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Abstract. We present an error calculus to support a novel specificationmecha-
nism for sound and/or complete safety properties that are tobe given by users.
With such specifications, our calculus can form a foundationfor both proving pro-
gram safety and/or discovering real bugs. The basis of our calculus is an algebra
with a lattice domainof four abstract statuses (namelyunreachability, validity,
must-errorandmay-error) on possible program states andfour operatorsfor this
domain to calculate suitable program status. We show howproof searchanderror
localizationcan be supported by our calculus. Our calculus can also be extended
to separation logicwith support for user-defined predicates and lemmas. We have
implemented our calculus in an automated verification tool for pointer-based pro-
grams. Initial experiments have confirmed that it can achieve the dual objectives,
namely of safety proving and bug finding, with modest overheads.

1 Introduction

Traditionally, program specifications are given primarilyfor safety scenarios and are
used to describe the states under which program execution would occur safely. When
successfully verified, such specifications are said to besoundfor their specified input
scenarios. That is, a specification is said to besoundif it has identified input scenarios
(or preconditions) that are guaranteed to lead to safe program execution. However, we
are also interested incompletespecifications that will additionally verify the remaining
input scenarios (that lead to execution failure) as invalidones. Informally, a specifica-
tion is said to becompleteif it has unambiguously identified both input scenarios that
lead to safe code execution, and input scenarios that lead tocode execution failure.

Such complete specifications for programs are helpful for two reasons. Firstly, they
can be used to specify precisely (through weakest precondition1) when inputs can be
handled correctly by programs. Conversely, we are also ableto precisely identify when
programs would fail to work correctly (or safely). Secondly, the specifications on er-
roneous inputs can be used to help pinpoint actual softwarebugsin programs as they
could be used to precisely indicate where each given error occurs.

Though useful, the task of capturing complete specifications is very challenging,
and may not always be possible since the input scenarios under which failures could

1 While it may be desirable to have weakest precondition that guarantee safety or correctness, we
also allow flexibility for users to specify a wider range of specifications that include those with
either stronger preconditions and/or weaker postconditions. Though weaker specifications give
fewer guarantees, they are more easily verified and may be enough to ensure reliability.



occur may not be unambiguously specified and verified. In thispaper, we shall provide
the basic mechanisms that can help specify complete specifications, where possible.
To achieve this goal, we proposea lattice domainof four abstract statuses (namely
unreachability, validity, must-errorandmay-error) and make use of the validity (must-
error) status for specifying safe (unsafe, resp.) execution scenarios. Furthermore, when
the complete requirements are hard (or impossible) to specify, we have also provided ap-
proximation mechanisms that can help us specifynear-completespecifications through
the use ofmay-erroras opposed tomust-errorclassification in weakened postcondition.

Our motivation for developing complete specifications for programs was further
heightened by the recent VSTTE competition [1] that was heldin November 2011. Out
of five problems that the participants were asked to verify for safety and correctness,
there were two problems (problem 4 and problem 5) where more complex specifications
that satisfycompletenesswere requested. As complete specifications must additionally
address erroneous scenarios, we have recently developed a comprehensive verification
framework that could just as easily deal with input scenarios that invoke errors, as it
would with input scenarios that led to safe program execution

At the heart of our proposal is a calculus that can uniformly specify both safe and
unsafe execution scenarios. Our calculus usesan algebrawith the lattice domain of
four-point program statuses and four binary operations over these program statuses.
The program statuses can be used for each program state, and also to decorate more
precisely the post-conditions of program specification. Tosupport modular verification,
we provide our calculus withtwo entailment procedures(one for pre-condition checks
at method calls, and another for post-condition checks) anda set ofsound structural
rules. Furthermore, this extension also helps to classify (into must or may) as well as
to localize errors when the verification fails. This enablesour verifier to work both as a
safety and correctness proving tool and as a bug finding tool.

The paper makes the following main contributions

– a lattice domain with four distinct statuses on possible program states.
– a specification mechanism to support both sound and completeproperties.
– a calculus (for the lattice) to reason about safety and must/may errors (Sec. 3)

• support for separation logic with user-defined predicates and lemmas (Sec. 4).
• support for error calculus within a modular verification framework (Sec. 5).

– an extension to support error localization (Sec. 4.3).
We also demonstrate the calculus capability of proving safety and detecting bugs with
modest overheads through an implementation and two experiments in Sec. 6. Next sec-
tion presents the algebra and new specification mechanism. It also illustrates the use of
calculus through examples on modular verification and errorlocalization.

2 Motivation and Overview

2.1 An Algebra on Status of Program States

The basis of our proposal is the identification of an algebra (E , F ) in which E is a
lattice domain with four points used to capture the status ofeach program state, while
F is a set of four binary operators (meet (⊓), join (⊔), compose (⊗) and search (⊕)) to
combine the statuses of program states. The four points thatare used for program status
are as follows:
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Fig. 1. An Algebra on Status of Program States.

– ⊥: denotes an unreachable state.
–
√

: denotes a valid program state from normal program execution.
– ℧: denotes a state that corresponds to a must (or definite) error scenario.
– ⊤: denotes a state that corresponds to a may error or an unknownscenario. That is,

it could either be⊥, or
√

or℧.

Note that the must error status (℧) subsumes the unreachable⊥ status. The may er-
ror status (⊤) comes from imprecision or from dependency on some unknown input. In
our system, potential sources of imprecision include imprecise specifications, imprecise
invariants of complex data structures and incomplete domains. Although we could sep-
arately identify those kinds of imprecision, for simplicity we uniformly specify them
with the⊤ status value. In the implementation, we distinguish them through different
messages with status (see Sec. 4.3).

Let � be a partial ordering relation on status wherebyτ1 � τ2 means statusτ1
is more precise than statusτ2. The⊔ and⊓ operators denote the least upper bound
and the greatest lower bound, respectively, over the lattice domain. The domainE and
two operations⊓, ⊔ form a complete latticeD = 〈E ,�,⊔,⊓,⊥,⊤〉 organized as shown
in Fig. 1a. This lattice forms a core part of the underlying abstract semantics for our
system. Furthermore,⊥ is zeroelement of⊗ and⊕ operations; it meansx ⊕ ⊥ = ⊥
and⊥⊗ x = ⊥ for any valuesx. The remaining calculations of⊗ and⊕ are illustrated
in Fig. 1b. The⊗ operator is meant to support conjunctive proving, and searches for
failures from ℧ and⊤ status . The⊕ operator is meant to supportproof search, and
searches for

√
status to succeed in proving. Thus the priority order of the⊗ operator

is ℧, ⊤ and lastly
√

, and the priority order of the⊕ operator is
√

, ⊤ and lastly℧.
Contrast this with the⊔ operator which doesn’t have any priority between

√
and℧. So

it would simply yield⊤ when the two statuses are combined together.

2.2 Mechanism for Sound and Complete Specifications

To illustrate our new specification mechanism, we consider amethod that returns the
data which its input points to, as shown below

int get data(node x)
case{ x 6=null → requires x 7→node〈d, p〉 ensures (res=d)√;

x=null → ensures (true ) ℧; }
whereres is a reserved identifier denoting the method’s result and thedata structure
node is declared as:data node { int val; node next }.

In our system, each method is specified by pre- and post-conditions (through sepa-
ration logic formulas), denoted byrequires andensures keyword, respectively. In the



specification above, we also use structured specifications [9] where disjoint conditions
are expressed using case construct for expressing both sound (with x6=null condition)
and complete (withx=null condition) requirements, as can be seen for the above speci-
fication ofget data (with the

√
and℧ statuses in postconditions, resp.). In comparison,

if we are only interested in sound specification, we could just use the following instead:

int get data(node x)
requires x 7→node〈d, p〉 ensures (res=d)

√
;

Occasionally, it may be possible to automatically generatecomplete specification by
negating the input conditions of sound specification. However, this may not always
be feasible. Firstly, negation computation may be hard to implement in complex do-
mains. For example, it is unclear how to compute negation in separation logic (which
our system relies on). Secondly, not all methods have clearly delineated boundary be-
tween sound and complete conditions, as an example considerthe interactive schedule
(ischedule) method in Fig. 2. Withprio=0 condition, this method’s status depends
on the user input which is unknown at verification time. Therefore, there exists a gap
between soundness and completeness that cannot be derived simply through the nega-
tion operation. For this example, we can instead provide anear-completespecification,
as shown in the bottom right of Fig. 2. Informally, a specification is said to benear-
completeif it captures all possible input conditions but contains either⊤ program status
or an ambiguous disjunction, comprising of both

√
and℧ statuses, in one or more of

its postconditions.

