
CS1010 AY2017/8 Semester 1 (Week 6) Page 1 of 3

CS1010 Programming Methodology
Week 6: One-dimensional Arrays (Selected Answers)

III. Arrays

Important notes:

As we are basing on ANSI C (or C90), we do NOT allow variable-length arrays. Hence the
following code is not permitted, because at compilation time the system wouldn’t know what
value n contains and hence the size of the array is unknown:

 int n, a[n];

 printf("Enter n: ");

 scanf("%d", &n);

 . . .

However, as gcc is C99-compliant (C99 is a newer standard for C, which permits variable-length
arrays), the code above can be compiled without warning, even if –Wall option is used.

You may compile with the –pedantic option instead, in which case a warning message will be
issued.

For all problems on arrays, we will specify the maximum size of an array, so that you can
declare the array with the right size. We will not accept the use of variable-length arrays.

4. Logical thinking.
 An array is a collect of data. It is very common to ask the following two questions about a

collection: (a) do all the data in the collection share a certain property? (b) does there exist
one datum that has a certain property? The former is a universal question, and the later
an existential question.

 For example, “are all the values in the array non-negative?” is a universal question; “is
there one value in the array that is negative?” is an existential question. In this case, the
two questions are actually the same, hence we can transform one into another.

 Write a function nonNegative(int arr[], int size) that returns 1 (true) if all the elements in
arr[0]… arr[size-1] are non-negative; or returns 0 (false) otherwise. You may assume that
the array has at least one element.

It is not hard to learn more. What is

hard is to unlearn when you discover

yourself wrong. ~ Martin H. Fischer

CS1010 AY2017/8 Semester 1 (Week 6) Page 2 of 3

 Answer: See q4_ans.c

// Return 1 if all elements are non-negative; otherwise 0

// Some students may use while loop, or break statement.

// Precond: size > 0

int nonNegative(int arr[], int size) {

 int i;

 for (i=0; i<size; i++)

 if (arr[i] < 0)

 return 0;

 return 1;

}

 A common mistake students make is hasty conclusion: the moment one non-negative
element is encountered, the program concludes that the whole array is non-negative.

 The other case is more of an efficiency issue: a negative element is encountered, but the
program goes on to check the rest of the array, which is unnecessary.

5. Logical thinking.
 Given an array of integers, write a function isSorted(int arr[], size) that returns 1 (true) if

the array arr is sorted in non-decreasing order, or returns 0 (false) otherwise. You may
assume that the array has at least one element.

 For example, 3, 12, 15, 18 and -5, 8, 8, 10 are in non-decreasing order, but 4, 6, 9, 7, 12 are
not.

 Do you see any similarity between this question and Q4? (Yes, Computational Thinking:
Pattern Recognition!) For this question, what is the property you have “abstracted” out
to check?

 Answer: See q5_ans.c
 The property is that for the array to be sorted in non-decreasing order, every element

must be at least as big as its immediate previous element. This leads to checking each
element (starting from the second element) with its immediately previous element.

// Return 1 if all elements are non-negative; otherwise 0

// Some students may use while loop, or break statement.

// Precond: size >0

int isSorted(int arr[], int size) {

 int i;

 for (i=1; i<size; i++)

 if (arr[i] < arr[i-1])

 return 0;

 return 1;

}

CS1010 AY2017/8 Semester 1 (Week 6) Page 3 of 3

6. Checking duplicates.
 Write a program duplicates.c to fill an integer array with n (1 ≤ n ≤ 1000) random integers

whose values are in the range [lower, upper] where n, lower and upper are inputs from
user. Moreover, 0 < lower < upper. Your program then computes the total number of
duplicates in the array.

 For example, if a 15-element array contains the values { 97, 12, 45, 97, 23, 12, 53, 97, 30,
30, 10, 53, 8, 1, 53 }, then there are altogether 8 duplicates (three 97s, two 12s, and three
53s).

 (We will revisit this question after we have covered sorting. For the moment, do not use
sorting in your solution.)

 Answer: See q6_ans.c

