ∆

[AS−SEQ]

∆ ⊢A A1  B1, ∆1 ∆1 ⊢A A2  B2, ∆2

∆ ⊢A (p, A1; A2) (p, ∆, B1; B2),∆2

[AS−INVOKE]

t m(t1..n) l;φpr;F ; φpo{· · · }∈P ρ = [πi 7→π′
p−n+i]

n
i=1

∪[π′
l+1

7→r]

freshr ∆ =⇒ ρφpr ∆1 = (∃π′
p−n+1

..π′
p·∆∧ρφpo)∧(π′

p−n+1
=r)

∆ ⊢A (p, invoke m) (p, ∆, invoke m),∃r·∆1

[AS−METH]

∆ =
Vn

i=1
π′

i=πi ∆ ⊢A A B, ∆1 φpr = prefixpt(φrec)
φrec = {m(π1, .., πn, π′

l+1
)=∆1} φpo = fixpt(φrec)

⊢A t m(t1..n) l;F {A} t m(t1..n) l;φpr;F ; φpo{B}

Figure 4. Abstract State Inference

For the conditional construct, we build path sensitivity into our
rules by addingπ′

p=1 andπ′
p=0 to the abstract states of the true

and false branches, respectively:

[AS−IF]

∃π′
p·(∆ ∧ π′

p=1) ⊢A A1  B1, ∆1

∃π′
p·(∆ ∧ π′

p=0) ⊢A A2  B2, ∆2

∆ ⊢A (p, if A1 A2) (p, ∆, if B1 B2), ∆1∨∆2

A new post-state∆1∨∆2 is obtained via a disjunction from
outcomes of the two branches.

The remaining rules for abstract state inference are listedin
Figure 4. For theinvoke m instruction, the postcondition of the
callee is added to the current abstract state. We also check to ensure
that the precondition of the callee is met using∆ =⇒ ρφpr.

For bothwhile loop and method declaration, we first build a
constraint abstraction before applying fixpoint analysis,if needed,
to approximate the effect of recursion. The rule for the loopcon-
struct[AS−WHILE] is more complex than that for method declara-
tion [AS−METH] despite the fact that it can be viewed as a special
case of tail recursion. Two features make a loop special: (i)all vari-
ables in scope may be regarded as parameters to the loop body,and
(ii) these variables must be considered to be passed by reference
since their effects are visible outside of the loop.

Given a loop(p, while A), the variablesπ1, .., πp−1 are in
scope andπp is the boolean test. A corresponding tail-recursive
counterpart to this loop may be written as:

α(π1, .., πp−1)= if (A; α(π1, .., πp−1)) nop
wherenop denotes a skip command. As we have to model the
parameters through a pass by reference mechanism, we shall use a
constraint abstractionα(π1, .., πp−1, r1, .., rp−1) with r1, .., rp−1

to denote the outputs for the input parametersπ1, .., πp−1. This
is captured by the abstractionφrec that is built from∆1 (which
captures the poststate ofA) and∆a (which captures the effect of
conditional prior to termination or loop) in the rule below:

[AS−WHILE]
Vp−1

i=1
π′

i=πi ⊢A A B, ∆1 ρ=[ri 7→π′
i]

p−1

i=1
freshr1, .., rp−1

∆a=π′
p=0∧

Vp−1

i=1
ri=π′

i∨π′
p=1∧α(π′

1
, .., π′

p−1
, r1, .., rp−1)

φrec={α(π1, .., πp−1, r1, .., rp−1)=∆1∧∆a} ∆post=fixpt(φrec)
∆2=(∃π′

p · ∆∧π′
p=0)∨((∃π′

p · ∆∧π′
p=1) ◦{π1..πp−1}

ρ∆post)

∆ ⊢A (p, while A) (p, ∆, while B ∆1), ∆2

Applying fixpoint analysis to the recursive abstraction gives a
postcondition for executing this loop. Note that the abstract state
(∃π′

p · ∆∧π′
p=0) is to account for the scenario in which the loop

is never executed.

5. Stack Inference
The rationale behind a separate frame inference stage is to limit
the effects of primitive operations, such asload〈t〉 andstore〈t〉,
to the caller’s local frame area. To support interprocedural analy-
sis, we must also analyse how method invocations affect the global
stack. One special feature of the stack is that it has perfectrecov-

ery of space at the method call boundary. This means that there is
always zero net stack usage at the end of each method call. Conse-
quently, we only need to infer stack bound (and not stack usage) for
each method declaration. We achieve this through a set of inference
rules of the form:

a ⊢S B S

wherea is the arity of the current method, andB is the expression
with top frame pointers and abstract states inserted by prior anal-
yses. The inferred resultS denotes the high watermark of stack
usage encountered during (i.e. from start to end of) the execution
of B. S contains path-sensitive information for stack space. It is
captured by the guarded form{g→s}∗ whereg is a predicate and
s∈AExp (from Figure 1) denotes the stack space wheng is true.