1. int ischedule(int prio){
2. if (prio>0)/*run it */ return 0;
3. else if (prio<0) abort();
4. else{
5. printf(”Allow this task to run? y or n”);
6. char c=getc();
7. if (c =′

y
′)/*run it */ return 0;

8. else abort(); } }

Sound Specification:
l1. int ischedule(int prio)
l2. requires prio>0 ensures (res=0)

√
;

Near-Complete Specification:
l3. int ischedule(int prio)
l4. case { prio>0→ ensures (res=0)

√
;

l5. prio<0→ ensures (true )℧;
l6. prio=0→ ensures (true )⊤; }

Fig. 2.Code and Specification ofischeduleMethod.

We note that our approach for proving the completeness of program is based on the
assumption that the user-supplied specification is complete; namely that it covers all
values of the input domain and that each error program state denotes an input scenario
where no valid output state is possible. Checking (or even inferring) the completeness
of specifications is a challenging research direction that could be investigated in future.

2.3 Essence of Error Calculus

To highlight how our calculus can be used to verify programs,consider the method
foo in Fig. 3. We shall verify the code offoo in a forward manner, and would com-
pute a program state for each of its program point. Each program state,Φ, is a for-
mula on the state of variables and heap. Each program state can be combined with
a status and is represented by(Φ, τ) whereτ denotes a status value from our lattice.



1 int foo(int x, int y)
2 requires x≥0
3 ensures (res>0)

√
; {

4 if (x<0) return −1; /∗L1∗/
5 else{
6 if (y>1) return 1; /∗L2∗/
7 else if (y<0) return −1; /∗L3∗/
8 else return y; /∗L4∗/
9 }}

Fig. 3. Code offoo Method.

As part of compositional verification, the pre-
condition of each callee is checked against the
current calling context and the postcondition
is checked at the exit of the method’s body.
In the example, we can identify four program
states of interests that correspond to four exits
(L1, L2, L3 and L4) of the method. The fol-
lowing illustrates how the statuses are decided
at exits through proof obligations discharged
for postcondition checking with the help of the
entailment procedure⊢C that conforms to our
error calculus. Given a program stateπa and a

post-conditionπc, we can determine the statuss for such checking with the help of the
following judgment:πa ⊢C πc ; s. The resulting statuses generated by the entailment
procedure are as follows:

L1 : x≥0 ∧ x<0 ∧ res=−1 ⊢C res>0 ; ⊥
L2 : x≥0 ∧ ¬(x<0) ∧ y>1 ∧ res=1 ⊢C res>0 ;

√
L3 : x≥0 ∧ ¬(x<0) ∧ ¬(y>1) ∧ y<0 ∧ res=−1 ⊢C res>0 ; ℧

L4 : x≥0 ∧ ¬(x<0) ∧ ¬(y>1) ∧ ¬(y<0) ∧ res=y ⊢C res>0 ; ⊤

Each of the above proofs yields a status based on the outcome of its entailment. This
status can be added to program state for each of these programpoints. At L1, the
antecedent is unsatisfiable which corresponds to an unreachable scenario (either infi-
nite loop2 or dead code) that can be captured by(false ,⊥) with false denoting
contradiction at that program point. At L2, the consequent can be directly proven
using the antecedent. This yields a valid program state thatcan be represented by
(x≥0∧¬(x<0)∧y>1∧res=1,

√
). This program state indicates that the method will

exit safely at this location withres=1. At L3, the negation of the consequent can be
proven from its antecedent. The program state at L3 can be computed to be a must er-
ror asx≥0∧¬(x<0)∧y<0,℧). The sub-formula on resultres=−1 is dropped since
we have a must error outcome where the output state is unimportant. At L4, the an-
tecedent can neither prove the consequent nor its negation.Hence, we would need to
classify this program point as a may error whose state is(x≥0∧¬(x<0) ∧ ¬(y>1) ∧
¬(y<0) ∧ res=y,⊤). A formula on resultres=y is still captured since the⊤ status
includes possibly safe output.

When an entailment checking fails, an error messages is generated with relevant
information to help debugging process. For example, the error message atL3 is:

Verify methodfoo. Proving postcondition fails:
Failure (must):
(x≥0, 2) ∧ (¬(x<0), 5) ∧ (¬(y>1), 6) ∧ (y<0, 7) ∧ (res=−1, 7) ⊢C (res>0, 3)

where irrelevant formulas are sliced away and failures are localized by pairs of the
relevant failing formulas and their corresponding statement code or specification line
numbers.

2 Although we provide a mechanism to specify infinite loop, proving termination is beyond the
scope of this paper.



3 Assertion Language

In this section, we introduce the concepts and terminology that are used to describe
our calculus throughout the paper. Our formalism includes inductive predicates in sep-
aration logic which are written in an assertion language. Weextend this language with
program status (τ ) to support error calculus with different program states.

pred ::= p(v∗) ≡ Φ [inv π]
Ψ ::= {(Φ1, τ1); ...; (Φi, τi)}
Φ ::=

∨
(∃w∗·κ∧π)∗

κ ::= emp | v 7→c(v∗) | p(v∗) | κ1 ∗ κ2

π ::= α | ¬α | π1∧π2

α ::= v1=v2 |v=null |a≤0 |a=0 | · · ·
a ::= k | k×v | a1 + a2

L ::= lemma[l] p(v∗)∧π ⊲⊳ ∃w∗·(κ∧π)[τ ]
⊲⊳ ::=→ | ← | ↔
τ ::= ⊥ | ℧ | √ | ⊤

wherep/l is a predicate/lemma name; v, w are variable names;
c is a data type name; k is an integer or a float constant;

Fig. 4. The Assertion Language

Separation logic can provide concise and precise notationsfor specifying pointer-
based programs and their data structures. We enhance the separation logic fragment
presented in [2, 18]. Figure 4 describes our assertion language. Each data structure and
its properties can be defined by an inductive predicatepred, that consists of a namep, a
main separation formulaΦ and an optional pure invariant formulaπ that must hold for
every predicate instance. The separation logic formulaΦ is a disjunction of symbolic
heap. Each symbolic heap is a conjunction of a heap formulaκ and a pure formula
π. The pure part captures a rich constraint from the domains ofPresburger arithmetic,
monadic set or polynomial real arithmetic. The heap part includes points-to predicate
7→, spatial conjunction predicate∗ for combining two disjoint heap memory, and user-
defined predicatesp〈v1, .., vn〉 to capture more complex data structures with selected
properties. For examples, with the simple data structurenode declared in Sec. 2.2, we
define variants of list segment, as follows:

pred lseg〈root, n, p〉 ≡ (root=p ∧ n=0)
∨ ∃ d, q · (root7→node〈d, q〉∗ lseg〈q, n−1, p〉) inv n≥0

pred plseg〈root, n, p〉 ≡ ∃ d · (root7→node〈d, p〉 ∧ n=1 ∧ d≥0)
∨ ∃ d, q · (root7→node〈d, q〉∗ plseg〈q, n−1, p〉 ∧ d≥0) inv n≥1

The predicatelseg describes a list segment of nodes whose length is captured bythe
parametern. Similarly, the predicateplseg describes a list segment with only non-
negative integers.

Lemmas are used to relate data structures beyond their original predicate definitions
[17]. A lemma specification consists of a headp(v∗), a guardπ, a bodyΦ and a direc-
tion to apply (left→, right← or both↔) that denotes a weakening, strengthening or
equivalence, respectively. For example, to illustrate that plseg〈root, n, p〉 is an instance
of lseg〈root, n, p〉, we can use the following left (or weakening) coercion lemma:

lemma w1 plseg〈root, n, p〉∧n>0 →lseg〈root, n, p〉

4 A Calculus on Errors

In this section, we initially formalize the calculus with pure (without heap) formulasπ.
The extension of the calculus to heap formulas will be presented in the next section.



