
CS1010 AY2017/8 Semester 1 (Week 9) Page 1 of 4

CS1010 Programming Methodology
Week 9: Pointers and Functions with Pointer Parameters (Selected Answers)

Run programs q1a_ans.c, q1b_ans.c and q2_ans.c for questions 1 and 2.

3. Lab1 Ex2: Surface area and Longest Diagonal of a Box

 In Lab 1 Exercise 2, you wrote two functions compute_surface_area(int, int, int) and
compute_diagonal(int, int, int) to compute the surface area and longest diagonal of a box
respectively. The program is available as box.c which you may copy from the cs1010
account.

 cp ~cs1010/discussion/prog/week9/box.c .

 Can you combine the two functions into one, called compute_surface_area_and
diagonal(), which passes back both the surface area and length of the longest diagonal?

 Answer: See box_ptr_ans.c
Highlight the following to the students:

Function prototype:
void compute_surface_area_and_diagonal(int, int, int, int *, double *);

Calling the function:
compute_surface_area_and_diagonal(length, width, height, &area, &diagonal);

Function header:
void compute_surface_area_and_diagonal(int length, int width, int height,
 int *areaPtr, double *diagonalPtr);

Inside the function body:
*areaPtr = 2 * …;
*diagonalPtr = sqrt(…);

[Note: Using the suffix ‘Ptr’ in a pointer variable name is my personal style, just to
make the code clearer, because otherwise I may get confused. Some books
recommend the suffix ‘_p’. Up to students whether they want to follow this or not.]

Man’s mind, once stretched by a new

idea, never regains its original

dimensions. ~Oliver Wendell Holmes

CS1010 AY2017/8 Semester 1 (Week 9) Page 2 of 4

III. Design Issues: Programming Methodology and Cohesion

5. After attending CS1010 lecture last week and learning about function with pointer
parameters, Brusco is so excited that he replaced this GCD function:

// Returns the GCD of a and b

// Precond: a>=0, b>=0 and not both = 0

int brusco_gcd(int a, int b) {

 int remainder;

 while (b != 0) {

 remainder = a % b;

 a = b;

 b = remainder;

 }

 return a;

}

 with the following function:

void brusco_gcd(int a, int b, int *answer) {

 . . . // body of the function same as above

 *answer = a;

}

 He did not make a wise move? Why?

 Answer:

He made a bad move. Unless there is good reason to pass an address parameter to a
function, one should stick with the simpler function to return the answer, especially
when there is only one value to return.

Rewriting the original function with this new function has another disadvantage. The
caller would have to declare a variable, and pass the address of that variable into the
new function. What if there is really no intention/need to have such a variable in the
caller in the first place, as shown below?

 printf("The GCD is %d\n", brusco_gcd(num1, num2));

As always, there are exceptions. Sometimes, we may want the function to pass back the
result via an address variable, and at the same time, have it return something (usually
an integer) to indicate some status code of the function. For example, the GCD function
could be defined as int gcd(int a, int b, int *answer) such that the gcd is returned via
the pointer parameter answer, and the function returns 0 to indicate a good run, or -1
to indicate some error (for example, when both parameters a and b contain zero.) But
in CS1010 the students are not required to write such applications, unless explicitly

Given a choice between a function that
returns a value and a function that takes in
an address parameter, choose the former.

CS1010 AY2017/8 Semester 1 (Week 9) Page 3 of 4

stated. This last paragraph is a little advanced and you may not want to discuss this
with your students.

6. After learning in question 5 above that he should stick to his old function instead of using
pointer parameter in his GCD function, Brusco, being a very inquisitive and adventurous
student (and we all love such students!), tried another new version:

void brusco_gcd(int a, int b) {

 . . .

 printf("The GCD is %d\n", a);

}

 His reason being: since the answer (variable a) is to be returned to the caller and get

printed anyway, why can’t he just save the returning part (and hence make the function a
void function) and print the answer inside the function instead?

 Comment on his move.

 Answer:
Again, that is a bad move (but we still love Brusco). Now, a function should perform one
specific task, and not a mixture of tasks. Such a function is cohesive.

We should refrain from mixing a computation task and an input/output task in a
function. The GCD is a computation task. Printing the answer is an output task. Hence
both should not be present in a function.

Moreover, another good reason to leave out the printing task is reusability of code.
What if an application needs to compute the GCD of two numbers as part of a bigger
algorithm? Having the printf() statement in the GCD function would upset such a plan.

Hence, leave out the printing; just pass the computed result to the caller and let the
caller decide what to do with the returned value, whether to print it or use it for the
next step in a bigger algorithm.

Do not mix computation task and
input/output task in a single function.

CS1010 AY2017/8 Semester 1 (Week 9) Page 4 of 4

7. Lab 1 Ex2: Surface area and Longest Diagonal of a Box – Revisit
 In question 3 you attempted to combine the two functions compute_surface_area() and

compute_diagonal() into a single function compute_surface_area_and_diagonal().

 Compare the two approaches. Which one do you think is more desirable in terms of good
programming methodology?

 Answer:
In general, writing separate functions is better, because as we’ve explained in question
5 above, a function should be cohesive, i.e. it does one task.

Another reason is that in this case, the caller would have to declare two variables, one
for the surface area and another for the diagonal. As explained in the answer of question
4, such variables might not be needed.

There are exceptions, of course. One situation is where the 2 (or more) values to be
returned (via the pointer parameters) are so intimately related to one another that they
are considered as one group of information. Then it makes sense to use function with
pointer parameters.

Another situation is where efficiency is concerned, and when it is instructed that it takes
priority over cohesion. For example, in computing the minimum and maximum values
of an array, we should write 2 separate functions, one to compute the minimum, and
another to compute the maximum, according to good programming practice. However,
writing just one function to compute both minimum and maximum is more efficient
(especially for large array), since we scan the array just once, instead of twice. Therefore,
sometimes when there is a trade-off we need to make a judgment on which approach
to adopt. There is no hard-and-fast rule.

Aim for cohesive function, a function
that does a single task.

