
CS1010 AY2016/7 Semester 1 - 1 of 8 - Practical Exam 2

NATIONAL UNIVERSITY OF SINGAPORE
SCHOOL OF COMPUTING

Practical Examination 2 (PE2) for Semester 1, AY2016/7

CS1010 Programming Methodology

 22 October 2016 Time Allowed: 2 hours
__

INSTRUCTION TO CANDIDATES
1. You are only allowed to read this cover page and the last page (page 8). Do not read the

questions until you are told to do so.
2. This paper consists of 2 exercises on 8 pages. Each exercise constitutes 50%. The exercises

have different levels of difficulty. Therefore, beware of time spent on each exercise.
3. This is an open-book exam. You may bring in any printed material, but not electronic

devices, including but not limited to laptop, thumb-drive, electronic dictionary and
calculator. You are to switch off/silence your mobile phone and keep it out of view.

4. You may turn to the last page to read some advice.
5. You will be logged into a special Windows account at the beginning of the PE. Do not log

off until the end of the PE. Do not use your own NUSNET account.
6. A plab account slip will be issued to you at the beginning of the PE. Bring your

matriculation card for identification when you collect it. Please leave your matriculation
card on the desk in front of you throughout the PE.

7. You are to write your program in the given plab account. The host name is plab4 (not
sunfire!). No activity should be done outside this plab account.

8. You do not need to submit your programs to CodeCrunch. We will retrieve your programs
and submit them to CodeCrunch after the PE.

9. Skeleton programs (.c files) and some test data files (.in and .out files) are given in your
plab account. Write your solutions in these two programs. Do not change the file names,
or put your programs into a subdirectory; otherwise we will not be able to find them!

10. Only your source code files (.c files) will be collected after the PE. Hence, how you name
your executable files is not important.

11. Read carefully and follow all instructions in the question. If in doubt, raise your hand and
an invigilator will attend to you.

12. Any form of communication with other students or the use of unauthorised materials is
considered cheating and you are liable to disciplinary action.

13. Save your programs regularly during the PE.

14. When you are told to stop, please do so immediately, or you will be penalised.
15. At the end of the PE, please log out from your plab account.
16. Please check and take your belongings (especially matriculation card) before you leave.
17. We will make arrangement for you to retrieve your programs after we have finished

grading. Grading may take a week or more.

ALL THE BEST!

CS1010 AY2016/7 Semester 1 - 2 of 8 - Practical Exam 2

Exercise 1: Spy! [50 marks]

Problem Statement
Mr. Mean is a spy who has been secretly gathering confidential information in various
countries and sending it back to his home country.

Since it is dangerous to send the information as a plain message, every day he uses a
different keyword given by his country to encrypt the message to be sent.

The encryption process consists of three steps:

Step 1: Keyword Simplification. For a given keyword, only the first occurrence of a
letter is kept. All subsequent occurrences of the same letter (if any) are removed.

For example, let say the keyword is mississippi. Only the first occurrence of 'm' (1st
letter), 'i' (2nd letter), 's' (3rd letter) and 'p' (9th letter) are kept. The rest of the letters
are removed and the simplified keyword is misp. Note that the order of the 4
remaining letters stays the same as in the original keyword.

Step 2: Alphabet creation. The letters in the original (English) alphabet are rearranged
to form a new alphabet. This new alphabet starts with the letters in the keyword (in
the same order as they are in the keyword), followed by the letters which are missing
from the keyword (in the original alphabetical order).

For example, if the simplified keyword is misp, the original and new alphabets are as
shown below:

Original (English) alphabet:
a b c d e f g h i j k l m n o p q r s t u v w x y z

New alphabet created based on the keyword misp:
m i s p a b c d e f g h j k l n o q r t u v w x y z

As shown in the new alphabet, the keyword misp appears as the first 4 letters in the
new alphabet. This is followed by the rest of the letters in the original alphabetical
order ('a' to 'z' but without 'i', 'm', 'p' and 's' since they have appeared in the keyword).

Step 3: Encryption. The letters in the message are replaced based on the new alphabet:
A letter which is the i-th letter in the original alphabet is replaced with the i-th letter in
the new alphabet, while the case of the letter remains unchanged.

For example, if the message is SuperSpy, the uppercase letter 'S', which the 19th letter
in the original alphabet, is replaced by the uppercase letter 'R', which is the 19th letter
in the new alphabet. In contrast, the lowercase letter 'u' remains unchanged since it is
the 21st letter in both alphabets. The resulting encrypted message is RunaqRny.

To help Mr. Mean encrypt any message based on any keyword quickly, you are to
implement this encryption process as a program.