4.1 The Entailment Procedures

In this subsection, we introduce two entailment proceduresfor discharging the proof
obligations with support for the four-points status.
Entailment Procedure for Postconditions Checking. The basic machinery for the
judgmentπa ⊢C πc ; s is captured by the following four rules. We use underlying
theorem solvers for answering sastifiability. Note thatUNSAT(π) denotes thatπ is defi-
nitely unsatisfiable andPSAT(π) denotes thatπ is possibly satisfiable (as a complement
of unsatisfiability checking and due to its incompleteness).

[EC−[BOTTOM]]
UNSAT(π1)

π1 ⊢C π2 ; ⊥

[EC−[OK]]
PSAT(π1) UNSAT(π1 ∧ ¬π2)

π1 ⊢C π2 ;
√

[EC−[MUST−ERROR]]
PSAT(π1) UNSAT(π1 ∧ π2)

π1 ⊢C π2 ; ℧

[EC−[MAY−ERROR]]
PSAT(π1 ∧ ¬π2) PSAT(π1 ∧ π2)

π1 ⊢C π2 ; ⊤
Two rules at the first line check the success of the entailmentand classify it as unreach-
able (⊥) or valid (

√
) as usual (checkingUNSAT(π1 ∧ ¬π2) is equivalent to checking

π1 =⇒ π2). Next two rules at the second line check and classify the must/may error sce-
narios; in the first rule, a must error is identified whenπa =⇒ ¬πc is provable: lastly,
due to the imprecision, entailments which has not been proven so far are marked with
unknown status through the second rule. (In the last rule, the conditionPSAT(π1) is
discarded because it can be implied from two present conditions.)

To illustrate this entailment procedure, let us consider a postcondition check,x≥0,
under four different program states, as shown below.

x≤−1∧x=0 ⊢C x≥0 ; ⊥
x>0 ⊢C x≥0 ;

√ x≤−1 ⊢C x≥0 ; ℧

true ⊢C x≥0 ; ⊤
Entailment Procedure for Preconditions Checking.Furthermore, to support the check-
ing of preconditions from specifications with soundness and/or completeness, we intro-
duce another entailment judgment of the form:πa ⊢E πc ; s.

[EE−[BOTTOM]]
UNSAT(π1)

π1 ⊢E π2 ; ⊥

[EE−[OK]]
PSAT(π1) UNSAT(π1 ∧ ¬π2)

π1 ⊢E π2 ;
√

[EE−[MAY]]
PSAT(π1 ∧ ¬π2)
π1 ⊢E π2 ; ⊤

The status for this entailment is now limited to only three possible values, namely⊥,
√

and⊤, without the℧ status, as illustrated below:

x≤−1∧x=0 ⊢E x≥0 ; ⊥
x>0 ⊢E x≥0 ;

√ x≤−1 ⊢E x≥0 ; ⊤
true ⊢E x≥0 ; ⊤

Unlike the earlier entailment procedure, this new entailment has introduced a⊤ status
value where℧was derived previously, since the precondition may be under-approximated.
We can recover from this lack of information by leveraging onthe status from postcon-
ditions, where applicable. We defer formalization of the recovery to Sec. 6, we now
illustrate it through the check of the calling context,prio<0, against the near-complete
specification of theischedule procedure (presented in Fig. 2) as follows:



prio<0 ⊢ case { prio>0 → ensures (res=0)
√
;

prio<0 → ensures (true )℧;
prio=0 → ensures (true )⊤; }

; (⊥⊗√
) ⊔ (

√⊗℧) ⊔ (⊥⊗⊤) ; ⊥ ⊔ ℧ ⊔ ⊥
; ℧

This compositional check is performed through two steps. Firstly, for each scenario (1)
the calling context is combined with the condition of current scenario; (2) unsatisfia-
bility check is performed by the⊢E procedure; and (3) the status from postcondition is
combined (by⊗). Secondly, those scenarios are joined (by⊔).

4.2 Structural Rules

We provide sound structural rules that would carry out the entailment proving process in
smaller entailments. These rules support error localization, separation entailment pro-
cedure and modular verification.

[SE−[⊔ JOIN]]
π1 ⊢ π ; τ1
π2 ⊢ π ; τ2

π1∨π2 ⊢ π ; τ1⊔τ2

[SE−[⊗ COMPOSE]]
π ⊢ π1 ; τ1
π ⊢ π2 ; τ2

π ⊢ π1∧π2 ; τ1⊗τ2

[SE−[⊕ SEARCH]]
π ⊢ π1 ; τ1
π ⊢ π2 ; τ2

π ⊢ π1∨π2 ; τ1⊕τ2

These rules use the algebraic operations presented in Sec. 2.1 to combine the results.
Note that,⊢ is generic, and can be⊢C or ⊢E . The first rule decomposes disjunction on
the antecedent, while the second rule decomposes conjunction on the consequent. Both
these rules can be implemented without any loss of information. The third rule performs
a search over a disjunction in the consequent. This search returns a set of possible proofs
for the entailment. According to the⊕ operator, if at least one

√
status is found in this

solution set, the entailment will succeed.

Theorem 1 (Soundness of the Structural Rules).Given an entailmentπ1⊢π2. (⊢ is
either⊢C or ⊢E ). If the application of the structural rules[SE−[...]] on the given an-
tecedentπ1 and consequentπ2 returns the resultτ , then the application of the[EC−[...]]
([EE−[...]]) rules on the given antecedentπ1 and consequentπ2 returns the same result
τ , namelyπ1 ⊢C π2 ; τ (π1 ⊢E π2 ; τ , respectively).
The proof is by an induction on the structural rules[SE−[...]] and a case analysis on the
returned resultτ . We present full proof of the theorem in the Appendix A. (proof of
⊢C ) and Appendix B (proof for⊢E ).

4.3 Error Localization Extension to Calculus

τ [m] ::= ⊥[∅] | ℧[m] | √[m] | ⊤[m]
m ::= bm |m1⊔m2 |m1⊗m2|m1⊕m2

bm ::= π1 =⇒ π2 (valid)
| π1 =⇒ π2 (must error)
| π1 =⇒ π2 (may error)

τ1[m1] ⋄ τ2[m2] ⇒ (τ1⋄τ2)[m1⋄m2]
m ⋄ ∅ ⇒ m
∅ ⋄ m ⇒ m

⊥[m] ⇒ ⊥[∅]

Fig. 5. Program State: Status and Message

To provide support for error localization, we must extend the four-point lattice with
messages that capture the reason for each success or failure(see the left of Fig. 5).



Status⊥ does not carry any message which is denoted by∅. When faced with a
message with error fromm1⊔m2 andm1⊗m2, both of the two smaller messages (with
possible errors), denoted bym1 andm2, must be resolved, before the main message is
said to be resolved. When faced with a message with error of the formm1⊕m2, only
one of the messages with errors from eitherm1 or m2 needs to be resolved, before the
main messagem1⊕m2 is resolved. We may now modify the three operators⊔, ⊗ and
⊕, to propagate messages capturing the localizations for successes and failures. Let us
denote this using a generic name⋄ for three operators. We propagate every message,
where possible, as shown at the right of Fig. 5. In case empty message∅ is generated,
we remove it from the main message as shown in the second and third rules. In case the
resulting status fromτ1⋄τ2 is⊥, we remove its messages, as shown in the last rule.

5 Error Calculus for Separation Logic

In this section, we show how our calculus can be used to support the reasoning of
pointer-based programs via the fragment of separation logic presented in Sec.3. As
separation logic is a sub-structural logic, we have to account for heap memory as a
resource. Thus, entailment in separation logic is typically supported with a frame infer-
ence capability [2, 18], similar to the following format:

Φ1 ⊢ Φ2 ∗ Φ3

whereby antecedentΦ1 entailsΦ2 with a residue frame captured byΦ3. Logically, the
above entailment is equivalent toΦ1 =⇒ Φ2∗Φ3 whereΦ3 may contain existential vari-
ables that have been instantiated and pure formula that werealready established inΦ1.

We enhance the entailment procedure for separation logic intwo steps. First, we
extend the entailment procedure above to support the error calculus by the following
judgment:

Φ1 ⊢ Φ2 ; (Φ3, τ)

If the antecedent semantically entails the consequent, theentailment succeeds and we
expect statusτ to be set to

√
. Otherwise, the entailment fails and we expectτ to be

set to either℧ or ⊤. Second, this procedure is extended to support proof searchwith
disjunctive formulas and lemma as elaborated in Sec. 5.1.
To illustrate the first step, let us examine four simple examples to better understand how
status outcome is being determined by the entailment procedure of separation logic.

