

CHAPTER
3

ALGORITHMIC PROBLEM SOLVING

In this chapter you will learn about

 What an algorithm is.

 The relationship between data and algorithm.

 The characteristics of an algorithm.

 Using pseudo-codes and flowcharts to represent algorithms.

32 Chapter 3 Algorithmic Problem Solving

3.1 Algorithms
In Chapter 2, we expounded the working of problem solving from a general
perspective. In computing, we focus on the type of problems categorically
known as algorithmic problems, where their solutions are expressible in the
form of algorithms.

 An algorithm 1 is a well-defined computational procedure consisting of a
set of instructions, that takes some value or set of values, as input, and
produces some value or set of values, as output. In other word, an algorithm
is a procedure that accepts data, manipulate them following the prescribed
steps, so as to eventually fill the required unknown with the desired value(s).

Algorithm Input Output

 Tersely put, an algorithm, a jargon of computer specialists, is simply a
procedure. People of different professions have their own form of procedure
in their line of work, and they call it different names. A cook, for instance,
follows a procedure commonly known as a recipe that converts the
ingredients (input) into some culinary dish (output), after a certain number of
steps.

 An algorithm, whose characteristics will be discussed later, is a form that
embeds the complete logic of the solution. Its formal written version is
called a program, or code. Thus, algorithmic problem solving actually
comes in two phases: derivation of an algorithm that solves the problem, and
conversion of the algorithm into code. The latter, usually known as coding,
is comparatively easier, since the logic is already present – it is just a matter
of ensuring that the syntax rules of the programming language are adhered to.
The first phase is what that stumbles most people, for two main reasons.
Firstly, it challenges the mental faculties to search for the right solution, and
secondly, it requires the ability to articulate the solution concisely into step-
by-step instructions, a skill that is acquired only through lots of practice.
Many people are able to make claims like “oh yes, I know how to solve it”,
but fall short when it comes to transferring the solution in their head onto
paper.

 Algorithms and their alter ego, programs, are the software. The machine
that runs the programs is the hardware. Referring to the cook in our analogy
again, his view can be depicted as follows:

1 The term ‘algorithm’ was derived from the name of Mohammed al-Khowarizmi, a Persian mathematician in the ninth
century. Al-Khowarizmi → Algorismus (in Latin) → Algorithm.

 3.1 Algorithms 33

recipe
(software)

Cooking utensils
(hardware) +

ingredients

Ah-gong
bah-kut-teh

 The first documented algorithm is the famous Euclidean algorithm written
by the Greek mathematician Euclid in 300 B.C. in his Book VII of the
Elements. It is rumoured that King Ptolemy, having looked through the
Elements, hopefully asked Euclid if there were not a shorter way to geometry,
to which Euclid severely answered: “In geometry there is no royal road!”

 The modern Euclidean algorithm to compute gcd (greatest common
divisor) of two integers, is often presented as followed.

 1. Let A and B be integers with A > B ≥ 0.

 2. If B = 0, then the gcd is A and the algorithm ends.

 3. Otherwise, find q and r such that

 A = qB + r where 0 ≤ r < B

 Note that we have 0 ≤ r < B < A and gcd(A,B) = gcd(B,r).
 Replace A by B, and B by r. Go to step 2.

 Walk through this algorithm with some sets of values.

34 Chapter 3 Algorithmic Problem Solving

3.2 Data Types And Data Structures
In algorithmic problem solving, we deal with objects. Objects are data
manipulated by the algorithm. To a cook, the objects are the various types of
vegetables, meat and sauce. In algorithms, the data are numbers, words, lists,
files, and so on. In solving a geometry problem, the data can be the length of
a rectangle, the area of a circle, etc. Algorithm provides the logic; data
provide the values. They go hand in hand. Hence, we have this great truth:

 Program = Algorithm + Data Structures

 Data structures refer to the types of data used and how the data are
organised in the program. Data come in different forms and types. Most
programming languages provides simple data types such as integers, real
numbers and characters, and more complex data structures such as arrays,
records and files which are collections of data.

