
Page 1 of 3 
 

3 

111 Mary 

222 Peter 

333 Lucy 

15 

111 Cosmetics 500 

222 Cosmetics 300 

111 Toys 400 

(12 more records...) 

Mary 

Practice S12P08: Database I: Database Queries 
http://www.comp.nus.edu.sg/~cs1010/4_misc/practice.html  

 

Week of release: Week 12 

Objective: Structures, Searching and Sorting 

 
Task statement: 

In today’s world, many applications use database technology to manage a large amount of data 
in an organized way.  

For example, an online shopping web application may store data about its customers, the items 
being sold, and the orders placed by the customers on the items. Such data can be queried for 
many practical purposes, such as identifying which customer has not been making purchases 
recently and find out which item is the top seller in the past week.  

In this exercise, you are to write a program to read in some data, store them into arrays of 
structure variables and answer simple queries on the data.  

More specifically, you are given the following structure type definitions: 

 

 

 

The variables of the structure type customer_t  are used to store the ids and the names of the 
customers. For example, {111, "Mary"} refers to a customer whose id is 111 and name is Mary.  

In addition, the variables of the structure type record_t are used to store how much a customer 
has spent in a particular category of products.  For example, {111, "Cosmetics", 500} refers to a 
customer whose id is 111 and this customer has spent 500 dollars on Cosmetics. 

The input to your program consists of multiple parts as 
shown on the right: 

• The number of customers 

• The id and the name of each customer 

• The number of spending records 

• The customer ID, the category and the spending in 
each record 

• A name 

 

typedef struct { 

  int cusID; 

  char category[MAX_LENGTH+1]; 

  int spending; 

} record_t; 

typedef struct { 

  int id; 

  char name[MAX_LENGTH+1]; 

} customer_t; 

http://www.comp.nus.edu.sg/~cs1010/4_misc/practice.html


Page 2 of 3 
 

Given these inputs, your program should 1) find the spending records of the customer with the 
given name, 2) sort the records in descending order of the spending, and 3) print only the 
category and the spending in these spending records. 

For example, in the sample inputs, the given name is Mary. Your program should print Cosmetic 
500 and Toys 400, among other spending records for Mary.  

Note that the record for Cosmetics must be printed before the one for Toys since the spending 
for Cosmetic is higher (500 vs 400). Moreover, the second record in the list {222 Cosmetics, 
300} is not printed since that record is for customer 222, whose name is Peter. 

If 1) a customer of the given name cannot be found, or 2) a customer of the given name can be 
found but there is no spending record for that customer, your program should print a message 
should be printed to indicate that there is no record for the given name. 

Your program, spending.c, should contain the following three functions: 

• readInputs(): This function reads in all the inputs as described above 

• findRecords(): This function takes in all the inputs and finds the records for a particular 
customer. It returns these records in an array, as well as the number of records. 

• sortRecords(): This function sort the records in descending order based on spending. 

The printRecords() function is given to you. You should use this function as it is in your program. 

You may assume that 1) the maximum length of a name or a category is 50 (i.e., MAX_LENGTH 
as defined in the program), 2) a name or a category only consists of English letter, 3) the 
maximum number of customers is 20 (i.e., MAX_CUSTOMER), and 4) the maximum number of 
spending records is 100 (i.e., MAX_RECORD) 

You may also assume that 1) the IDs in customer_t are the non-empty, unique identifiers for 
customers (i.e., a primary key of customers), 2) the names of the customers are non-empty and 
unique as well (i.e., it is a candidate key of customers), and 3) the customer IDs in the spending 
records always refer to an existing customer (i.e., a foreign key to customers).  

(You are encouraged to read up online for more information about these keys.) 

Check the sample runs on the next page for input and output format.  



Page 3 of 3 
 

Sample runs  

Enter number of customers: 3 

Enter customers:  

111 Mary 

222 Peter 

333 Lucy 

Enter number of records: 15 

Enter records:  

111 Cosmetics 500 

222 Cosmetics 300 

111 Toys 400 

333 Bags 100 

111 Books 300 

222 Toys 600 

222 Music 200 

333 Cosmetics 200 

111 Flowers 200 

222 Electronics 500 

111 Bags 100 

222 Flowers 100 

333 Electronics 300 

333 Books 400 

222 Shoes 400 

Enter name: Mary 

The records for Mary are as follows:  

Cosmetics 500 

Toys 400 

Books 300 

Flowers 200 

Bags 100 

 

(The outputs is as shown below if the last input in the same run above is changed to John) 

No record can be found for John. 