The most interesting rule for stack bound inference is that for
method invocation, as shown below:

[SS−INVOKE]

t m1(t1, .., tn) l; φpr;F ; φpo;S {B} ∈ P r=p−n+2
ρ = [πi 7→ π′

p−n+i]
n
i=1 S1 = enrich(a, ∆, ρS)+r

a ⊢S (p, ∆, invoke m1) S1

Note thatρ captures the argument substitution process. We
use a special functionenrich(a, ∆,S) to incorporate path-sensitive
guarded formulaS into the current abstract state∆, as follows:

enrich(a, ∆,S) =df {∃π′
a+1 . . . ·∆∧g→s | (g→s) ∈ S}

Here,a is the arity of the current method. The existential quantifica-
tion ∃π′

a+1 . . . removes all variables other thanπ1, .., πa from the
guarded formulae. For each method invocation, we have a choice
of either building the next frame on top of the current frame or im-
mediately above a frame pointer atp−n+2, after the removal of
n arguments. In the above rule, we assume that our abstract ma-
chine uses the second convention as this can give a lower stack
bound. Also, an expressions without its guard is an abbreviation
for {true→s}. For example,enrich(a, ∆, ρS)+r is a shorthand
for enrich(a, ∆, ρS)+{true→r}.

Furthermore, we have the option of mirroring tail-call optimi-
sation. Obviously, this depends on whether the particular abstract
machine supports it. Assuming it does, we can mark each tail call
identified with a specialinvokeTail instruction. For each such in-
vocation, we can build the next stack frame by overwriting the cur-
rent one. Its effect on the stack can be captured by the rule below:

[SS−INVOKE−TAIL]

t m1(t1, .., tn)φpr;F ; φpo;S {· · · } ∈ P
ρ = [πi 7→ π′

p−n+i]
n
i=1 S1 = enrich(a, ∆, ρS)

a ⊢S (p, ∆, invokeTail m1) S1

The rest of the stack inference rules are listed in Figure 5. The
guarded formulae used in our rules are built from two operators,
namely∪ (for upper bound) and+ (for summation). Both these
operators are associative and commutative with+ distributing over
∪. The guarded formulae can be simplified by the following set of



[SS−INSTR]

I = const〈t〉 k | load〈t〉 i | store〈t〉 i | · · ·

a ⊢S (p,∆, I) {}

[SS−SEQ]

a ⊢S B1  S1 a ⊢S B2  S2

a ⊢S (p, ∆, B1; B2) S1 ∪ S2

[SS−IF]

a ⊢S B1  S1 a ⊢S B2  S2

a ⊢S (p, ∆, if B1 B2) S1∪S2

[SS−WHILE]

a ⊢S B S
Srec = {α(π1..πp−1)=S∪enrich(p−1, ∆1∧π′

p=1, α(π′
1
..π′

p−1
))}

a ⊢S (p,∆, while B ∆1) enrich(a, ∆∧π′
p=1, fixpt(Srec))

[SS−METH]

n ⊢S B S Srec = {m(π1..πn)=S∪{φpr→F}} Sµ = fixpt(Srec)

⊢S t m(t1..n) l; φpr;F ; φpo{B} t m(t1..n) l; φpr;F ; φpo;Sµ {B}

Figure 5. Stack Bound Inference

normalisation rules:

{false→s} ⇛ {}
{p1→s}∪{p2→s} ⇛ {p1∨p2→s}
{p1→s1}∪{p2→s2} ⇛ {p1∧p2→max(s1, s2)}

∪{p1∧¬p2→s1}
∪{¬p1∧p2→s2}

{p1→s1}+{p2→s2} ⇛ {p1∧p2→s1+s2}
(G1∪G2)+G3 ⇛ (G1+G3)∪(G2+G3)

The first three∪ rules are applied to each set of guarded for-
mulae until all guards are disjoint from each other. The lasttwo
rules show how+ can be simplified, and how+ distributes over
∪. The third rule may lead to an explosion in the number of cases,
but these cases may be reduced with the help of the first two rules.
In particular, the second rule can be viewed as a special caseof the
third rule. Furthermore, we may heuristically apply, wheredesired,
the following approximation rule:

{p1→s1}∪{p2→s2}⇛ {p1∨p2→max(s1, s2)}

As an example, consider the guarded formula below:
{0≤n≤5→10}∪{3≤n≤9→20}∪{n<3∨n>9→5}
The first two guards overlap. Applying the third rule, followed

by the second rule gives:
⇛ {0≤n<3→10}∪{3≤n≤5→max(10, 20)}

∪{5<n≤9→20}∪{n<3∨n>9→5}
⇛ {0≤n<3→10}∪{3≤n≤9→20}∪{n<3∨n>9→5}

The first and third guard now overlaps. Applying the third rule,
followed by the second rule gives:
⇛ {0≤n<3→10}∪{3≤n≤9→20}∪{n<0∨n>9→5}

The final normalised form is a guarded expression with disjoint
predicates and captures stack bound after safe approximation.

6. Heap Inference
We organize heap inference as a set of syntax-directed rulesof the
form:

a,H ⊢H B H1,M

As before,a is the arity of the current method.H (resp.H1) denotes
the heap effect before (resp. after) the execution of the (annotated)
expressionB, whileM indicates the high watermark of heap usage
during the execution ofB. For heap space specification, the guarded
formulae is of the form{g1→B1, g2→B2, . . .}, where eachgi is a
predicate, and eachBi denotes heap size in bag notation.

While we have formulated heap inference as a single set of
rules, it is really computing two pieces of information, namely: (i)
heap usage, and (ii) heap bound. Furthermore, the latter depends on
the former. Our implementation therefore organises this inference
stage as two separate tasks whereby heap usage is computed before
heap bound. This is mandatory when handling recursive methods
as fixpoint analysis for heap usage must be computed before the
analysis of heap bound. Furthermore, we have to track heap usage
(but not heap bound) in a flow-sensitive manner by passing the
heap usage from a prior computation to the next one. This is best

illustrated in the following rule:

[HS−SEQ]

a,H ⊢H B1  H1,M1 a,H1 ⊢H B2  H2,M2

a,H ⊢H (p, ∆, B1; B2) H2,M1∪M2

Ultimately, heap usage is affected by two primitive heap instruc-
tions, namelynew anddispose. Their heap effects can be captured
by the following rules:

[HS−NEW]

H1=H+enrich(a, ∆, {(c, 1)})

a,H ⊢H (p, ∆, new c) H1,H1

[HS−DISPOSE]

H1=H+enrich(a, ∆, {(c,−1)})

a,H ⊢H (p, ∆, dispose c) H1,H

As before, theenrich function incorporates heap usage effects
by adding the current abstract state into the guards of a heap
specification. For heap notation, we define the guard enhancement
functionenrichas follows:

enrich(a, ∆,H) =df {∃π′
a+1. . .·∆∧g→B | (g→B) ∈ H}

The rest of the heap inference rules are listed in Figure 6. The
initial heap usage{0} (used in[HS−METH]) and max function
(used in the definition of∪) are defined as:

{0} =df {(c, 0) | c ∈ ObjType}
max(B1,B2) =df {(c, max(B1(c),B2(c))) | c∈ObjType}
B(c) =df if (c, s)∈B thens else0

whereObjType denotes the set of object types used in the current
program.

7. Discussion
In this section, we proceed with a brief discussion on two remaining
important issues: (i) soundness of the inference system, and (ii)
abstract states for objects.

We can formulate a safety theorem which proclaims that each
method always executes without error from insufficient memory,
when it is given memory resource equal to (or more than) its
inferred bound.

THEOREM 1. Consider programP with M as its main method with
body E but without parameters. Suppose a frame boundF , a stack
boundS, and a heap boundM have been inferred for method M. If
the initial configuration C0 = 〈(π,F , 2) : Π, ω, ret(E), s−F , h〉
satisfies the following conditions: (1)π � h ≥ M (2) π � s ≥ S,
then the stack spaces and the heap spaceh are adequate for the
execution of the program. That is, for anyC = 〈Π1, ω1, E1, s1, h1〉
where C0 →֒∗ C, we haves1 ≥ 0, andh1 ≥ {0}.