 Because algorithm manipulates data, we need to store the data objects
into variables, and give these variables names for reference. For example, in
mathematics, we call the area of a circle A, and express A in terms of the
radius r. (In programming, we would use more telling variable names such as
area and radius instead of A and r in general, for the sake of readability.)
When the program is run, each variable occupies some memory location(s),
whose size depends on the data type of the variable, to hold its value.

3.3 Characteristics Of An Algorithm
What makes an algorithm an algorithm? There are four essential properties
of an algorithm.

1. Each step of an algorithm must be exact.

This goes without saying. An algorithm must be precisely and
unambiguously described, so that there remains no uncertainty. An
instruction that says “shuffle the deck of card” may make sense to
some of us, but the machine will not have a clue on how to execute it,
unless the detail steps are described. An instruction that says “lift the
restriction” will cause much puzzlement even to the human readers.

2. An algorithm must terminate.

The ultimate purpose of an algorithm is to solve a problem. If the
program does not stop when executed, we will not be able to get any
result from it. Therefore, an algorithm must contain a finite number
of steps in its execution. Note that an algorithm that merely contains
a finite number of steps may not terminate during execution, due to
the presence of ‘infinite loop’.

 3.3 Characteristics Of An Algorithm 35

3. An algorithm must be effective.

Again, this goes without saying. An algorithm must provide the
correct answer to the problem.

4. An algorithm must be general.

This means that it must solve every instance of the problem. For
example, a program that computes the area of a rectangle should work
on all possible dimensions of the rectangle, within the limits of the
programming language and the machine.

 An algorithm should also emphasise on the whats, and not the hows,
leaving the details for the program version. However, this point is more
apparent in more complicated algorithms at advanced level, which we are
unlikely to encounter yet.

3.4 Pseudo-Codes And Flowcharts
We usually present algorithms in the form of some pseudo-code, which is
normally a mixture of English statements, some mathematical notations, and
selected keywords from a programming language. There is no standard
convention for writing pseudo-code; each author may have his own style, as
long as clarity is ensured.

 Below are two versions of the same algorithm, one is written mainly in
English, and the other in pseudo-code. The problem concerned is to find the
minimum, maximum, and average of a list of numbers. Make a comparison.

 Algorithm version 1:

First, you initialise sum to zero, min to a very big number, and max to a
very small number.
Then, you enter the numbers, one by one.
For each number that you have entered, assign it to num and add it to the
sum.
At the same time, you compare num with min, if num is smaller than min,
let min be num instead.
Similarly, you compare num with max, if num is larger than max, let max
be num instead.
After all the numbers have been entered, you divide sum by the numbers of
items entered, and let ave be this result.
End of algorithm.

36 Chapter 3 Algorithmic Problem Solving

 Algorithm version 2:

sum count 0 { sum = sum of numbers;
 count = how many numbers are entered? }
min ? { min to hold the smallest value eventually }
max ? { max to hold the largest value eventually }
for each num entered,
 increment count
 sum sum + num
 if num < min then min num
 if num > max then max num

ave sum/count

 Note the use of indentation and symbols in the second version. What
should min and max be initialised with?

 Algorithms may also be represented by diagrams. One popular
diagrammatic method is the flowchart, which consists of terminator boxes,
process boxes, and decision boxes, with flows of logic indicated by arrows.

 The flowchart below depicts the same logic as the algorithms above.

start

sum count 0
min ?
max ?

end of
input?

increment count
sum sum + num

num<min?

num>max?

min num

max num

Yes

Yes

Yes

No

No

No

ave sum/count

end

Terminator box

 Process box

Decision box

 Whether you use the pseudo-code or the flowchart to represent your
algorithm, remember to walk through it with some sets of data to check that
the algorithm works.

