
CS1010J Programming Methodology Page 1 of 2

Problem Set 3 Exercise #28: Friendship Relations [Hard]

Reference: Lecture 8 notes

Learning objectives: Two-dimensional array; Algorithm design

Estimated completion time: 90 minutes

Problem statement:

[CS1010 AY2011/12 Semester 1 Exam, Q6]

A local entrepreneur wishes to develop a new social network system, called iLink and she
employs you to help develop programs to handle friendship relation service. In modelling the
friendship relation, you have adopted a two-dimensional array called friendArr. A simplified
version of friendArr with 6 users is given below:

 0 1 2 3 4 5
0 1 0 1 0 0 0
1 0 1 0 0 0 1
2 1 0 1 1 0 0
3 0 0 1 1 0 0
4 0 0 0 0 1 1
5 0 1 0 0 1 1

Under this representation, you set the entry (i, j) of friendArr to 1 if the user identified by i has
added the user identified by j as a direct friend. Otherwise, entry (i, j) should contain 0. By
default, an iLink user will always add himself/herself as a direct friend, and the friendArr has
the following symmetry property:

 Value at entry (i, j) = Value at entry (j, i)

The input to construct the friendship array is as follows:

1. You enter the number of users.

2. You then indicate the number of pairs of direct friends you would like to enter.

3. Lastly, you enter each pair of direct friends.

With this input, your program PS3_Ex28_Friendship.java will construct the friendArr array such
that it satisfies the symmetry property.

Subsequently, you are supposed to complete the following two tasks:

a. Write a static method iSolitude() that displays a list of users (represented by the
respective array indices) who have the LEAST number of direct friends. For instance, for
the small friendArr array shown above, iSolitude() will print out users 0, 1, 3 and 4
(in ascending order of user ids), as they have the smallest number of direct friends (each
one of them has only two direct friends, including himself/herself).

CS1010J Programming Methodology Page 2 of 2

b. The entrepreneur has also requested that you compute the friend-of-friend relation, so
that if u and v are direct friends of each other, iLink can introduce other direct friends of
u to v, and vice versa. Specifically, i and j have a friend-of-friend relationship if and only
if the following two conditions hold:

i. j is NOT a direct friend of i; and

ii. There exists a distinct user k who is a direct friend of both i and j.

Write a static method uFriend() that displays all pairs (i, j) of friendArr such that
user i is a friend-of-friend of user j. In the small friendArr array shown above, (0, 3) has
friend-of-friend relationship, as 0 and 3 are not direct friend of each other, and user 2 is
a direct friend of both 0 and 3.

Sample run #1:

Read in the number of users: 6
There are 6 users, indexed from 0 to 5.
Enter the number of pairs of direct friends: 5
Enter 5 pairs of direct friends:
0 2
1 5
3 2
4 5
5 1
The friendship matrix is:
 1 0 1 0 0 0
 0 1 0 0 0 1
 1 0 1 1 0 0
 0 0 1 1 0 0
 0 0 0 0 1 1
 0 1 0 0 1 1
The least number of friends found is 2
User 0 has least number of friends
User 1 has least number of friends
User 3 has least number of friends
User 4 has least number of friends
Users (0, 3) have a friend-of-friend relation.
Users (1, 4) have a friend-of-friend relation.