Proof Sketch: Consider an operational semantics in small steps of
the following form:

〈f : Π, ω, E, s, h〉 →֒ 〈Π1, ω1, E1, s1, h1〉



[HS−PRIM]

I = const〈t〉 k | load〈t〉 i | store〈t〉 i

a,H ⊢H (p,∆, I) H,H

[HS−IF]

a,H ⊢H B1  H1,M1 a,H ⊢H B2  H2,M2

a,H ⊢H (p, ∆, if B1 B2) H1∪H2,M1∪M2

[HS−WHILE]

p−1,H ⊢H B H1,M1 Mrec={α(π1, .., πp−1)=M1∪enrich(p−1, ∆1∧π′
p=1,H1+α(π′

1
, .., π′

p−1
))}

∆0=∆∧π′
p=1 Hrec={α(π1, .., πp−1)=enrich(p−1,∆1∧π′

p=0,H1)∪enrich(p−1,∆1∧π′
p=1,H1+α(π′

1
, .., π′

p−1
))}

a,H ⊢H (p, ∆, while B ∆1) enrich(a, ∆0, fixpt(Hrec)), enrich(a, ∆0, fixpt(Mrec))

[HS−INVOKE]

t m1(t1, .., tn) l; φpr;F ; φpo;S;Hu;Mh {B} ∈ P
ρ = [πi 7→ π′

p−n+i]
n
i=1

H1=H+enrich(a, ∆, ρHu) M1=H+enrich(a, ∆, ρMh)

a,H ⊢H (p, ∆, invoke m1) H1,M1

[HS−METH]

n, {0} ⊢H B H,M
Hrec={m(π1, .., πn)=H} Hpo=fixpt(Hrec)

Mrec={m(π1, .., πn)=M} Mpo=fixpt(Mrec)

⊢H t m(t1, .., tn) l;φpr;F ;φpo;S {B}
 t m(t1, .., tn) l; φpr;F ; φpo;S;Hpo;Mpo{B}

Figure 6. Heap Usage and Bound Inference

wheref : Π is the frame of stacks withf as its current frame. Each
frame f = (π,F , p) contains an arrayπ, the frame sizeF , and
a top frame pointerp. ω represents the heap, andE is the expres-
sion to be evaluated. This model contains two runtime instrumen-
tations, namely: available stack (s) and available heap space (h).
Our semantics will flag memory adequacy errors whenevers or h
becomes negative. We can formalise a notion of well-formed an-
notations, and then show that our inference algorithm derives such
annotations. With this, we can prove by co-induction over the op-
erational semantics that each program with well-formed annota-
tion never fail due to memory adequacy error, whenever sufficient
heap/stack space are given. Note that conditions(1) and(2) state
that the available stack and heap spaces in the initial stateare not
less than the method’s inferred bounds.2

To keep our presentation simple, we have omitted the inference
of abstract states for heap allocated objects. A technical challenge
is to deal with objects that are bothmutableandshareable. Such
objects are more difficult to track accurately. To deal with them,
we have provided an alias type system (similar to that used in[13])
to identify two main groups of trackable objects (or references),
namely: (i) references that are unique whose abstract states may
change, and (ii) references whose abstract states (fields) are im-
mutable but may be freely shared. For the current work, the prop-
erties that we are interested in analysing are mainly size-related
properties. For example, consider a binary tree object of the fol-
lowing type declaration:

object BNode { int val;
BNode left;
BNode right}

Two properties we may track for thisBNode object type are
number of nodes in the tree and height of the tree. We can define
these two properties by introducing two abstract fieldss andh, as
shown in the type declaration below:

object BNode〈s, h〉 where s=1+left.s+right.s
h=1+max(left.h, right.h)

Given a method to compute the height of a tree:

int height(BNode t) l, true {
if t==null {return 0}
else {
int v=1+max(height(t.left), height(t.right));
return v}

Our inference system would derive:

F≡k1; φpo≡π′
3=π1.h; S≡max(k2×π1.h, k1);

H≡{0}; M≡{0}

wherek1 andk2 are some integer constants andπ1.h denotes the
height of tree atπ1. Given another method to sum values of a tree,
followed by the disposal of its nodes:

int sum(BNode t) l, true {
if t==null {return 0}
else {int v=t.val+sum(t.left)+sum(t.right);

dispose(t) ; return v}

Our inference system would derive:

F≡k3; φpo≡π′
3=π1.s; S≡max(k4×π1.h, k3);

H≡{(BNode,−π1.s)}; M≡{0}

wherek3 andk4 are some integer constants and the bag expression
{(BNode,−π1.s)} denotes the recovery ofBNode objects equal to
the size of tree atπ1.

