
http://www.comp.nus.edu.sg/~cs1010/

WEEK 11

PE2

http://www.comp.nus.edu.sg/~cs1010/
http://www.comp.nus.edu.sg/~cs1010

Automatic Grading (Cohort)

© NUS CS1010 (AY2016/7 Semester 1) Week11 - 2

Ex1: Spy
Grade A: 45 21%
Grade B: 4 1.9%
Grade C: 16 7.5%
Grade D: 22 10.3%
Grade E: 107 50%
Grade F: 20 9.3%

Ex2: Block Buster
Grade A: 4 1.9%
Grade B: 11 5.2%
Grade C: 6 2.8%
Grade D: 19 8.9%
Grade E: 123 57.8%
Grade F: 50 23.5%

 Follow the given encryption process to encrypt a given
message based on a given keyword.
 Step 1: Keyword Simplification

 Remove duplicated letters

 Example: mississippi  misp

 Step 2: Alphabet Creation

 Create a new alphabet with the simplified keyword + the rest of the
letters in the original alphabet in alphabetical order.

 Example: mispabcdefghjlknoqrtuvwxyz

 Step 3: Encryption
 Replace the letters in the message based on the new alphabet:

The i-th letter in original alphabet  The i-th letter in new alphabet
 Example: SuperSpy  RunaqRny

Spy: Task Statement (1/12)
CS1010 (AY2016/7 Semester 1) Week11 - 3 © NUS

Practice exercises with
similar context:
S08P07/08: Info Sec and
Cryptography I/II

 Inputs:
 keyword: a string consisting of lowercase English letters

 message: a string consisting of lowercase and/or uppercase
English letters

 Output:
 result: a string representing the encrypted message

 Intermediate results
 keyword: a string representing the simplified keyword

 alphabet: a string representing the new alphabet

Spy: Task Statement (2/12)
CS1010 (AY2016/7 Semester 1) Week11 - 4 © NUS

 The main function is given.

 You are to implement the following functions:
 Step 1: void simplify(char keyword[])
 Simplify keyword and store the result back in keyword

 Step 2: void createAlphabet(char keyword[], char alphabet[])
 Create an alphabet based on keyword

 Step 3: void encrypt(char message[], char alphabet[],
 char result[])
 Encrypt message based on alphabet, and store the encrypted

message in result

 Hint 1: You may skip step 1 at first.

Spy: Task Statement (3/12)
CS1010 (AY2016/7 Semester 1) Week11 - 5 © NUS

 void createAlphabet(char keyword[], char alphabet[])

 Create a new alphabet with the simplified keyword + the rest of
the letters in the original alphabet in alphabetical order.

 Hint 2: There is no need to store the original alphabet explicitly.

 Algorithm
 Copy the keyword into alphabet
 Copy letter by letter or use strcpy()

 Fill in the rest of the letters
 For each letter from 'a' to 'z', check if it has appeared in keyword by

comparing it with the letters in the keyword or use strchr()
 If the letter has not appeared, add the letter to the alphabet

Spy: Step 2: Alphabet Creation (4/12)
CS1010 (AY2016/7 Semester 1) Week11 - 6 © NUS

 How to go through the letters in alphabetical order?

 How to copy letters from one array to another?

Spy: Step 2: Alphabet Creation (5/12)
CS1010 (AY2016/7 Semester 1) Week11 - 7 © NUS

for (ch = 'p'; ch <= 't'; ch++)
 printf("ch = %c\n", ch);

Demo #1 from Unit #16

for (i = 0; i < len; i++) {
 switch (toupper(str[i])) {
 case 'A': case 'E':
 case 'I': case 'O': case 'U': break;
 default: newstr[count++] = str[i];
 }
}

newstr[count] = '\0';

Demo #5 from Unit #16

Spy: Step 2: Alphabet Creation (6/12)
CS1010 (AY2016/7 Semester 1) Week11 - 8 © NUS

void createAlphabet(char keyword[], char alphabet[]){

 int i = strlen(keyword);

 char ch = 'a';

 strcpy(alphabet, keyword);

 while (i < ALPHABET_SIZE) {

 if (strchr(keyword, ch) == NULL)

 alphabet[i++] = ch;

 ch++;

 }

 alphabet[ALPHABET_SIZE] = '\0';

}

 void encrypt(char message[], char alphabet[], char
result[])
 Replace the letters in the message based on the new alphabet:

The i-th letter in original alphabet  The i-th letter in new alphabet

 Hint 2: There is no need to store the original alphabet explicitly.

 Algorithm
 Encrypt the message letter by letter
 For each letter in the message, find out its position in the original

alphabet
 Check the new alphabet for the letter at the same position
 Copy the letter in the new alphabet into result (without changing the

case of the letter)

Spy: Step 3: Encryption (7/12)
CS1010 (AY2016/7 Semester 1) Week11 - 9 © NUS

 How to find the position of a letter?

