
CS1010 AY2017/8 Semester 1 (Week 11) Page 1 of 4

CS1010 Programming Methodology
Week 11: Recursion (Selected Answers)

1. Tracing recursive codes
 (a) [AY2010/2011 Semester 1 Exam, Q1.2]
 Given the following function, what does f(5) compute?

// Precond: n >= 0

int f(int n) {

 if (n == 0)

 return 0;

 else

 return (2 * n + f(n-1));

}

 Answer: See q1a.c

30

 For such question, I would recommend students to trace from bottom up. That is, find

out what is f(0), then f(1), then f(2), and so on. In this way, less mistake will be made.
 f(0) 0
 f(1) 2 * 1 + f(0) 2
 f(2) 2 * 2 + f(1) 6
 f(3) 2 * 3 + f(2) 12
 f(4) 2 * 4 + f(3) 20
 f(5) 2 * 5 + f(4) 30

 (b) Trace the function below manually, and write out the return value of q(12).

// Precond: n >= 0

int q(int n) {

 if (n < 3)

 return n+1;

 else

 return q(n-3) + q(n-1);

}

Exploration: Would you be able to write an iterative version? Run both versions on large
input, such as 50. What do you observe?

 Answer: See q1b.c
129

 The recursive version is slower than the iterative one – same reason as for Fibonacci.

Being ignorant is not so much a

shame, as being unwilling to learn.

~ Benjamin Franklin

CS1010 AY2017/8 Semester 1 (Week 11) Page 2 of 4

 (c) [AY2011/2012 Semester 1 Exam, Q1.5]
 What does following function compute?

int mystery(int x, int y) {

 if (x == 0)

 return y;

 else if (x < 0)

 return mystery(++x, --y);

 else

 return mystery(--x, ++y);

}

 Answer: See q1c.c
(C) It returns the value of x + y.

6. Reversing an Array

Write a program reverse_array.c to randomly assign values into an integer array, and
then reverse the array using recursion.

For example, if the array contains { 6, 3, 0, 6, 8, 1, 5 }, then the reversed array is { 5, 1, 8,
6, 0, 3, 6 }. You should not use any additional array. You may assume that the array contains
at most 15 elements.

 Answer: See reverse_array.c

A. It returns the value of y.
B. It returns the value of x – y.
C. It returns the value of x + y.
D. It returns the value of x * y.
E. It will give compile-time error.

CS1010 AY2017/8 Semester 1 (Week 11) Page 3 of 4

7. [AY2012/2013 Semester 1 Exam, Q4]
 A positive integer can always be expressed as a product of prime numbers. For instance,

 60 = 2 2 3 5 = 22 31 51

 78 = 2 3 13 = 21 31 131
 13 = 13 = 131

 The following function countPrimes() takes a positive integer and counts the number of
(possibly duplicate) prime numbers required to form the given integer.

 countPrimes(60) returns 4 (two 2’s, one 3 and one 5)
 countPrimes(78) returns 3 (one 2, one 3 and one 13)

 countPrimes(13) returns 1 (one 13)

int countPrimes(int number) {

 return countPrimesRec(number, 1, 0);

}

 This function in turn calls a recursive function countPrimesRec() that does the job of
counting primes. The partial code for countPrimesRec() is given. You are to complete it by
filling your code and the pre-conditions in the dashed boxes.

 Note that function getPrime(i) is considered given, which returns the i-th smallest prime
number. For instance:

 getPrime(1) returns 2; getPrime(2) returns 3; getPrime(3) returns 5

// Pre-conditions:

//

//

int countPrimesRec(int number, int index, int count) {

 int prime;

 if (number == 1)

 return count;

 prime = getPrime(index);

 if (number % prime) {

 }

 else {

 }

}

 (See count_primes.c)

number > 0; index > 0; count >= 0

return countPrimesRec(number,

 index+1, count);

return countPrimesRec(number/prime,

 index, count+1);

CS1010 AY2017/8 Semester 1 (Week 11) Page 4 of 4

8. [AY2015/2016 Semester 1 Exam, Q13]
Observe the pattern in the following 2D arrays.

Write a recursive function fill(int arr[][20], int n) to fill a n x n 2D array arr with the pattern
shown above.

You may assume that n is an integer in [1, 20].

void fill(int arr[][20], int n){

if (n == 1)

 arr[0][0] = 1;

 else {

 int i;

 for (i=0; i<n-1; i++)

 arr[n-1][i] = n;

 for (i=0; i<n; i++)

 arr[i][n-1] = n;

 fill(arr, n-1);

}

}

