
A Theoretician’s Programming Language

Do we need...
Function definition?

granted!
Function application? granted!
Functions with multiple parameters? no!
Numbers? no!
Conditionals? no!
Recursive functions? no!

Martin Henz From the Lambda Calculus to JavaScript

A Theoretician’s Programming Language

Do we need...
Function definition? granted!

Function application? granted!
Functions with multiple parameters? no!
Numbers? no!
Conditionals? no!
Recursive functions? no!

Martin Henz From the Lambda Calculus to JavaScript

A Theoretician’s Programming Language

Do we need...
Function definition? granted!
Function application?

granted!
Functions with multiple parameters? no!
Numbers? no!
Conditionals? no!
Recursive functions? no!

Martin Henz From the Lambda Calculus to JavaScript

A Theoretician’s Programming Language

Do we need...
Function definition? granted!
Function application? granted!

Functions with multiple parameters? no!
Numbers? no!
Conditionals? no!
Recursive functions? no!

Martin Henz From the Lambda Calculus to JavaScript

A Theoretician’s Programming Language

Do we need...
Function definition? granted!
Function application? granted!
Functions with multiple parameters?

no!
Numbers? no!
Conditionals? no!
Recursive functions? no!

Martin Henz From the Lambda Calculus to JavaScript

A Theoretician’s Programming Language

Do we need...
Function definition? granted!
Function application? granted!
Functions with multiple parameters? no!

Numbers? no!
Conditionals? no!
Recursive functions? no!

Martin Henz From the Lambda Calculus to JavaScript

A Theoretician’s Programming Language

Do we need...
Function definition? granted!
Function application? granted!
Functions with multiple parameters? no!
Numbers?

no!
Conditionals? no!
Recursive functions? no!

Martin Henz From the Lambda Calculus to JavaScript

A Theoretician’s Programming Language

Do we need...
Function definition? granted!
Function application? granted!
Functions with multiple parameters? no!
Numbers? no!

Conditionals? no!
Recursive functions? no!

Martin Henz From the Lambda Calculus to JavaScript

A Theoretician’s Programming Language

Do we need...
Function definition? granted!
Function application? granted!
Functions with multiple parameters? no!
Numbers? no!
Conditionals?

no!
Recursive functions? no!

Martin Henz From the Lambda Calculus to JavaScript

A Theoretician’s Programming Language

Do we need...
Function definition? granted!
Function application? granted!
Functions with multiple parameters? no!
Numbers? no!
Conditionals? no!

Recursive functions? no!

Martin Henz From the Lambda Calculus to JavaScript

A Theoretician’s Programming Language

Do we need...
Function definition? granted!
Function application? granted!
Functions with multiple parameters? no!
Numbers? no!
Conditionals? no!
Recursive functions?

no!

Martin Henz From the Lambda Calculus to JavaScript

A Theoretician’s Programming Language

Do we need...
Function definition? granted!
Function application? granted!
Functions with multiple parameters? no!
Numbers? no!
Conditionals? no!
Recursive functions? no!

Martin Henz From the Lambda Calculus to JavaScript

A Theoretician’s Programming Language

Do we need...
Function definition? granted!
Function application? granted!
Functions with multiple parameters? no!
Numbers? no!
Conditionals? no!
Recursive functions? no!

Martin Henz From the Lambda Calculus to JavaScript

Some Examples

function square(x) {
return x * x;

}
square(13);

Martin Henz From the Lambda Calculus to JavaScript

Do we need multiple arguments?

function plus(x,y) {
return x + y;

}
plus(5,7);

Martin Henz From the Lambda Calculus to JavaScript

Do we need multiple arguments?

function plus(x,y) {
return x + y;

}
plus(5,7);

becomes

function plus(x) {
function plusx(y) {

return x + y;
}
return plusx;

}
var plusfive = plus(5);
plusfive(7);

Martin Henz From the Lambda Calculus to JavaScript

Another Example

function power(x,y) {
if (y === 0) return 1;
return x * power(x,y-1);

}
power(2,4);

Martin Henz From the Lambda Calculus to JavaScript

Do we need multiple arguments?

function power(x,y) {
if (y === 0) return 1;
return x * power(x,y-1);

}
power(2,4);

translates to:

function power(x) {
return function(y) {

if (y === 0) return 1;
return x * power(x)(y-1);

};
}
power(2)(4);

Martin Henz From the Lambda Calculus to JavaScript

Do we need numbers?

Representing 0 using Church numerals:

function zero(f) {
return function(x) {

return x;
}

}
zero(’something’)(’somethingelse’)

Martin Henz From the Lambda Calculus to JavaScript

Do we need numbers?

Representing 1 using Church numerals:

function one(f) {
return function(x) {

return f(x);
}

}
one(function(x) { return x*2; })(4)

Martin Henz From the Lambda Calculus to JavaScript

Do we need numbers?

Representing 2 using church numerals:

function two(f) {
return function(x) {

return f(f(x));
}

}
two(function(x) { return x*2; })(4)

Martin Henz From the Lambda Calculus to JavaScript

Getting the number back

function two(f) {
return function(x) {

return f(f(x));
}

}
function church2js(c) {

return c(function(x) { return x+1; })(0);
}
church2js(two);

Martin Henz From the Lambda Calculus to JavaScript

Can you do the reverse?