8. Experiments
A prototype for our inference system has been built to confirm
the viability and practicality of our approach. We have carried
our experiments to infer stack/heap bounds for a set of smallpro-
grams with challenging recursion and for programs from the Sci-
mark benchmark suite: Fast Fourier Transform, LU decomposition,
Monte Carlo, Sparse Matrix Multiplication, Successive Over Re-
laxation [23]. The system uses the CIL infrastructure [22] to trans-
late the C programs to an intermediate language. An additional pre-
processing phase is needed for obtaining code in our assembly-level
form (e.g. translating away some intraprocedural control-flow). Our
prototype is built using the Glasgow Haskell Compiler [24] and
makes use of the Omega constraint solving library [26] augmented
with the disjunctive fixpoint analyzer from [25]. Our test platform
was a Pentium 2.8 Ghz system with 2GB main memory, running
Fedora Linux 4.0.

Figure 7 shows the statistics obtained for each program thatwe
inferred. The program size is indicated in terms of number oflines
of C code (Column 2). For each program, we present four timing
measurements. Column 3 represents the time taken by the compila-
tion of the original C program, while Column 4 represents thetime
taken by state inference (frame bound inference plus abstract state
inference). Column 5 represents the time taken by frame bound
inference, abstract state inference and stack inference. Lastly, Col-
umn 8 represents the time taken by frame bound inference, abstract
state inference and heap inference. The time for abstract state in-
ference roughly correlates with the program size and with the com-
plexity of the relations between program variables. The additional
time taken for stack inference was significant due to the intensive
use of the stack by all of the programs. The time taken for heap



Benchmark Source Compilation State Inf. Stack Analysis Heap Analysis
Programs (lines) (secs) (sec) Inf.(secs) Estimation Execution Inf.(secs) Estimation Execution
ackermann 16 0.047 0.98 1.52 * 248 0.98 0 0

binary search 31 0.052 0.62 1.14 88 88 0.67 40 40
bubble sort 39 0.052 0.68 1.36 104 104 0.72 40 40
init array 5 0.047 0.23 0.42 64 64 0.26 40 40
queens 39 0.054 1.05 2.26 84 84 1.06 32 32

quick sort 43 0.054 1.66 4.26 624 624 1.68 400 400
FFT 336 0.108 17.52 35.81 856 846 17.74 128 128

LU Decomp. 191 0.080 9.20 27.89 580 580 11.64 480 480
Monte Carlo 36 0.038 0.27 0.33 24 24 0.27 0 0

SOR 84 0.062 2.54 5.09 540 540 2.61 400 400
Sparse Mult. 79 0.062 2.96 5.22 40292 40292 3.92 160800 160800

Figure 7. Experimental Results on Memory Bounds Inference

inference was less substantial, due to the nature of our programs.
Most of the benchmarks used few heap objects, with the exception
of the Sparse Multiplication benchmark.

We also provide results on the precision of our memory bounds
analysis. For stack analysis (Columns 6,7) and heap analysis
(Columns 9,10), we report the number of bytes correspondingto
the statically computed memory watermark and the actual wa-
termark obtained from the execution of the programs. All stack
usage bounds were successfully captured, except for the Acker-
mann function which requires a stack space that is exponential to
its parameters’ sizes. This stack bound is beyond the Presburger
arithmetic form used in our current system. Nevertheless, the pat-
terns of recursion that we have tested made full use of the power
of our fixpoint analysis with support for disjunctions and relational
analysis.

To gain more confidence in our system, we performed one more
experiment with the Susan program described in [16]. Susan is an
image processing package that uses more heap-allocated arrays to
represent patterns for image recognition. To keep our results in
linear form, we employed an annotation technique which can fix
upper bounds for two constant parameters representing the width
and the height of the image to be manipulated. With this manual
annotation, we were able to capture bounds for both stack and
heap. Overall, we can conclude that our initial experiments, though
preliminary in nature, have confirmed the viability of our approach.

9. Related Work
Past research on memory usage prediction [21, 19] mainly focused
on functional programs where data structures are mostly immutable
and thus easier to handle. Hughes and Pareto [21] proposed a type-
checking system on space usage estimation for a first-order func-
tional language, extended with regions. The use of a region model
facilitates recovery of heap space. However, no inference mech-
anism is proposed and the recovery mechanism used has coarser
granularity since each region is only deleted when all objects in
its region are dead. Hofmann and Jost [19] proposed a solution to
obtain linear bounds on the heap space usage of first-order func-
tional programs. A key feature of their solution is the use oflin-
ear typing which allows the space of each last-use data construc-
tor/object to be directly recycled by a matching allocation. With
this approach, memory recovery can be supported within eachfunc-
tion but not across functions unless the dead objects are explicitly
passed. While their model incorporates an inference system, it does
not cover stack usage and is limited to a linear form without dis-
junction. As a result, path sensitivity is not fully exploited.

