
CS1010 AY2017/8 Semester 1 (Week 11) Page 1 of 5

CS1010 Programming Methodology
Week 11: Recursion

To students:
 Recursion is an important topic which will be used very often in the next module

CS2040. Hence it is very important that you learn the basics of recursion well.

 Please also be reminded that PE2 is on 4 Nov (Sat). Please check out the CS1010
website PE page for more information.

1. Tracing recursive codes
 (a) [AY2010/2011 Semester 1 Exam, Q1.2]
 Given the following function, what does f(5) compute?

// Precond: n >= 0

int f(int n) {

 if (n == 0)

 return 0;

 else

 return (2 * n + f(n-1));

}

 (b) Trace the function below manually, and write out the return value of q(12).

// Precond: n >= 0

int q(int n) {

 if (n < 3)

 return n+1;

 else

 return q(n-3) + q(n-1);

}

Exploration: Would you be able to write an iterative version? Run both versions on large
input, such as 50. What do you observe?

 (c) [AY2011/2012 Semester 1 Exam, Q1.5]
 What does following function compute?

int mystery(int x, int y) {

 if (x == 0)

 return y;

 else if (x < 0)

 return mystery(++x, --y);

 else

 return mystery(--x, ++y);

}

Being ignorant is not so much a

shame, as being unwilling to learn.

~ Benjamin Franklin

A. It returns the value of y.
B. It returns the value of x – y.
C. It returns the value of x + y.
D. It returns the value of x * y.
E. It will give compile-time error.

CS1010 AY2017/8 Semester 1 (Week 11) Page 2 of 5

2. Summing digits in an integer.
 Summing digits in a non-negative integer n can be easily written using a loop. Is writing a

recursive code for it just as easy? Write a recursive function int sum_digits(int n) to sum
up the digits in n. (This question is discussed in lecture so this is some kind of revision.)

 A sample run is shown below:

Enter a non-negative integer: 970517

Sum of its digits = 29

3. Recursion on array
 Study the program q3.c below and trace the recursive function mystery(int [] , int).

 What is the smaller version of the task on which the recursive call works? How does the
original problem relate to this smaller problem? What does the function compute?

... // Omitted for brevity

int main(void) {

 int list[SIZE];

 scan_array(list, SIZE);

 printf("Answer = %d\n", mystery(list, SIZE));

 return 0;

}

// Read in values for array arr

void scan_array(int arr[], int size) {

 int i;

 printf("Enter %d values: ", size);

 for (i=0; i<size; i++)

 scanf("%d", &arr[i]);

}

// Precond: n > 0

int mystery(int arr[], int n) {

 int m;

 if (n == 1)

 return arr[0];

 else {

 m = mystery(arr, n-1);

 return (arr[n-1] > m) ? arr[n-1] : m;

 }

}

CS1010 AY2017/8 Semester 1 (Week 11) Page 3 of 5

4. [AY2010/2011 Semester 1 Exam, Q4]
 Write a recursive function int largest_digit_pair(int n) to determine the largest pair of

digits of a positive integer n starting from the right to the left.

 For example, if n is 5064321, then the pairs are 21, 43, 6 and 5, and hence the answer is
43.

5. North-East Paths
 In a special town where pedestrians are only allowed to move northwards or eastwards,

each of the following examples shows the total number of unique NE-paths, ne(x, y), to
get from point A to point B, where B is x rows north and y columns east of A. Assume
that x and y are non-negative integers. By convention, ne(0, 0) = 1.

 Write a recursive function int ne(int, int) to compute the number of NE-paths.

 The following are some sample runs.

Enter rows and columns apart: 0 2

Number of NE-paths = 1

Enter rows and columns apart: 1 3

Number of NE-paths = 4

Enter rows and columns apart: 3 2

Number of NE-paths = 10

6. Reversing an Array

Write a program reverse_array.c to randomly assign values into an integer array, and
then reverse the array using recursion.

For example, if the array contains { 6, 3, 0, 6, 8, 1, 5 }, then the reversed array is { 5, 1, 8,
6, 0, 3, 6 }. You should not use any additional array. You may assume that the array
contains at most 15 elements.

ne(0, 2) = 1 ne(1, 3) = 4 ne(3, 2) = 10

A B A

B

B

A

CS1010 AY2017/8 Semester 1 (Week 11) Page 4 of 5

7. [AY2012/2013 Semester 1 Exam, Q4]
 A positive integer can always be expressed as a product of prime numbers. For instance,

 60 = 2  2  3  5 = 22  31  51

 78 = 2  3  13 = 21  31  131
 13 = 13 = 131

 The following function countPrimes() takes a positive integer and counts the number of
(possibly duplicate) prime numbers required to form the given integer.

 countPrimes(60) returns 4 (two 2’s, one 3 and one 5)
 countPrimes(78) returns 3 (one 2, one 3 and one 13)

 countPrimes(13) returns 1 (one 13)

int countPrimes(int number) {

 return countPrimesRec(number, 1, 0);

}

 This function in turn calls a recursive function countPrimesRec() that does the job of
counting primes. The partial code for countPrimesRec() is given. You are to complete it
by filling your code and the pre-conditions in the dashed boxes.

 Note that function getPrime(i) is considered given, which returns the i-th smallest prime
number. For instance:

 getPrime(1) returns 2; getPrime(2) returns 3; getPrime(3) returns 5

// Pre-conditions:

//

//

int countPrimesRec(int number, int index, int count) {

 int prime;

 if (number == 1)

 return count;

 prime = getPrime(index);

 if (number % prime) {

 }

 else {

 }

}

CS1010 AY2017/8 Semester 1 (Week 11) Page 5 of 5

8. [AY2015/2016 Semester 1 Exam, Q13]
Observe the pattern in the following 2D arrays.

Write a recursive function fill(int arr[][20], int n) to fill a n x n 2D array arr with the
pattern shown above.

You may assume that n is an integer in [1, 20].

9. Rewrite the binary search program using recursion. Use an auxiliary function as
 suggested in the lecture.