 How to obtain the letter at the same position of the new
alphabet?
 If a letter is at position i in the original alphabet, the new letter is

at alphabet[i]!

Spy: Step 3: Encryption (8/12)
CS1010 (AY2016/7 Semester 1) Week11 - 10 © NUS

Ex1 from Week 9 Activities sum += ch – '0'

ASCII table from Unit #16

Spy: Step 3: Encryption (9/12)
CS1010 (AY2016/7 Semester 1) Week11 - 11 © NUS

void encrypt(char message[], char alphabet[],

 char result[]){

 int i;

 for (i = 0; i < strlen(message); i++){

 if (isupper(message[i]))

 result[i] = toupper(alphabet[message[i]-'A']);

 else

 result[i] = alphabet[message[i]-'a'];

 }

 result[i] = '\0';

}

 void simplify(char keyword[])
 Remove duplicated letters

 Algorithm
 Copy a letter (back to the same array) if it has not appeared

before
 For letter i in the keyword, check all the letters before it
 If it has not appeared, copy the letter back to the same array (after

other letters that have been copied).

Spy: Step 1: Keyword Simplification (10/12)

CS1010 (AY2016/7 Semester 1) Week11 - 12 © NUS

 How to check whether a letter has appeared before?
 Part of S05P02: Set Containment

 A set X is a subset of another set Y if all the elements in X has
appeared in Y. Therefore, we need to check whether a particular
element in X has appeared in Y.

 In this step, the particular element in X is the letter we are
looking at, and Y is all the letters before that letter.

 How to copy letters back the same array?
 Similar to Step 2 except that the two arrays are the same.

Spy: Step 1: Keyword Simplification (11/12)

CS1010 (AY2016/7 Semester 1) Week11 - 13 © NUS

Spy: Step 1: Keyword Simplification (12/12)

CS1010 (AY2016/7 Semester 1) Week11 - 14 © NUS

void simplify(char keyword[]){

 int i, j, count = 0;

 for (i = 0; i < strlen(keyword); i++){

 for (j = 0; j < i; j++)

 if (keyword[i] == keyword[j])

 break;

 if (j == i)

 keyword[count++] = keyword[i];

 }

 keyword[count] = '\0';

}

Block Buster: Task Statement (1/12)
CS1010 (AY2016/7 Semester 1) Week11 - 15 © NUS

 Given a grid of blocks and a sequence of row indexes for
actions, perform the actions on the grid.

 Two possible actions: Pull and Push
 Pull in row i: pull the leftmost block from row i and hold it.
 This action fails if the row is empty.

 Push in row i: push the block (retrieved from the previous Pull action)
into row i
 The block destroys all blocks of a smaller weight until it reaches a block it

cannot destroy or the edge of the grid.

 This action fails if the row is full and it cannot even destroy the leftmost
block.

 The sequence of actions is always in an alternating manner
starting from a Pull

Block Buster: Task Statement (2/12)
CS1010 (AY2016/7 Semester 1) Week11 - 16 © NUS

Block Buster: Task Statement (3/12)
CS1010 (AY2016/7 Semester 1) Week11 - 17 © NUS

 Inputs:
 The size of the grid and the values in the grid

 The number of row indexes for the actions and the row indexes

 Output:
 Whether the game can be completed

 The score (i.e., total weight of all blocks destroyed)

 The number of blocks left

 The final state of the grid

 Intermediate results
 The block retrieved from a Pull action

 The partial score

Block Buster: Task Statement (4/12)
CS1010 (AY2016/7 Semester 1) Week11 - 18 © NUS

 You are to implement the following functions:
 readInputs()
 Read in and returns 1) the size of the grid, 2) the values in the grid,

3) the number of row indexes for the actions, and 4) the row indexes.

 play()
 Take in the inputs returned from the readInputs() function.

 Perform the actions accordingly and return 1) whether the game is
completed, 2) the total score (if applicable), 3) the number of blocks
left in the grid (if applicable), and 4) the final state of the grid.

void readInputs(int grid[][MAX_SIZE], int *size,

 int indexes[], int *numIndexes)

int play(int grid[][MAX_SIZE], int size,
 int indexes[], int numIndexes,
 int *score, int *numBlocksLeft)

Block Buster: readInputs() (5/12)
CS1010 (AY2016/7 Semester 1) Week11 - 19 © NUS

 How to read inputs?
 The grid is a 2D array: Similar to Lab #4 Exercise 1 (Easy!)

 The sequence of row indexes is a 1D array: Similar to Lab #3
Exercise 1 (Easy!)

 How to return all inputs?
 There is no need to explicitly return the arrays. (Easy!)

 The size of the grid and the number of row indexes can be
return using pointers. (Easy!)