Entailment 1 Entailment 2
x7→node( , q) ∗ q 7→node( , null)
⊢C x7→node( , p)

; (q 7→node( , null) ∧ p=q ∧ x6=null,
√
)

x7→node( , q) ∗ q 7→node( , null)
⊢C x7→node( , null)

; (q 7→node( , null),℧)

The entailment 1 yields a residueq 7→node( , null) and an instantiationp=q from (im-
plicit) existential variablep. It also carries a pure formulax6=null from the antecedent.
The entailment 2 yields a must failure, denoted by℧. The consequent expectsq=null,
but the antecedent hadq 7→node( , null). This contradiction has caused a℧ failure to
be raised. The residue captures the state when failure was detected.
Entailment 3

x7→node( , q) ∗ q 7→node( , null) ⊢C x7→node(3, p)
; (q 7→node( , null) ∧ p=q ∧ x6=null,⊤)



The entailment 3 yields a may failure, denoted by⊤. The consequent expects value3
to be proven as the data field ofx. However, the antecedent has no information on that
field position. Hence, a⊤ failure was raised.

5.1 Separation Entailment with Proof Search

To support proof search the entailment procedure for separation logic shall now be
presented as a judgment of the following (full) form:

Φ1 ⊢ Φ2 ; (Ψ, τ)

wherebyΨ captures a set of residual program states with status information. We use a
set of program states (Ψ ) since our entailment procedure may have to conduct a proof
search with the help of lemmas. Furthermore, we must extend our entailment procedure
in the following ways. First, rules are added to support proof search that adds to our set
of outcomes with the help of lemmas. Proof search is performed in the order as follows:

– Status values of the proof search with lemmas are combined bythe union (⊕) op-
erator (where

√
or ⊤ take priority over℧). Hence, if a proof search attempt fails,

we return a⊤ (unknown) status, rather than a℧ status since the latter prevents a√
success from being reported, even if they can be confirmed in adifferent proof

search.
– If a complete set of lemmas have already been explored, then amust error status is

returned.
Second, when our entailment procedure becomes stuck with a non-empty conse-

quent, comprising some heap predicates, we shall firstly determine a pure approxima-
tion of the consequent for both heap and pure data throughXPure procedure [2]. For
examples:

XPure(x 7→node〈 , 〉) =⇒ x 6=null
XPure(lseg〈root, n, p〉) =⇒ root=p∧n = 0 ∨ root6=null∧n>0

where =⇒ denotes our over-approximation, and lseg is a predicate defined in Sec
3. We may then determine if there is any contradiction with the antecedent to decide
whether must or may failure is going to be reported.

6 Modular Verification with Error Calculus

Code verification is typically formalised using Hoare triples of the form{pre}c{post},
wherepre, postare the initial and final states of program codec. To incorporate status
into our program state, we shall use disjunctive program state of form

∨
(Φ, τ), giving

us a new Hoare triple of the form{∨(Φ1, τ1)} c {
∨
(Φ1, τ1)}. To simplify our presenta-

tion, we shall use(Φ, τ) instead of the more general disjunctive program state
∨
(Φ, τ)

that was implemented. To provide sound and complete requirements, we shall also use
structured specification from [9] of the form below:

Y ::= requires Φ Y | case{π1⇒Y1; . . . ; πn⇒Yn} | ensures (Φ)τ

This extends the pre/post specifications to support case analysis and staged ver-
ification. The verification requirement for methods can be affected by progressively
collecting the precondition in the structured specification, prior to the verification of its
method body. As this process is straightforward, we omit thedetails here.



The abstract semantics of each method call is captured by itsspecifications. We
encode its verification with the rule[FV−[CALL]]. Note that(t v)∗ and(ref t u)∗ de-
notepass-by-valueandpass-by-referenceparameters, respectively. Each method call
mn(v∗, u∗) in our core language has only variables as arguments. To avoid the need for
argument substitutions, we assume that each method declaration fromProgram has been
suitably renamed so that actual arguments are identical to the formal arguments.

[FV−[CALL]]
t0 mn((t v)∗, (ref t u)∗) Y {c} ∈ Program

Φ1 ⊢ Y ; (Φ2, τ2)
ΦR = if τ1=

√
then (∃v′∗·Φ2) else Φ1

{(Φ1, τ1)} mn((t v)∗, (ref t u)∗){(ΦR, τ1 ⊗ τ2)}
The proof obligations are generated and verified at the second line, provided that the
incoming statusτ1 is

√
. Furthermore, output states from proving entailment are com-

posed with status from pre-state at the third line. By default, if the caller context contains
errors, such errors are simply propagated to the next instruction in a similar manner
as exceptions. However, unlike exceptions, error states are never caught. To generate
proof obligations for the extended specification, we propose to extend the entailment
procedure to handle specification with separation formulas. The revised judgment has
the formΦ1 ⊢ Y ; (Φ2, τ2), whereΦ1 is the current state,Y is the specification and
(Φ2, τ2) is the residual state and its status. Three syntax-directedrules are extended.
They are used to prove each precondition and assume its respective postcondition for
the callee, as shown below:

[FV−[C−REQUIRES]]
Φ1 ⊢E Φ; (Φ2, τ2) (Φ2) ⊢ Y ; (Φ3, τ3)

Φ1 ⊢ requires Φ Y ; (Φ3, τ2⊗τ3)

[FV−[C−CASE]]
Φ∧πi ⊢ Yi ; (Φi, τi) i = 1 . . . n
Φ ⊢ case{πi⇒Yi}∗ ; (

∨
Φi,⊔τi)

[FV−[C−ENSURES]]
Φ1 ⊢C true ; (Φ, τ1)

Φ1 ⊢ ensures (Φ2)τ2 ; (Φ1 ∗ Φ2, τ1⊗τ2)

7 Implementation and Experiments
We have implemented our error calculus inside a program verification system for sep-
aration logic, called HIPEE. We use HIPEE to verify C-based programs against user-
given specifications. The verification is performed compositionally for each method,
and loops are transformed to recursive methods. HIPEE eventually translates separa-
tion logic proof obligations to pure formulae that can be discharged by different the-
orem provers. Our system uses Omega [20], MONA [15], Redlog [7] and Z3 [4] as
underlying theorem provers for answering the satisfiability and simplification queries.
When program code is not successfully verified against safety properties, HIPEE not
only further classifies the failures into the must or may errors but also localizes program
statements and specifications relevant to the errors.

7.1 Calculus Performance for Heap-Based Programs

To evaluate the overheads of error calculus, we executed oursystem HIPEE twice, once
with error calculus and a second timewithout, on a suite of bug-free pointer-based pro-
grams. We stress that although the sizes of these programs are fairly small, they deal



Programs (specified props) Size Proc Time(sec.) Invo.(#)
LOC LOS # wo w wo w

Linked list (size,interval) 327 50 26 0.44 0.46 2738 3202
Linked list (size,sets) 157 27 13 0.58 0.6 1520 1724

Sorted llist (size,sness,sets)98 11 6 0.46 0.49 955 1060
Doubly llist (size,interval) 186 23 13 0.34 0.34 1864 2083

Doubly llist (size,sets) 91 13 5 0.5 0.5 1309 1429
CompleteT (size,minheight)106 12 5 0.87 0.94 2149 2533
Heap trees (size,maxelem)179 13 5 1.9 1.91 4540 4954

AVL (height, size) 313 27 12 3.44 3.59 7863 8585
AVL2 (height,size,bal) 152 37 7 2.83 3 6959 7876

BST (size,height) 177 18 9 0.35 0.37 1883 2192
BST (size,height,interval) 153 12 6 0.3 0.31 1581 1836
RBT (size,blackheight) 508 48 19 3.32 3.38 1306916687

Bubble sort (size) 75 9 4 0.21 0.21 1092 1254
Quick sort (size, sets) 82 10 4 0.27 0.28 778 832
Merge sort (size,sets) 109 11 6 0.47 0.5 1035 1074

Quick sort - queue (size) 127 4 2 4.25 5.27 1321821139
Total 2840 325 142 20.5322.15 6255378460

Table 1.Verification Performance with (w) and without (wo) Error Calculus

with fairly complex heap-based data structures, such as linked lists, doubly-linked lists
and AVL-trees. Therefore, these programs can be used tofully evaluate the performance
of our calculus which has been embedded inside a separation logic prover. The results
are summarized in Table 1. The first column contains the list of the verified programs
and their proven properties while the second, third and fourth columns describe number
of lines of code (LOC), number of lines of specification (LOS)and number of pro-
cedures in each program. On average, LOS is around 12% of LOC and specifications
are complicated enough to demonstrate the performance of our calculus. The fifth and
sixth columns show the total verification time (in seconds) for the system HIPEE with-
out and with error calculus, respectively. The last two columns capture the number of
satisfiability and simplification queries sent to the provers for each experiment.

