Worksheet for Lab #5 Ex3: Game of Life
http://www.comp.nus.edu.sg/~cs1010/labs/2017s1/lab5/2D arrays.html

Task Statement

Implement the Game of Life in a 20 x 20 community. Life cells are represented by ‘O’, while
dead cells by ‘-’. The rules are as follows:

= A live cell will die of loneliness in the next generation if it has fewer than 2
neighbours in the current generation.

= A live cell will die of overcrowding in the next generation if it has more than 3
neighbours in the current generation.

= A live cell will remain as a live cell in the next generation if it has either 2 or 3
neighbours in the current generation.

= A dead cell will become alive in the next generation if it has exactly 3 neighbours in
the current generation. All other dead cells will remain dead in the next generation.

= All births and deaths take place instantaneously.

In this worksheet, we will explore only one part of the task — to generate the next
generation. As sentinels are used, we will see how sentinels can make our code neater.

I. Without sentinels

Here, we use a 20 x 20 character array currentGen to represent the current community, and
a 20 X 20 character array nextGen for the next community. We use lifel4d.in here, but shift
the community to the top-left. We show the top 12 rows and left-most 13 columns in the
diagrams below.

O|lO0O|-|0]|O0O 0|0 O|O0 0|0 0|0 O|O0 0|0

ojlo|-|o|o o|o 0|0 0|0 o|o 0|0 0|0

o|o 0|o o|o o|o o|o o|o 0|0 0|0

o|o o|o o|o 0|0 0|0 o|o o|o0
- O -

O|O0 0|0 (O] OO0 0|0 0|0 0|0

OO0 0|0 0|0 OO0 0|0 0|0 0|0 0|0

0|0 o|o o|o o|o 0|0 o|o 0|0 0|0

o|o 0o|o o|o o|o 0|0 o|o 0|0 0|0
Current generation Next generation: changed cells are highlighted.

The partial algorithm to generate the next generation is shown below. We will focus on the
countNeighbours() function to return the number of neighbours of a cell at currentGen[r][c].

for (r = 0; r < 20; r++) { // for II: for (r = 1; r <= 20; r++)
for (¢ = 0; ¢ < 20; c++) { // for 1II; for (c = 1; c <= 20; c++)
numNeighbours = countNeighbours (currentGen, r, c);

CS1010 (AY2017/8 Semester 1) Page 1

http://www.comp.nus.edu.sg/~cs1010/labs/2017s1/lab5/2D_arrays.html

Write your algorithm for countNeighbours() below:

int countNeighbours (char arr[] [20], int rPos, int cPos) {

Il. With sentinels

Now, with a boundary of sentinels (dead cells) around the community, we have a 22 x 22
character array currentGen to represent the current community, and a 22 x 22 character
array nextGen for the next community. We use the same example as above. We show the
top 13 rows and left-most 14 columns in the diagrams below. The boundary cells are
shaded.

oo o|o o|o oo -|o]o o|o o|o o|o
o|o o|o o|o o|o -|o]o o|o o|o of|o
o|o o|o o|o o|o -|o]o o|o o|o of|o
o|o o|o 0|0 o|o -|o]o o|o o|o
- O - -
0|0 o|o 0|0 0|0 -|lo]o 0|0 o|o
0|0 of|o o|o0 0|0 -|lo|o 0|0 o|o o|o
o|0 o|o o|o 0|0 -|lo|o 0|0 o|o o|o
0|0 o|o o|o 0|0 -lo|o o|0 o|o o|o
Current generation Next generation: changed cells are highlighted.

Write your algorithm for countNeighbours() below. Compare it with the other version.

int countNeighbours (char arr[][22], int rPos, int cPos) ({

CS1010 (AY2017/8 Semester 1) Page 2