CS1010 AY2016/7 Semester 1 - 3 of 8 - Practical Exam 2

Write on the skeleton file spy.c given to you. You should include the following three
functions in your program:

 void simplify(char keyword[])

This function takes in a char array keyword which contains the given keyword
as a string. It performs keyword simplification and returns the simplified
keyword as a string via the same array.

 void createAlphabet(char keyword[], char alphabet[])

This function takes in a string keyword which is the simplified keyword. It
creates the new alphabet and returns it as a string via the char array alphabet.

 void encrypt(char message[], char alphabet[], char result[])

This function takes in a string message, which is the message to be encrypted,
and a string alphabet, which represents the new alphabet. It encrypts the
message based on the new alphabet and returns encrypted message as a string
via the char array result.

You are not allowed to change the main() function. You may assume that 1) both the
keyword and the message are at most 80 characters long and 2) the keyword contains
only lowercase letters, while the message contains uppercase and/or lowercase letters.
Check sample runs for input and output format.

(Hint 1: As a start, you may want to skip Step 1 completely since not all keywords
contain duplicate letters. You may come back to implement Step 1 after your program
is able to complete Step 2 and Step 3 given a keyword without duplicate letters.)

(Hint 2: There is no need to explicitly store the original alphabet in Step 2 and Step 3.)

Sample Runs
Three sample runs are shown below with user input highlighted in bold.

Enter keyword: z
Enter message: hello
Encrypted message: gdkkn

Enter keyword: mean
Enter message: hello
Encrypted message: fbjjo

Enter keyword: mississippi
Enter message: SuperSpy
Encrypted message: RunaqRny

CS1010 AY2016/7 Semester 1 - 4 of 8 - Practical Exam 2

Exercise 2: Block Buster [50 marks]
Problem Statement
Block Buster is a game in which a robot retrieves blocks from a grid and uses them to
destroy other blocks in the same grid.

A grid in this game consists of n x n cells (where n is a positive integer). Each cell may
be empty (represented by 0), or contain a block of weight k (represented by a positive
integer k). No empty cell may appear on the right of a block at the same row.

For example, in grid (a), there are 3 empty cells (e.g., [1][0]) and 6 blocks of various
weights (e.g., a block of weight 3 at [0][0]), as shown below.

Given a grid, the robot performs a sequence of actions of two types: Pull and Push. The
actions in a sequence are in an alternating manner starting from a Pull (i.e., Pull 
Push  Pull  Push  …). A sequence may end with either action. For each action, a
row index i is specified to indicate at which row this action is performed.

For a Pull at row i: The robot pulls the leftmost block at row i and holds it.

For example, after a Pull at row 2 of grid (a), the robot holds the block from [2][1] (i.e.,
the leftmost block at row 2), as shown in grid (b). Similarly, after a Pull at row 1 of grid
(a), the robot holds the block from [1][2], as shown in grid (d).

For a Push at row i: The robot throws the block it is holding (i.e., the block retrieved
from the previous Pull) at row i. The block travels in row i from the left towards the
last column, and destroys all the blocks whose weight is less than its weight. The block
stops on the left of the first block it cannot destroy, or at the last column if it has
destroyed all the blocks in that row. For each block destroyed in this action, its weight
is added to the total score. The robot no longer holds a block after this action.

For example, in grid (b), the robot holds a block of weight 2 from the previous Pull.
After a Push at row 2, the block stops at [2][1] as shown in grid (c) since it cannot
destroy the block at [2][2]. Since no block has been destroyed, the score remains
unchanged. In contrast, in grid (d), the robot holds a block of weight 4 from the
previous Pull. After a Push at row 0, the block stops at [0][2] as shown in grid (e) since
it has destroyed all the blocks at that row. The total weight of the blocks destroyed (i.e.,
3 + 1 + 2 = 6) is added to the total score.

 (a) (b)

Pull at
row 2

 (c)

Pull at row 1

Push at
row 2

Push at
row 0

 (d) (e)

CS1010 AY2016/7 Semester 1 - 5 of 8 - Practical Exam 2

Note that since grid (c) happens to be the same as grid (a), the five grids given above
also form an example of performing a sequence of 4 actions (i.e., Pull at row 2  Push
at row 2  Pull at row 1  Push at row 0) on grid (a) and the result is grid (e).

In addition, a Pull fails if there is no block at row i, while a Push fails if row i is full of
blocks and it cannot even destroy the leftmost block at that row.

A game is said to be completed if all the actions in the given sequence can be
performed successfully; otherwise, as soon as one of the actions fails, the remaining
actions are ignored and the game is said to be uncompleted.