In Table 1, the results show that the total overhead introduced by our error calculus
is around 1.62 seconds (8%). This overhead is proportional to the number of extra satis-
fiability and simplification queries shown in the last two columns. These experimental
results have shown that must/may error calculus with messages can be supported with
modest overhead.

7.2 Calculus Usability

In order to show the usability of our error calculus on bugs finding and localizing, we
evaluated our system on the Siemens test suite [12] of programs. The test suite contains
programs with complex data structures (e.g. linked lists, queues), arrays and loops. Each
program in the suite has one non-faulty version,v0, and a number of seeded faulty ver-
sions (#Ver. column in Table 2) fromv1 to vn. Each of these faulty versions has one or
more (seeded) faults. Total number of faults is captured in #Fault column. These faulty
versions are suitable for checking the ability of tools in finding bugs and localizing
errors (as used in [14]).We provide specifications for each program such that HIPEE



Programs LOC LOS #Proc.#Ver. #Fault ℧ ⊤∗ ⊤ LOE time(s)
tcas 173 48 9 41 48 31 14 3 3.48 3.06

schedule2 374 108 16 10 10 5 0 3 3 8.25
schedule1a 412 50 18 10 16 15 0 1 4.38 18.13
schedule1b 413 50 18 9 8 7 0 1 4.25 32.29

replace 564 73 21 24 24 18 0 6 4.21 17.89
print tokens2 570 64 19 10 10 7 0 1 4.88 20.42
print tokens 726 87 18 7 9 8 0 1 3.67 6.73

Total/(Average)3232 480 119 111 125 91 14 16 (3.98) (15.25)

Table 2.Bugs finding and localizing with small programs in the Siemens Test Suite

(1) successfully verifies safety (sound or complete requirements) in the non-faulty ver-
sions, and (2) captures potential must-bug errors that are complementary to the safety
scenarios. We emphasize that these specifications were designed primarily to verify
safety scenarioswithoutconsidering the faulty versions of each program. Nevertheless,
HIPEE is able to utilize the same specification to find and explainthe presence of bugs
in the faulty versions, as elaborated below.
Table 2 shows the result of running our system on six programsfrom the suite. The
properties our tool proved include: (i) memory safety (all), (ii) size of data structures
(schedule1a, schedule1b andschedule2 program), (iii) array-related properties (tcas,
print token, print token2 andreplace program), (iv) functional arithmetic constraints
between input and output (all). We are interested in finding out all the errors in the pro-
grams and classifying them as must (℧), disjunctive may (⊤∗) or may (⊤) errors. For
instance, from 48 faults of programtcas, HIPEE was able to detect all the errors in the
program, and classified 31 of them as must (℧) errors, 14 as disjunctive may (⊤∗) errors
and 3 as may (⊤) errors. In summary, HIPEE detected 97% of real bugs including 73%,
11% and 13% of℧, ⊤∗ and⊤ errors, respectively.

However, a few errors were not detected by our system, e.g.v4, v9 of schedule2
andv1, v2 of print tokens2 were verified successfully by HIPEE. Upon careful exam-
ination, we found that the substituted statement inv9 is semantically equivalent with
the non-faulty one inv0. Hence, we consider it as a bug in constructing the benchmark
rather than a real program bug. Forv1, v2 andv4, there were omitted statements that are
related to the I/O systems. For instance, the following statement is omitted inv1:

if(ch == EOF) fprintf(stdout, ”It can not get character”);

This was not picked up by our system since the specification ofI/O operations were not
being modelled. It would be interesting to see I/O operations being modelled in future.

Our calculus further supports debugging in localizing the errors. The LOE column
shows the average number of lines of program code and specification relevant to the
errors for each program. We are able to provide concise (between 3-5 lines) error loca-
tions for all the bugs in the suite. Such short but accurate localizations make it easier
for users to comprehend the discovered errors. The last column shows the average time
which HIPEE took for verifying a faulty version of each program.

Purely from the system point of view and on the assumption that specifications
have already been provided, HIPEE took on average 16 seconds for safety proving, bug
finding and error localization on one faulty version of each program.



8 Related Work and Conclusion

The most relevant idea to our new specification mechanism is exception safety in Spec#
language [16]. While Spec# usesotherwisekeyword to explicate scenarios which def-
initely lead to exceptions, our proposal uses must error values℧ to model erroneous
scenarios. Hence, it is possible to integrate our mechanisminto exception handling.
Moreover, our specification mechanism with the error calculus has well supported our
verifier not only in proving safety/functional correctnessand validating input parameter
(like Spec#) but also in finding and classifying bugs.

Static analysis based bug finding is not new and already exists [6, 8, 11, 13]. Recent
work in first order relational logic [6, 13] also addresses the problem of finding bugs
in programs with pointers and linked data structures. The method is based on under
approximation for loops and heap, thus it only finds the must bugs (℧) in the code.
Similarly, Exorcise [11] is only capable of detecting must errors (℧) based on evaluating
weakest liberal preconditions. Since both consider only postcondition violation as a
must error, they do not report on the more common bugs that aredue to preconditions.
Our calculus is more expressive (with uncovering not only must error but may error and
with proving safety) through the help of new specification mechanism on sound and/or
complete properties. Moreover, to handle pointer-based programs, while the underlying
assumption in [13] is that most bugs can be found in the programs with small scope
(loop unrolling) and small heap size, we have also shown how our error calculus can
handle data structures with aliasing through a simple integration with separation logic.

As static analysis suffers from precision problem, there have been attempts to use
dynamic or hybrid analysis for safety proving and bugs finding. An approach based
on dynamic analysis to infer likely invariants from code is implemented in [3]. Invari-
ants discovered can be used as method annotations or assumptions, which can aid static
checkers in detecting bugs. This hybrid analysis uses a combination of under approxi-
mation and over approximation in different phases of analysis. Similarly, SMASH [10]
integrates safety with bug finding via a synergy between static analysis and testing. In
our approach we do not rely on dynamic analysis as our complete lattice can symbol-
ically capture a richer set of possible program states. Our method integrates both bug-
finding and safety proving within a single calculus, withoutprejudice to working with
dynamic-based analyses for unknown scenarios. Other attempts are based on dual static
analysis. An over-approximation for safety and another over-approximation for bugs
finding was presented in [19] but it has only been applied to numerical imperative pro-
grams. Another related approach using over- and under-approximation was presented
in [5]. In [5], the may and must queries correspond to safety and liveness properties.
Their conditions are computed with respect to a finite abstraction for each particular
property. In comparison, the conditions for our must/may error are captured in terms of
symbolic (infinite) domain that reliesonlyon over-approximation mechanisms.
Conclusion In this paper, we described a novel specification mechanism for both sound
and complete requirements via the calculus for must/may errors. The calculus also en-
ables bug finding (with safety checking) during modular verification. We can provide
fairly precise and concise failure localization from our calculus. Using separation logic,
we can support sound and complete safety verification, in thepresence of data struc-
tures with sophisticated invariants, via user-defined predicates and lemmas. We have



extended an automated tool for verifying complex data structures to use our error cal-
culus. Initial sets of experiments have shown that bug finding and safety checking via
the modular vefification can be supported with modest overheads.
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A Proof of the Soundness of the Structural Rules for⊢C

We prove Theorem 1 inductively on the structural rules through⊔ operator,⊗ operator
and⊕ operator.