 3.5 Control Structures 37

3.5 Control Structures
The pseudo-code and flowchart in the previous section illustrate the three types
of control structures. They are:

1. Sequence

2. Branching (Selection)

3. Loop (Repetition)

 These three control structures are sufficient for all purposes. The sequence
is exemplified by sequence of statements place one after the other – the one
above or before another gets executed first. In flowcharts, sequence of
statements is usually contained in the rectangular process box.

 The branch refers to a binary decision based on some condition. If the
condition is true, one of the two branches is explored; if the condition is false,
the other alternative is taken. This is usually represented by the ‘if-then’
construct in pseudo-codes and programs. In flowcharts, this is represented by
the diamond-shaped decision box. This structure is also known as the selection
structure.

 The loop allows a statement or a sequence of statements to be repeatedly
executed based on some loop condition. It is represented by the ‘while’ and
‘for’ constructs in most programming languages, for unbounded loops and
bounded loops respectively. (Unbounded loops refer to those whose number of
iterations depends on the eventuality that the termination condition is satisfied;
bounded loops refer to those whose number of iterations is known before-
hand.) In the flowcharts, a back arrow hints the presence of a loop. A trip
around the loop is known as iteration. You must ensure that the condition for
the termination of the looping must be satisfied after some finite number of
iterations, otherwise it ends up as an infinite loop, a common mistake made by
inexperienced programmers. The loop is also known as the repetition structure.

 Combining the use of these control structures, for example, a loop within a
loop (nested loops), a branch within another branch (nested if), a branch within
a loop, a loop within a branch, and so forth, is not uncommon. Complex
algorithms may have more complicated logic structure and deep level of
nesting, in which case it is best to demarcate parts of the algorithm as separate
smaller modules. Beginners must train themselves to be proficient in using and
combining control structures appropriately, and go through the trouble of
tracing through the algorithm before they convert it into code.

3.6 Summary
An algorithm is a set of instructions, and an algorithmic problem lends itself to
a solution expressible in algorithmic form. Algorithms manipulate data, which
are represented as variables of the appropriate data types in programs. Data
structures are collections of data.

 The characteristics of algorithms are presented in this chapter, so are the
two forms of representation for algorithms, namely, pseudo-codes and
flowcharts. The three control structures: sequence, branch, and loop, which
provide the flow of control in an algorithm, are introduced.

38 Chapter 3 Algorithmic Problem Solving

Exercises
In the exercises below, you are asked to find the answers by hand, and jot
down the steps involved for the generalized versions. You need not write
programs for them yet – you will be doing that later – you need only to
discover the steps and put them down into an algorithm.

1. Our coins come in denominations of 1 cent, 5 cents, 10 cents, 20 cents,

50 cents and 1 dollar. Assuming that there are unlimited number of
coins, how would you devise a coin-change algorithm to compute the
minimum number of coins required to make up a particular amount?
For example, for 46 cents you need 4 coins: two 20-cent coins, one 5-
cent coin, and one 1-cent coin.

2. How would you sort 10 numbers in increasing order? Do you know any

of the basic sorting techniques?

3. A word is a palindrome if it reads the same when the order of its

characters is reversed. For instance, “123321”, “RADAR” and “step on
no pets” are palindromes. Derive an algorithm to determine if a word is
a palindrome.

4. Two words are anagrams of each other if they differ only by the order

of their characters. For example, “HATE” and “HEAT”, “NOW” and
“WON”, “reset” and “steer” are anagrams, but “sell” and “less” are not.
Write an algorithm to determine if two given words are anagrams.

5. How do you test for primality? That is, given a positive integer, how

do you determine that it is a prime number?

6. In a mastermind game, the code maker hides a secret code consisting of

4 digits, and the code breaker is to provide 4-digit guess codes until he
gets the code right. The code maker gives feedback in this manner, a
sink is awarded to a perfect match of a digit plus its position, and a hit
refers to a right match of digit but in the wrong position. How do you
devise an algorithm to provide the correct feedback? First, work on the
special case that no digit in the code should be repeated. Then work on
the general case where digits can be duplicated.

