CS1020 Take-home Lab #5

Exercise #2: Obstacle Course
http://www.comp.nus.edu.sg/~cs1020/3 ca/takehomelabs.html

Objective:
= Solving an optimisation problem using recursion.

Recursion is the objective of this exercise. Hence, you must use recursion. If recursion is not
used (or it is used but not in solving the problem but in other side quests), no attempt mark will
be awarded.

Task statement:

An obstacle course comprises a sequence of Blocks of different heights. Traversing the obstacle
course involves hopping from one Block to the next.

Your task is to write a program, ObstacleCourse.java, to compute the smallest possible number
of hops required to go from the first Block to the last Block in the obstacle course.

An example of user input to be read by the program is as shown on the left:

The first line contains a single positive integer, N, the total number of Blocks
in the obstacle course.

The first line is followed by N lines that correspond to N Blocks. Each line
contains two non-negative integers, separated by a space. The first integer,
H,, is the height of the Block. The second integer, R;, is the “hopping range”
of the Block. The hopping range of the Block is the maximum height of a
Block that we can hop to.

= W= U
O b WwWwikWw

One of the following two conditions must be true if we want to hop from some Block X to some
other Block Y:

= XandY are adjacent Blocks.

= X and Y are not adjacent Blocks. The height of Y must be < the hopping range of X. The
height of each Block between X and Y must also be < the hopping range of X.

The output consists of a single line containing an integer, which is the smallest possible number
of hops.

CS1020 Page 1 of 3 AY2014/5 Semester 2



3 ————— ——— — — — S — — .

A

I —— L

Q ————m— C—— — — —.
#1 #2 #3 #4 #5

The aforementioned rules work out in our example as follows:

If we are currently on Block #1 (with R; = 3), then...

we can hop to Block #2 because it is adjacent to Block #1.

— we can hop to Block #3 because H, = 2 < R; (ie. Block #2 does not obstruct Block #3), and
because H3 =3 <R;.

— we cannot hop to Block #4 because H; =4 > R;.

— we cannot hop to Block #5 because it is obstructed by Block #4.

If we are currently on Block #2 (with R = 4), then...
— we can hop to Block #3 because it is adjacent to Block #2.

— we can hop to Block #4 because Hs = 3 < R; (ie. Block #3 does not obstruct Block #4), and
because H;=4 <R;.

— we can hop to Block #5 because Hs =1 < R;.

If we are currently on Block #3 (with Rz = 3), then...
— we can hop to Block #4 because it is adjacent to Block #3.

— we cannot hop to Block #5 because H; = 4 > R3 (ie. Block #4 obstructs Block #5).

If we are currently on Block #4 (with hopping range R; = 4), then...

— we can hop to Block #5 because it is adjacent to Block #4.

If we are currently on Block #5 (with hopping range Rs = 0), then...

— we have completed the obstacle course because Block #5 is the last Block in the
sequence.

CS1020 Page 2 of 3 AY2014/5 Semester 2



In our example, the path from Block #1 to Block #5 that requires the least hops is precisely:
#1 > #2 5> #5

This path has 2 hops. Therefore, the output of our program is simply 2. (See sample run #1
below.)

The code for processing the user input is given. Your task is to complete the recursive
countHops method of the ObstacleCourse class.

Number of submissions:

You are given 10 submissions. Only the final submission will be graded.

Sample run #1:

NE=BWNERWU
Ok WikhWw

Sample run #2:

= NWERW
o

Sample run #3:

oK R
o

END

CS1020 Page 3 of 3 AY2014/5 Semester 2