A.1 JOIN (⊔) Operator

[EC−[⊔ JOIN]]
π1 ⊢C π ; τ1
π2 ⊢C π ; τ2

π1 ∨ π2 ⊢C π ; τ andτ1 ⊔ τ2 = τ

We prove Theorem 1 by the case analysis on the returnedτ .

Caseτ = ⊥. Based on the lattice of program status,τ1 ⊔ τ2 = ⊥ if τ1 = ⊥ andτ2 = ⊥.
It meansτ1 ⊔ τ2 = ⊥ if π1 ⊢C π ; ⊥ andπ2 ⊢C π ; ⊥.

Follow the entailment procedure⊢C , we haveπi ⊢C π ; ⊥ infers thatUNSAT(πi)
with i ∈ {1, 2}.

We have:
UNSAT(π1) ∧ UNSAT(π2)

≡ ¬π1 ∧ ¬π2

≡ ¬(π1 ∨ π2)
≡ UNSAT(π1 ∨ π2)

Again, follow the entailment procedure⊢C we conclude:π1 ∨ π2 ⊢C π ; ⊥
Therefore,τ1 ⊔ τ2 = τ .

Caseτ =

√
. Based on the lattice of program status,τ1 ⊔ τ2 =

√
if

1. τ1 =
√

andτ2 =
√

. Or
2. One of them is⊥ and another is

√
. We assumeτ1 = ⊥ andτ2 =

√

Caseτ1 =
√

and τ2 =
√

τ1 =
√

, it meansπ1 ⊢C π ;

√
. Follow the entailment procedure⊢C , we have:

PSAT(π1)∧ (1.a.1)
UNSAT(π1 ∧ ¬π) (1.a.2)

Similarly, with τ2 =
√

, we have:

PSAT(π2)∧ (1.a.3)
UNSAT(π2 ∧ ¬π) (1.a.4)

From (1.a.1) and (1.a.3), we have:

PSAT(π1) ∧ PSAT(π2)
⇒ PSAT(π1 ∨ π2) (1.1)



From (1.a.2) and (1.a.4), we have:

¬ (π1 ∧ ¬π) ∧ ¬ (π2 ∧ ¬π)
≡ (¬π1 ∨ π) ∧ (¬π2 ∨ π)
≡ ≡ (¬π1 ∧ ¬π2) ∨ π

≡ ¬(π1 ∨ π2) ∨ π

≡ ¬((π1 ∨ π2) ∧ ¬π)
≡ UNSAT(π1 ∨ π2) ∧ ¬ π) (1.2)

From (1.1), (1.2), and follow the entailment procedure⊢C we conclude:π1∨π2 ⊢C π;

√
.

So,τ1 ⊔ τ2 = τ .
Caseτ1 = ⊥ and τ2 =

√

It meansπ1 ⊢C π ; ⊥ andπ2 ⊢C π ;

√
.

Follow the entailment procedure⊢C , we have:

UNSAT(π1)∧ (1.b.1)
PSAT(π2)∧ (1.b.2)
UNSAT(π2 ∧ ¬π) (1.b.3)

From (1.b.1) and (1.b.2), we have:

UNSAT(π1) ∧ PSAT(π2)
⇒ PSAT(π1 ∨ π2) (1.3)

From (1.b.2) and (1.b.3), we infer thatPSAT(π) and combined withUNSAT(π1),
we haveπ1 =⇒ π.

Moreover, withπ1 =⇒ π andπ2 =⇒ π, follow the same proof leading to (1.2)
of caseτ1 =

√
and τ2 =

√
we have:

(π1 ∨ π2) =⇒ π (1.4)

From (1.3), (1.4), and follow the entailment procedure⊢C we conclude:π1∨π2 ⊢C π;

√
.

Therefore,τ1 ⊔ τ2 = τ .

Caseτ = ℧. Based on the lattice of program status,τ1 ⊔ τ2 = ℧ if

1. τ1 = ℧ andτ2 = ℧. Or
2. One of them is⊥ and another is℧. We assumeτ1 = ⊥ andτ2 = ℧

Caseτ1 = ℧ and τ2 = ℧

τ1 = ℧, it meansπ1 ⊢C π ; ℧. Follow the entailment procedure⊢C , we have:

PSAT(π1) ∧ (1.c.1)
UNSAT(π1 ∧ π) (1.c.2)

Similarly, with τ2 = ℧, we have:

PSAT(π2) ∧ (1.c.3)
UNSAT(π2 ∧ π) (1.c.4)



From (1.c.1) and (1.c.3), we have:

PSAT(π1) ∧ PSAT(π2)
⇒ PSAT(π1 ∨ π2) (1.5)

From (1.c.2) and (1.c.4), we have:

UNSAT(π1 ∧ π) ∧ UNSAT(π2 ∧ π)
≡ ¬(π1 ∧ π) ∧ ¬(π2 ∧ π)
≡ (¬π1 ∨ ¬π) ∧ (¬π2 ∨ ¬π)
≡ (¬π1 ∧ ¬π2) ∨ ¬π
≡ ¬(π1 ∨ π2) ∨ ¬π
≡ ¬((π1 ∨ π2) ∧ π)
≡ UNSAT((π1 ∨ π2) ∧ π) (1.6)

From (1.5), (1.6), and follow the entailment procedure⊢C we conclude:π1∨π2 ⊢C π;℧.
So,τ1 ⊔ τ2 = τ .

Caseτ1 = ⊥ and τ2 = ℧

τ1 = ⊥, it meansπ1 ⊢C π ; ⊥. Follow the entailment procedure⊢C , we have:

UNSAT(π1) (1.d.1)

τ2 = ℧, it meansπ2 ⊢C π ; ℧. Follow the entailment procedure⊢C , we have:

PSAT(π2) ∧ (1.d.2)
UNSAT(π2 ∧ π) (1.d.3)

From (1.d.1) and (1.d.2) we infer that:

PSAT(π1 ∨ π2) (1.7)

From (1.d.1) we have:

UNSAT(π1)
≡ ¬π1

⇒ ¬π1 ∨ ¬π (1.d.4)

From (1.d.3) we have:

UNSAT(π2 ∧ π)
≡ ¬(π2 ∧ π)
≡ ¬π2 ∨ ¬π (1.d.5)

From (1.d.4) and (1.d.5) we have:

(¬π1 ∨ ¬π) ∧ (¬π2 ∨ ¬π)
≡ (¬π1 ∧ ¬π2) ∨ ¬π
≡ ¬(π1 ∨ π2) ∨ ¬π
≡ ¬((π1 ∨ π2) ∧ π)
≡ UNSAT((π1 ∨ π2) ∧ π) (1.8)

From (1.7), (1.8), and follow the entailment procedure⊢C we conclude:π1∨π2 ⊢C π;℧.
Therefore,τ1 ⊔ τ2 = τ .



Caseτ = ⊤. Based on the lattice of program status,τ1 ⊔ τ2 = ⊤ if

1. Eitherτ1 or τ2 is⊤. Assumeτ1 = ⊤. Or
2. τ1 = ℧ andτ2 =

√
.

Caseτ1 = ⊤
τ1 = ⊤, it meansπ1 ⊢C π ; ⊤.
Follow the entailment procedure⊢C , we have:

PSAT(π1 ∧ ¬π)∧ (1.e.1)
PSAT(π1 ∧ π) (1.e.2)

From (1.e.1) we have:

PSAT(π1 ∧ ¬π)
⇒ PSAT((π1 ∧ ¬π) ∨ (π2 ∧ ¬π))
≡ PSAT((π1 ∨ π2) ∧ ¬π) (1.9)

From (1.e.2) we have:

PSAT(π1 ∧ π)
⇒ PSAT((π1 ∧ π) ∨ (π2 ∧ π))
≡ PSAT((π1 ∨ π2) ∧ π) (1.10)

From (1.9), (1.10) and follow the entailment procedure⊢C we conclude:π1 ∨
π2 ⊢C π ; ⊤.

Therefore,τ1 ⊔ τ2 = τ .
Caseτ1 = ℧ and τ2 =

√

τ1 = ℧, it meansπ1 ⊢C π ; ℧. Follow the entailment procedure⊢C , we have:

PSAT(π1) ∧ (1.f.1)
UNSAT(π1 ∧ π) (1.f.2)

τ2 =
√

, it meansπ2 ⊢C π ;

√
. Follow the entailment procedure⊢C , we have:

PSAT(π2)∧ (1.f.3)
UNSAT(π2 ∧ ¬π) (1.f.4)

We provePSAT(π2 ∧ π) by contradiction. Assume thatUNSAT(π2 ∧ π).