Aspinall et al. [5] applied ideas from proof-carrying code to the
problem of resource certification for mobile code. In their system,
memory adequacy proofs are checked at the level of a linearlytyped
assembly language with the help of theorem proving techniques.
However, the system assumes that source programs come from a

first-order functional language with a resource-aware typesystem
[19]. Similarly, Amadio et al. [4] defined a simple stack machine for
a first-order functional language and showed how to perform type,
size and termination verifications at the bytecode level. Their main
result is a proof that each program with the quasi-interpretation
property1 that terminates has a polynomial stack bound. However,
their focus is on termination verification, rather than actual infer-
ence on stack bounds. Furthermore, heap space was not considered.
More recently, Cachera et al. [11] proposed constraint-based mem-
ory analysis for a Java-based bytecode language. For a givenpro-
gram, their loop-detecting algorithm can find methods and instruc-
tions that execute for an unbounded number of times. This fact is
only used to check if memory usage is theoretically bounded or not.
However, this result is not sufficient for highly constrained system
which requires precise upper bounds on memory usage.

There were also several works on analysing the stack space
requirement of interrupt-driven programs. Brylow et al. [10] pro-
posed stack size analysis using a context-free reachability algo-
rithm based on model checking. Chatterjee et al. [12] investigated
complexity of the stack boundedness problem and the exact maxi-
mum stack size problem. These techniques apply to only interrupt
stacks (but not the more general runtime stacks), and are forpro-
grams without recursive (interrupt) invocations. Stack Analyzer [1]
is a commercial product that can determine worst-case stackusage.
However, it assumes a user-specified limit on recursion depth.

Chin et. al. [13] proposed a modular memory usage verifica-
tion system for object-oriented programs. The system can check
whether a certain amount of memory is adequate for safe execu-
tion of a given program. However, programmers must provide the
pre/post conditions on memory usage for each method. Without in-
ference, this approach is impractical for low-level programs. Hof-
mann and Jost [20] proposed a type-based heap space analysisfor
Java-like source language with explicit deallocation. Their analysis
is based on an amortised complexity analysis where a potential is
assigned to each datum according to its size and layout. Heapspace
usage can then be calculated during the type inference basedon the
annotated potential for each input. More recently, Albert et. al. [3]
reported a heap space analysis for Java Bytecode. Similar toour
work, their analysis also makes use of a linear size analysisto help
recover size relations for data structures under manipulation though
other domains may be also used if appropriate constraint solvers
are available. Different from type-based approaches, their analysis
is based on a cost model reported in [2]. In their work, they propose
to use escape analysis to refine the heap space inference, while our
system supports the more fine-grain explicit deallocation.Their fo-
cus is mainly on heap space inference, while our system handles
the inference for both stack and heap space bounds.

1 This essentially implies that each definition has some non-increasing mea-
sure.



Independent of our work, Braberman et al. [8] deal with the
memory consumption inference problem (for a Java-like impera-
tive language) in the same proceedings by a different approach,
where memory bound is modeled using a more expressive poly-
nomial expression that is solved by resorting to Bernstein basis.
As an extension to their earlier work [9], their approach nowtakes
into account object deallocation via region-based memory.Their
system handles non-recursive programs very well with the help of
Daikon system [15] to generate loop invariants. For recursive pro-
grams, user annotations may be required. Different from their work,
our system infers both stack and heap usage bounds for recursive
methods (and loops) using fixpoint analyses.

10. Concluding Remarks
We have proposed a sound inference system for a structured assem-
bly language useful for predicting the amount of memory space
needed during program execution. Our system can infer both net
usage and upper bound of stack/heap spaces required, for a rea-
sonably wide range of programs. We use a special guarded expres-
sion form to track both memory usage and high watermark in a
path-sensitive manner. Our approach can handle both recursion and
loops. We use recursive constraint abstraction to model program
state, net memory usage, and memory bound. Their corresponding
abstractions are subjected to a set of normalisation rules,prior to
conventional fixpoint analysis.

We envision our framework to be most useful whenever mem-
ory resources must be carefully quantified. Possible application do-
mains include embedded devices, safety critical systems, and high-
reliability server systems where memory footprints are to be tightly
accounted for.
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