
Page 1 of 2

Practice S06P05: Friendship Relations
http://www.comp.nus.edu.sg/~cs1010/4_misc/practice.html

Week of release: Week 6

Objectives: 2D array

Task statement:

A local entrepreneur wishes to develop a new social network system, called iLink, and she
employs you to help develop programs to handle friendship relation service. In modeling the
friendship relation, you have adopted a two-dimensional array representation, in which the

array is of size MAXSIZE MAXSIZE. This array is called friendArr. You have also decided that
friendArr will NOT be a global variable. A simplified version of friendArr with 6 users is given
below:

 0 1 2 3 4 5

0 1 0 1 0 0 0

1 0 1 0 0 0 1

2 1 0 1 1 0 0

3 0 0 1 1 0 0

4 0 0 0 0 1 1

5 0 1 0 0 1 1

Under this representation, you set the entry (i, j) of friendArr to 1 if the user identified by i has
added the user identified by j as a direct friend. Otherwise, entry (i, j) should contain 0. By
default, an iLink user will always add himself/herself as a direct friend, and the friendArr has
the following symmetry property:

 Value at entry (i, j) = Value at entry (j, i)

The input to construct the friendship array is as follows:

1. You enter the number of users. We assume that this number is at most 10.

2. You then indicate the number of pairs of direct friends you would like to enter.

3. Lastly, you enter each pair of direct friends.

With this input, your program will construct the friendArr such that it satisfies the symmetry
property.

You have the following two tasks to complete:

a. Write a function iSolitude() that displays a list of users (represented by the respective
array indices) who have the LEAST number of direct friends. For instance, for the small
friendArr shown above, iSolitude() will print out users 0, 1, 3 and 4 (not necessarily in
that order), as they have the smallest number of direct friends (each one of them has
only two direct friends, including himself/herself).

http://www.comp.nus.edu.sg/~cs1010/4_misc/practice.html

Page 2 of 2

b. The entrepreneur has also requested that you compute the friend-of-friend relation, so
that if u and v are direct friends of each other, iLink can introduce other direct friends of
u to v, and vice versa. Specifically, i and j have a friend-of-friend relationship if and only
if the following two conditions hold:

i. j is NOT a direct friend of i; and

ii. There exists a distinct user k who is a direct friend of both i and j.

Write a function uFriend() that displays all pairs (i, j) of friendArr such that user i is a friend-of-
friend of user j. In the small friendArr array shown above, (0, 3) has friend-of-friend
relationship, as 0 and 3 are not direct friend of each other, and user 2 is a direct friend of both 0
and 3.

Sample run:

Read in the number of users: 6

There are 6 users, indexed from 0 to 5.

Enter the number of pairs of direct friends: 5

Enter actual pairs of direct friends:

0 2

1 5

3 2

4 5

5 1

 0 0 1 0 0 0

 0 0 0 0 0 1

 0 0 0 0 0 0

 0 0 1 0 0 0

 0 0 0 0 0 1

 0 1 0 0 0 0

The friendship matrix is:

 1 0 1 0 0 0

 0 1 0 0 0 1

 1 0 1 1 0 0

 0 0 1 1 0 0

 0 0 0 0 1 1

 0 1 0 0 1 1

The least number of friends found is 2

User 0 has least number of friends

User 1 has least number of friends

User 3 has least number of friends

User 4 has least number of friends

(0,3) has a friend-of-friend relation.

(1,4) has a friend-of-friend relation.