UNSAT(π2 ∧ π)
≡ ¬(π2 ∧ π)
≡ ¬π2 ∨ ¬π

Combined with (1.f.4), we have:

(¬π2 ∨ ¬π) ∧ (¬π2 ∨ π)
≡ ¬π2 ∧ (¬π ∨ π)
≡ ¬π2 contradict with(1.f.4)



Hence, we concludePSAT(π2 ∧ π).

PSAT(π2 ∧ π)
⇒ PSAT((π1 ∧ π) ∨ (π2 ∧ π))
≡ PSAT((π1 ∨ π2) ∧ π) (1.11)

Similarly, we can prove that

PSAT((π1 ∨ π2) ∧ ¬π) (1.12)

From (1.11), (1.12) and follow the entailment procedure⊢C we conclude:π1∨π2 ⊢C π;⊤.
Therefore,τ1 ⊔ τ2 = τ .

A.2 COMPOSE (⊗) Operator

[EC−[⊗ COMPOSE]]
π ⊢C π1 ; τ1
π ⊢C π2 ; τ2

π ⊢C π1 ∧ π2 ; τ andτ1 ⊗ τ2 = τ

We prove Theorem 1 by the case analysis on the returnedτ .

Caseτ = ⊥. Based on⊗ operator, the result ofτ1 ⊗ τ2 is ⊥ if either τ1 or τ2 is ⊥.
Assumeτ1 = ⊥. It meansπ ⊢C π1 ; ⊥.

Follow the entailment procedure⊢C , we infer:UNSAT(π1).
Again, follow the entailment procedure⊢C we concludeπ ⊢C π1 ∧ π2 ; ⊥
So,τ1 ⊗ τ2 = τ .

Caseτ =

√
. Based on⊗ operator, the result ofτ1 ⊗ τ2 is

√
if both τ1 andτ2 are

√
.

It meansπ ⊢C π1 ;
√

andπ ⊢C π2 ;
√

.
Follow the entailment procedure⊢C , we have:

PSAT(π) ∧ (2.a.1)
UNSAT(π ∧ ¬π1) ∧ (2.a.2)
UNSAT(π ∧ ¬π2) (2.a.3)

From (2.a.2) and (2.a.3), we have:

UNSAT(π ∧ ¬π1) ∧ UNSAT(π ∧ ¬π2)
⇒ (¬π ∨ π1) ∧ (¬π ∨ π2)
≡ ¬π ∨ (π1 ∧ π2)
≡ UNSAT(π ∧ ¬(π1 ∧ π2)) (2.1)

From (2.a.1), (2.1), and follow the entailment procedure⊢C we conclude:π ⊢C π1∧
π2 ;

√

Therefore,τ1 ⊗ τ2 = τ .



Caseτ = ℧. Based on⊗ operator, the result ofτ1 ⊗ τ2 is ℧ if one of them (τ1, τ2) is
℧, and another is not⊥. Assummeτ1 = ℧ andτ2 6= ⊥.

τ1 = ℧ meansπ ⊢C π1 ; ℧. Follow the entailment procedure⊢C , we have:

PSAT(π) ∧ (2.b.1)
PSAT(π) ∧ (2.b.2)
UNSAT(π ∧ π1) (2.b.3)

From (2.b.3), we have:

UNSAT(π ∧ π1)
⇒ UNSAT(π ∧ π1 ∧ π2) (2.2)

From (2.b.1), (2.2) and follow the entailment procedure⊢C we conclude:π ⊢C π1∧
π2 ; ℧

Therefore,τ1 ⊗ τ2 = τ .

Caseτ = ⊤. Based on⊗ operator,τ1 ⊗ τ2 = ⊤ if

1. τ1=⊤ andτ2 = ⊤. Or
2. One of them (τ1, τ2) is⊤, another is

√
. Assumeτ1=⊤ andτ2 =

√
.

Caseτ1=⊤ and τ2 = ⊤
τ1=⊤meansπ ⊢C π1 ; ⊤. Follow the entailment procedure⊢C , we have:

PSAT(π ∧ ¬π1) ∧ (2.c.1)
PSAT(π ∧ π1) (2.c.2)

Similary, withτ2=⊤, we have:

PSAT(π ∧ ¬π2) ∧ (2.c.3)
PSAT(π ∧ π2) (2.c.4)

From (2.c.1), (2.c.3), we have:

PSAT(π ∧ ¬π1) ∧ PSAT(π ∧ ¬π2)
⇒ PSAT((π ∧ ¬π1) ∨ (π ∧ ¬π2))
≡ PSAT(π ∧ (¬π1 ∨ ¬π2))
≡ PSAT((π ∧ ¬(π1 ∧ π2)) (2.3)

We provePSAT(π ∧ π1 ∧ π2) by contradiction. Assume¬(π ∧ π1 ∧ π2).

¬(π ∧ π1 ∧ π2)

≡ ¬((π ∧ π1) ∧ (π ∧ π2))
≡ ¬(π ∧ π1) ∨ ¬(π ∧ π2) (2.c.5)

(2.c.5)contradicts withboth (2.c.2) and (2.c.4). Hence, we conclude:

PSAT(π ∧ π1 ∧ π2) (2.4)



From (2.3), (2.4), and follow the entailment procedure⊢C we conclude:π ⊢C π1 ∧
π2 ; ⊤

Therefore,τ1 ⊗ τ2 = τ .
Caseτ1 = ⊤ and τ2 =

√

τ1=⊤meansπ ⊢C π1 ; ⊤. Follow the entailment procedure⊢C , we have:

PSAT(π ∧ ¬π1) ∧ (2.d.1)
PSAT(π ∧ π1) (2.d.2)

τ2=
√

meansπ ⊢C π2 ;
√

.

PSAT(π) ∧ (2.d.3)
UNSAT(π ∧ ¬π2) (2.d.4)

From (2.d.1), we have:

PSAT(π ∧ ¬π1)
⇒ PSAT((π ∧ ¬π1) ∨ (π ∧ ¬π2))
≡ PSAT(π ∧ (¬π1 ∨ ¬π2))
≡ PSAT((π ∧ ¬(π1 ∧ π2)) (2.5)

We provePSAT(π ∧ π1 ∧ π2) by contradiction. Assume¬(π ∧ π1 ∧ π2).

¬(π ∧ π1 ∧ π2)
≡ ¬(π ∧ π1) ∨ ¬π2)

Combined with (2.d.4), we have:

¬(π ∧ π1) ∨ ¬π2) ∧ (¬π ∨ π2)
⇒ ¬π

Thiscontradicts with(2.d.3).
Hence, we conlcude:

PSAT(π ∧ π1 ∧ π2) (2.6)

From (2.5), (2.6), and follow the entailment procedure⊢C we conclude:π ⊢C π1 ∧
π2 ; ⊤

Therefore,τ1 ⊗ τ2 = τ .

A.3 UNION (⊕) Operator

[EC−[⊕ UNION]]
π ⊢C π1 ; τ1
π ⊢C π2 ; τ2

π ⊢C π1 ∨ π2 ; τ andτ1 ⊕ τ2 = τ

We prove Theorem 1 by the case analysis on the returnedτ .



Caseτ = ⊥. Based on⊕ operator, the result ofτ1 ⊕ τ2 is ⊥ if either τ1 or τ2 is ⊥.
Assumeτ1 = ⊥. It meansπ ⊢C π1 ; ⊥.

Follow the entailment procedure⊢C , we infer:UNSAT(π1).
Again, follow the entailment procedure⊢C we concludeπ ⊢C π1 ∨ π2 ; ⊥.
Therefore,τ1 ⊕ τ2 = τ .

Caseτ =

√
. Based on⊕ operator, the result ofτ1 ⊕ τ2 is

√
if either (τ1 or τ2) is

√
.