Wanted:
Define a function js2church that takes a JediScript number
as argument and returns its Church numeral?

Martin Henz From the Lambda Calculus to JavaScript

Multiplication

function times(x) {
return function(y) {

return function(f) {
return x(y(f));

}
}

}
function two(f) {

return function(x) {
return f(f(x));

}
}

Martin Henz From the Lambda Calculus to JavaScript

Multiplication

function three(f) {
return function(x) {

return f(f(f(x)));
}

}
function church2js(c) {

return c(function(x) { return x+1; })(0);
}
church2js(times(two)(three));

Martin Henz From the Lambda Calculus to JavaScript

Conditionals

Conditional statements
if (20 < 10) { return 5; } else { return 7; }

Conditional expressions
(20 < 10) ? 5 : 7

Martin Henz From the Lambda Calculus to JavaScript

Do we need conditionals?

Idea
Represent booleans with functions

The function “true”
function True(x) {

return function(y) {
return x;

}
}

Martin Henz From the Lambda Calculus to JavaScript

Do we need conditionals?

Idea
Represent booleans with functions

The function “false”
function False(x) {

return function(y) {
return y;

}
}

Martin Henz From the Lambda Calculus to JavaScript

Do we need conditionals?

Conditional in JediScript
True ? 5 : 7;

Conditional using Encoding
True(5)(7);

Martin Henz From the Lambda Calculus to JavaScript

Factorial using Conditional Expressions

function factorial(x) {
return (x === 0) ? 1

: x * factorial(x - 1);
}
factorial(5);

Martin Henz From the Lambda Calculus to JavaScript

Step 1: Eliminate Recursive Call

function F(f) {
return function(x) {

return (x === 0) ? 1
: x * f(x - 1);

};
}

Martin Henz From the Lambda Calculus to JavaScript

Step 2: Find a Fix-Point Function (aka Y-Combinator)

We need a function Y with the following properties:

Y (F) ≡ F (Y (F))

Martin Henz From the Lambda Calculus to JavaScript

Step 2: A Y-Combinator

function (f) {
return (function (x) {

return f(function(y) {
return x(x)(y);

});
})

(function (x) {
return f(function(y) {

return x(x)(y);
});

});
}

Martin Henz From the Lambda Calculus to JavaScript

The Pure (Untyped) Lambda Calculus

As a sublanguage of JediScript, the Lambda Calculus looks like
this:

L ::= 〈id〉 | (L)(L); | function(〈id〉) { return L; }

Martin Henz From the Lambda Calculus to JavaScript

So: Why don’t we program using the Lambda
Calculus?

Answer
Other design goals are equally important!

Some design goals for full JavaScript
Expressive
Easy to learn
Convenient to use

At the expense of...
simplicity!

Martin Henz From the Lambda Calculus to JavaScript

So: Why don’t we program using the Lambda
Calculus?

Answer
Other design goals are equally important!

Some design goals for full JavaScript
Expressive
Easy to learn
Convenient to use

At the expense of...
simplicity!

Martin Henz From the Lambda Calculus to JavaScript

So: Why don’t we program using the Lambda
Calculus?

Answer
Other design goals are equally important!

Some design goals for full JavaScript
Expressive
Easy to learn
Convenient to use

At the expense of...

simplicity!

Martin Henz From the Lambda Calculus to JavaScript

So: Why don’t we program using the Lambda
Calculus?

Answer
Other design goals are equally important!

Some design goals for full JavaScript
Expressive
Easy to learn
Convenient to use

At the expense of...
simplicity!

Martin Henz From the Lambda Calculus to JavaScript

Lambda Calculus: Some History

Introduced by Alonzo Church in 1930s as a minimal formal
system for recursion theory
Later found to be equivalent to other computing
frameworks (Church-Turing thesis)
Used extensively in programming language theory and
theoretical computer science

Martin Henz From the Lambda Calculus to JavaScript

Summary

Simplicity is an important and highly useful driving force
behind science and engineering

Enables insights that would otherwise remain lost in a
thicket of details
In practice, simplicity competes with other goals; keep it in
mind when thinking about complex systems

Martin Henz From the Lambda Calculus to JavaScript

Summary

Simplicity is an important and highly useful driving force
behind science and engineering
Enables insights that would otherwise remain lost in a
thicket of details

In practice, simplicity competes with other goals; keep it in
mind when thinking about complex systems

Martin Henz From the Lambda Calculus to JavaScript

Summary

Simplicity is an important and highly useful driving force
behind science and engineering
Enables insights that would otherwise remain lost in a
thicket of details
In practice, simplicity competes with other goals; keep it in
mind when thinking about complex systems

Martin Henz From the Lambda Calculus to JavaScript

Homework

Write a lambda expression EXP such that

lambda2jediscript((EXP)(jediscript2lambda(6)));

will result in the factorial of 6 when entered in the Web Console
of Firefox.
You will need:

conditionals using the shown encoding
your implementation of lambda2jediscript and
jediscript2lambda

the Y combinator shown above
addition, multiplication
predecessor “n - 1” is the hardest

Martin Henz From the Lambda Calculus to JavaScript

