
CS1010 AY2017/8 Semester 1 (Week 11)   Page 1 of 5 

CS1010 Programming Methodology 
Week 11: Recursion 
 

To students: 
 Recursion is an important topic which will be used very often in the next module 

CS2040. Hence it is very important that you learn the basics of recursion well. 

 Please also be reminded that PE2 is on 4 Nov (Sat). Please check out the CS1010 
website PE page for more information.   

 
1. Tracing recursive codes 
 (a) [AY2010/2011 Semester 1 Exam, Q1.2] 
  Given the following function, what does f(5) compute? 

// Precond: n >= 0 

int f(int n) { 

    if (n == 0) 

        return 0; 

    else 

        return (2 * n + f(n-1)); 

} 

 

  (b) Trace the function below manually, and write out the return value of q(12). 

// Precond: n >= 0 

int q(int n) { 

 if (n < 3) 

  return n+1; 

 else 

  return q(n-3) + q(n-1); 

} 

Exploration: Would you be able to write an iterative version? Run both versions on large 
input, such as 50. What do you observe? 

 

 (c) [AY2011/2012 Semester 1 Exam, Q1.5] 
  What does following function compute? 

int mystery(int x, int y) { 

 if (x == 0) 

  return y; 

 else if (x < 0) 

  return mystery(++x, --y); 

 else  

  return mystery(--x, ++y); 

} 

Being ignorant is not so much a 

shame, as being unwilling to learn. 

~ Benjamin Franklin 

A. It returns the value of y. 
B. It returns the value of x – y. 
C. It returns the value of x + y. 
D. It returns the value of x * y. 
E. It will give compile-time error. 
 



CS1010 AY2017/8 Semester 1 (Week 11)   Page 2 of 5 

2. Summing digits in an integer. 
 Summing digits in a non-negative integer n can be easily written using a loop. Is writing a 

recursive code for it just as easy? Write a recursive function int sum_digits(int n) to sum 
up the digits in n. (This question is discussed in lecture so this is some kind of revision.) 

 A sample run is shown below: 

Enter a non-negative integer: 970517 

Sum of its digits = 29 

  
3. Recursion on array 
 Study the program q3.c below and trace the recursive function mystery(int [] , int).  

 What is the smaller version of the task on which the recursive call works? How does the 
original problem relate to this smaller problem? What does the function compute? 

... // Omitted for brevity 
 

int main(void) { 

 int list[SIZE]; 

 scan_array(list, SIZE); 

 printf("Answer = %d\n", mystery(list, SIZE)); 

 return 0; 

} 
 

// Read in values for array arr 

void scan_array(int arr[], int size) { 

 int i; 

 

 printf("Enter %d values: ", size); 

 for (i=0; i<size; i++) 

  scanf("%d", &arr[i]); 

} 
 

// Precond: n > 0 

int mystery(int arr[], int n) { 

 int m; 

 

 if (n == 1) 

  return arr[0]; 

 else { 

  m = mystery(arr, n-1); 

  return (arr[n-1] > m) ? arr[n-1] : m; 

 } 

} 

  



CS1010 AY2017/8 Semester 1 (Week 11)   Page 3 of 5 

4. [AY2010/2011 Semester 1 Exam, Q4] 
 Write a recursive function int largest_digit_pair(int n) to determine the largest pair of 

digits of a positive integer n starting from the right to the left.  

 For example, if n is 5064321, then the pairs are 21, 43, 6 and 5, and hence the answer is 
43. 

 
5. North-East Paths 
 In a special town where pedestrians are only allowed to move northwards or eastwards, 

each of the following examples shows the total number of unique NE-paths, ne(x, y), to 
get from point A to point B, where B is x rows north and y columns east of A. Assume 
that x and y are non-negative integers. By convention, ne(0, 0) = 1. 

 

 

 

 

 

 Write a recursive function int ne(int, int) to compute the number of NE-paths. 

 The following are some sample runs. 

Enter rows and columns apart: 0 2 

Number of NE-paths = 1 

 
Enter rows and columns apart: 1 3 

Number of NE-paths = 4 

 
Enter rows and columns apart: 3 2 

Number of NE-paths = 10 

 
6.   Reversing an Array  

Write a program reverse_array.c to randomly assign values into an integer array, and 
then reverse the array using recursion.  

For example, if the array contains { 6, 3, 0, 6, 8, 1, 5 }, then the reversed array is { 5, 1, 8, 
6, 0, 3, 6 }. You should not use any additional array. You may assume that the array 
contains at most 15 elements.   

ne(0, 2) = 1 ne(1, 3) = 4 ne(3, 2) = 10 

A B A 

B 

B 

A 



CS1010 AY2017/8 Semester 1 (Week 11)   Page 4 of 5 

7. [AY2012/2013 Semester 1 Exam, Q4] 
 A positive integer can always be expressed as a product of prime numbers. For instance,  

 60  = 2  2  3  5   = 22  31  51 

 78  = 2  3  13  = 21  31  131 
 13 = 13 = 131 

 The following function countPrimes() takes a positive integer and counts the number of 
(possibly duplicate) prime numbers required to form the given integer.  

 countPrimes(60) returns 4 (two 2’s, one 3 and one 5) 
 countPrimes(78) returns 3 (one 2, one 3 and one 13) 

 countPrimes(13) returns 1 (one 13) 
 
int countPrimes(int number) { 

 return countPrimesRec(number, 1, 0); 

} 

 This function in turn calls a recursive function countPrimesRec() that does the job of 
counting primes. The partial code for countPrimesRec() is given. You are to complete it 
by filling your code and the pre-conditions in the dashed boxes. 

 Note that function getPrime(i) is considered given, which returns the i-th smallest prime 
number. For instance: 

 getPrime(1) returns 2;  getPrime(2) returns 3;  getPrime(3) returns 5 

// Pre-conditions: 

// 

// 

int countPrimesRec(int number, int index, int count) { 

 int prime; 
 

 if (number == 1) 

  return count; 

 prime = getPrime(index); 

 if (number % prime) { 
 

 

 

 

 } 

 else { 
 

 

 

 

 } 

} 

 

 

 

 



CS1010 AY2017/8 Semester 1 (Week 11)   Page 5 of 5 

8. [AY2015/2016 Semester 1 Exam, Q13] 
Observe the pattern in the following 2D arrays. 

 

                             

Write a recursive function fill(int arr[][20], int n) to fill a n x n 2D array arr with the 
pattern shown above. 

You may assume that n is an integer in [1, 20]. 

 

9. Rewrite the binary search program using recursion. Use an auxiliary function as 
 suggested in the lecture. 