Block Buster: readInputs() (6/12)
CS1010 (AY2016/7 Semester 1) Week11 - 20 © NUS

void readInputs(int grid[][MAX_SIZE], int *size,
 int indexes[], int *numIndexes) {

 int i, j;

 printf("Enter size of grid: ");

 scanf("%d", size);

 printf("Enter grid: \n");

 for (i = 0; i < *size; i++)

 for (j = 0; j < *size; j++)

 scanf("%d", &grid[i][j]);

...

Block Buster: readInputs() (7/12)
CS1010 (AY2016/7 Semester 1) Week11 - 21 © NUS

…

 printf("Enter number of indexes: ");

 scanf("%d", numIndexes);

 printf("Enter indexes: ");

 for (i = 0; i < *numIndexes; i++)

 scanf("%d", &indexes[i]);

}

Block Buster: play() (8/12)
CS1010 (AY2016/7 Semester 1) Week11 - 22 © NUS

 How to implement the two actions?
 Pull: Find the first non-zero element in a row (Intermediate)

 Push: Find the first element which is equal to or bigger than the
weight of the block being pushed (Hard?)

 Both are similar to Lab 4 Ex #2

 How to alternate between the two actions?
 If the row index is stored in indexes[i], the action is Pull when i is

even, or Push otherwise. (Easy!)

 How to compute the number of blocks left?
 Count the number of non-zero elements in an array (Easy!)

Block Buster: play() (9/12)
CS1010 (AY2016/7 Semester 1) Week11 - 23 © NUS

int play(int grid[][MAX_SIZE], int size,

 int indexes[], int numIndexes,

 int *score, int *numBlocksLeft){

 int i, j, k, index, block;

 *score = 0;

 *numBlocksLeft = 0;

 … // Code for push and pull

 for (i = 0; i < size; i++)

 for (j = 0; j < size; j++)

 if (grid[i][j] != 0)

 (*numBlocksLeft)++;

 … // Some other code

Block Buster: play() (10/12)
CS1010 (AY2016/7 Semester 1) Week11 - 24 © NUS

 // Code for Push and Pull

 for (i = 0; i < numIndexes; i++){

 index = indexes[i];

 if (index < 0 || index >= size) return 0;

 if (i % 2 == 0){ // Code for Pull

 …

 } else { // Code for Push

 …

 }

…

Block Buster: play() (11/12)
CS1010 (AY2016/7 Semester 1) Week11 - 25 © NUS

 // Code for Pull

 for (j = 0; j < size; j++){

 if (grid[index][j] != 0){

 block = grid[index][j];

 grid[index][j] = 0;

 break;

 }

 }

 if (j == size)

 return 0;

Block Buster: play() (12/12)
CS1010 (AY2016/7 Semester 1) Week11 - 26 © NUS

 // Code for Push

 j = -1;

 while (j < size-1 && block > grid[index][j+1])

 j++;

 if (j == -1) return 0;

 for (k = 0; k <= j; k++){

 *score += grid[index][k];

 grid[index][k] = 0;

 }

 grid[index][j] = block;

Lessons learn
CS1010 (AY2016/7 Semester 1) Week11 - 27 © NUS

 Spend time in analysis and design to know
 which parts are easy

 which parts are similar to the problems you have solved before

 Code incrementally
 Compile and test often

 Always start with the easy parts!

 Practice sufficiently but not blindly
 Check if you are following the problem solving process

 Check if you have learnt useful techniques from the exercises

 Review the programs you have seen / written often

Upcoming challenges…
CS1010 (AY2016/7 Semester 1) © NUS

 Lab 5 deadline: 5 November, 12nn

 Exam: 23 November, 9-11am

Week11 - 28

End of File

CS1010 (AY2016/7 Semester 1) Week11 - 29 © NUS

	http://www.comp.nus.edu.sg/~cs1010/
	Automatic Grading (Cohort)
	Spy: Task Statement (1/12)
	Spy: Task Statement (2/12)
	Spy: Task Statement (3/12)
	Spy: Step 2: Alphabet Creation (4/12)
	Spy: Step 2: Alphabet Creation (5/12)
	Spy: Step 2: Alphabet Creation (6/12)
	Spy: Step 3: Encryption (7/12)
	Spy: Step 3: Encryption (8/12)
	Spy: Step 3: Encryption (9/12)
	Spy: Step 1: Keyword Simplification (10/12)
	Spy: Step 1: Keyword Simplification (11/12)
	Spy: Step 1: Keyword Simplification (12/12)
	Block Buster: Task Statement (1/12)
	Block Buster: Task Statement (2/12)
	Block Buster: Task Statement (3/12)
	Block Buster: Task Statement (4/12)
	Block Buster: readInputs() (5/12)
	Block Buster: readInputs() (6/12)
	Block Buster: readInputs() (7/12)
	Block Buster: play() (8/12)
	Block Buster: play() (9/12)
	Block Buster: play() (10/12)
	Block Buster: play() (11/12)
	Block Buster: play() (12/12)
	Lessons learn
	Upcoming challenges…
	End of File