In this exercise, you are to write a program to 1) perform a sequence of actions on a
given grid, and 2) compute the total score and number of the blocks left in the grid.

Your program should read in an integer n (1 <= n <= 10), which is the size of the grid, as
well as n x n values in the grid, which are either 0 (empty cell) or a positive integer k (a
block of weight k).

In addition, it should also read in an integer m (1 <= m <= 20), which is the number of
row indexes for the actions in the given sequence, as well as m row indexes for the
actions. For example, the sequence of 4 indexes 2 2 1 0 corresponds the sequence of
actions which transforms grid (a) to grid (e).

Your program should print a message indicating whether the game is completed. If the
game is completed, it should also print the total score and the number of blocks left in
the grid. Lastly, it should always print the final state of the grid.

Write on the skeleton file block.c given to you. You must include the following
functions in your program:

 readInputs()
This function reads in and returns 1) the size of the grid, 2) the values in the grid,
3) the number of row indexes for the actions, and 4) the row indexes.

 play()
This function takes in the inputs returned from the readInputs() function. It
performs the actions accordingly, and then returns 1) whether the game is
completed, 2) the total score (if applicable), 3) the number of blocks left in the
grid (if applicable), and 4) the final state of the grid.

You are to determine the return type and parameters for these functions. Check
sample runs (on the next 2 pages) for input and output format.

CS1010 AY2016/7 Semester 1 - 6 of 8 - Practical Exam 2

Sample Runs
Five sample runs are shown below with user input highlighted in bold.

Enter size of grid: 1
Enter grid:
0
Enter number of indexes: 1
Enter indexes: 1
Unable to complete game.
Final state of the grid:
0

Enter size of grid: 3
Enter grid:
0 0 0
0 0 1
0 0 0
Enter number of indexes: 1
Enter indexes: 1
Game completed.
Score: 0
Number of blocks left: 0
Final state of the grid:
0 0 0
0 0 0
0 0 0

Enter size of grid: 3
Enter grid:
0 0 2
0 0 1
0 0 0
Enter number of indexes: 2
Enter indexes: 1 0
Game completed.
Score: 0
Number of blocks left: 2
Final state of the grid:
0 1 2
0 0 0
0 0 0

CS1010 AY2016/7 Semester 1 - 7 of 8 - Practical Exam 2

Enter size of grid: 3
Enter grid:
0 0 0
0 0 4
1 2 3
Enter number of indexes: 2
Enter indexes: 1 2
Game completed.
Score: 6
Number of blocks left: 1
Final state of the grid:
0 0 0
0 0 0
0 0 4

Enter size of grid: 3
Enter grid:
3 1 2
0 0 4
0 2 5
Enter number of indexes: 4
Enter indexes: 2 2 1 0
Game completed.
Score: 6
Number of blocks left: 3
Final state of the grid:
0 0 4
0 0 0
0 2 5

CS1010 AY2016/7 Semester 1 - 8 of 8 - Practical Exam 2

CS1010 AY2016/7 Semester 1
Practical Exam 2 (PE2)

Advice – Please read!
 You are advised to spend the first 10 minutes for each exercise thinking and

designing your algorithm, instead of writing the programs right away.
 If you write a function, you must have a function prototype, and you must put the

function definition after the main() function.
 You may write additional function(s) not mentioned in the question, if you think it is

necessary.
 Any variable you use must be declared in some function. You are not allowed to use

global variables (variables that are declared outside all the functions).
 You may assume that all inputs are valid, that is, you do not need to perform input

validity check.
 Manage your time well! Do not spend excessive time on any exercise.
 Be careful in naming your executable code. Do not overwrite your source code with

your executable code, especially if you are using the -o option in gcc!
 The rough marking scheme for both exercises is given below.

Rough Marking Scheme For Each Exercise [50 marks]

1. Style: 10 marks
 Are name, matriculation number, plab-id, DG and description filled at the top

of the program?
 Is there a description written at the top of every function (apart from the

main() function)?
 Are there proper indentation and naming of variables?
 Are there appropriate comments wherever necessary?

2. Design: 10 marks
 Are there correct definition and use of functions?
 Are function prototypes present?
 Is the right construct used?
 Is algorithm not unnecessarily complicated?

3. Correctness: 30 marks

4. Deductions (not restricted to the following):
 Program cannot be compiled: Deduct 5 marks
 Compiler issues warning with –Wall: Deduct 5 marks.
 Use of global variables: Deduct 10 marks

--- END OF PAPER ---

	SCHOOL OF COMPUTING
	INSTRUCTION TO CANDIDATES

	ALL THE BEST!
	Advice – Please read!
	 The rough marking scheme for both exercises is given below.