Assumeτ1 =
√

. It meansπ ⊢C π1 ;
√

.
Follow the entailment procedure⊢C , we have:

PSAT(π) ∧ (3.a.1)
UNSAT(π ∧ ¬π1) (3.a.2)

From (3.a.2), we have:

UNSAT(π ∧ ¬π1)
⇒ (¬π ∨ π1) ∨ π2

≡ ¬π ∨ (π1 ∨ π2)
≡ UNSAT(π ∧ ¬(π1 ∨ π2)) (3.1)

From (3.a.1), (3.1), and follow the entailment procedure⊢C we concludeπ ⊢C π1∨
π2 ;

√
.

Therefore,τ1 ⊕ τ2 = τ .

Caseτ = ℧. Based on⊕ operator, the result ofτ1 ⊕ τ2 is ℧ if both τ1 andτ2 are℧.
τ1 = ℧ meansπ ⊢C π1 ; ℧.
Follow the entailment procedure⊢C , we have:

PSAT(π) ∧ (3.b.1)
UNSAT(π ∧ π1) (3.b.2)

Similarly, with τ1 = ℧ we have:

PSAT(π) ∧ (3.b.1’)
UNSAT(π ∧ π2) (3.b.3)

From (3.b.2) and (3.b.3), we have:

UNSAT(π ∧ π1) ∧ UNSAT(π ∧ π2)
⇒ (¬π ∨ ¬π1) ∧ (¬π ∨ ¬π2)
≡ ¬π ∨ (¬π1 ∧ ¬π2)
≡ ¬π ∨ ¬(π1 ∨ π2)
≡ ¬(π ∧ (π1 ∨ π2))
≡ UNSAT(π ∧ (π1 ∨ π2)) (3.2)

From (3.b.1), (3.2) and follow the entailment procedure⊢C we concludeπ ⊢C π1 ∨
π2 ; ℧. Therefore,τ1 ⊕ τ2 = τ .



Caseτ = ⊤. Based on⊕ operator, the result ofτ1 ⊕ τ2 is ℧ if one of them (τ1, τ2) is
⊤, and another is neither⊥ nor

√
. We assumeτ1 = ⊤ andτ2 is neither⊥ nor

√
.

τ1 = ⊤ meansπ ⊢C π1 ; ⊤.
Follow the entailment procedure⊢C , we have:

PSAT(π ∧ ¬π1) ∧ (3.c.1)
PSAT(π ∧ π1) (3.c.2)

τ2 is neither⊥ nor
√

, thenπ ⊢C π1 ; t andt 6= ⊥∧ t 6= √
. Follow the entailment

procedure⊢C , we have:

PSAT(π) ∧ (3.c.1’)
PSAT(π ∧ ¬π2) (3.c.3)

We provePSAT(π ∧ ¬(π1 ∨ π2)) by contradiction. Assume¬(π ∧ ¬(π1 ∨ π2)).

¬(π ∧ ¬(π1 ∨ π2))
≡ ¬(π ∧ ¬π1 ∧ ¬π2)
≡ ¬((π ∧ ¬π1) ∧ (π ∧ ¬π2))
≡ ¬(π ∧ ¬π1) ∨ ¬(π ∧ ¬π2) (3.c.4)

(3.c.4)contradicts withboth (3.c.2) and (3.c.3). Hence, we conclude:

π ∧ ¬(π1 ∨ π2) (3.3)

From (3.c.2), we have:

PSAT(π ∧ π1)
⇒ PSAT((π ∧ π1) ∨ (π ∧ π2))
≡ PSAT((π ∧ (π1 ∨ π2)) (3.4)

From (3.3), (3.4), and follow the entailment procedure⊢C we concludeπ ⊢C π1 ∨
π2 ; ⊤. Therefore,τ1 ⊕ τ2 = τ .

B Proof of the Soundness of the Structural Rules for⊢E

We prove Theorem 1 inductively on the structural rules through⊔ operator,⊗ operator
and⊕ operator.

B.1 JOIN (⊔) Operator

[EE−[⊔ JOIN]]
π1 ⊢E π ; τ1
π2 ⊢E π ; τ2

π1 ∨ π2 ⊢E π ; τ andτ1 ⊔ τ2 = τ

We prove Theorem 1 by the case analysis on the returnedτ .



Caseτ = ⊥. The proof is similar to the proof of the soundness of the join⊔ operator
for ⊢C (see A.1).

Caseτ =

√
. The proof is similar to the proof of the soundness of the join⊔ operator

for ⊢C (see A.1).

Caseτ = ⊤. Based on the lattice of program status,τ1 ⊔ τ2 = ⊤ if either τ1 = ⊤ or
τ2 = ⊤. Assumeτ1 = ⊤.

τ1 = ⊤ meansπ1 ⊢E π ; ⊤. Follow the entailment procedure⊢E , we have:

PSAT(π1 ∧ ¬π) (4.a.1)

From (4.a.1), we have:

⇒ PSAT((π1 ∧ ¬π) ∨ (π2 ∧ ¬π))
≡ PSAT((π1 ∨ π2) ∧ ¬π) (4.1)

From (4.1) and follow the entailment procedure⊢E we conclude:π1∨π2 ⊢C π;⊤.
Therefore,τ1 ⊔ τ2 = τ .

B.2 COMPOSE (⊗) Operator

[EE−[⊗ COMPOSE]]
π ⊢ π1 ; τ1
π ⊢ π2 ; τ2

π ⊢E π1 ∧ π2 ; τ andτ1 ⊗ τ2 = τ

We prove Theorem 1 by the case analysis on the returnedτ (⊥,
√

, ℧, ⊤).

Caseτ = ⊥ The proof is similar to the proof of the soundness of the join⊗ operator
for ⊢C (see A.2).

Caseτ =

√
The proof is similar to the proof of the soundness of the join⊗ operator

for ⊢C (see A.2).

Caseτ = ⊤ Based on⊗ operator,τ1 ⊗ τ2 = ⊤ if either τ1 = ⊤ or τ2 = ⊤. Assume
τ1 = ⊤.

τ1 = ⊤ meansπ ⊢E π1 ; ⊤. Follow the entailment procedure⊢C , we have:

PSAT(π ∧ ¬π1) (5.a.1)

From (5.a.1) we have:

PSAT(π ∧ ¬π1)
⇒ PSAT((π ∧ ¬π1) ∨ (π ∧ ¬π2))
≡ PSAT(π ∧ (¬π1 ∨ ¬π2))
≡ PSAT(π ∧ ¬(π1 ∧ π2)) (5.1)

From (5.1), and follow the entailment procedure⊢E we conclude:π ⊢E π1∧π2 ;⊤
Hence,τ1 ⊗ τ2 = τ .



B.3 UNION (⊕) Operator

[EE−[⊕ UNION]]
π ⊢ π1 ; τ1
π ⊢ π2 ; τ2

π ⊢E π1 ∨ π2 ; τ andτ1 ⊕ τ2 = τ

We prove Theorem 1 by the case analysis on the returnedτ .

Caseτ = ⊥ The proof is similar to the proof of the soundness of the join⊕ operator
for ⊢C (see A.3).

Caseτ =

√
The proof is similar to the proof of the soundness of the join⊕ operator

for ⊢C (see A.3).

Caseτ = ⊤ Based on⊕ operator,τ1 ⊗ τ2 = ⊤ if both τ1 = ⊤ andτ2 = ⊤.
τ1 = ⊤ meansπ ⊢E π1 ; ⊤. Follow the entailment procedure⊢C , we have:

PSAT(π ∧ ¬π1) (6.a.1)

Similarly, with τ2 = ⊤, we have:

PSAT(π ∧ ¬π1) (6.a.2)

We provePSAT(π ∧ ¬(π1 ∨ π2)) by contradiction. Assume we have¬(π ∧ ¬(π1 ∨ π2)).

¬(π ∧ ¬(π1 ∨ π2))
≡ ¬(π ∧ ¬π1 ∧ ¬π2)
≡ ¬((π ∧ ¬π1) ∧ (π ∧ ¬π2))
≡ ¬(π ∧ ¬π1) ∨ ¬(π ∧ ¬π2) (6.1)

(6.1)contradicts with both(6.a.1) and (6.a.2). Hence, we conclude:

PSAT(π ∧ ¬(π1 ∨ π2)) (6.2)

From (6.2) and follow the entailment procedure⊢E we conclude:π ⊢E π1∨π2 ;⊤
Hence,τ1 ⊕ τ2 = τ .


