
A Theoretician’s Programming Language

Do we need...
Function definition?

granted!
Function application? granted!
Functions with multiple parameters? no!
Numbers? no!
Conditionals? no!
Recursive functions? no!
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Some Examples

function square(x) {
return x * x;

}
square(13);
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Do we need multiple arguments?

function plus(x,y) {
return x + y;

}
plus(5,7);
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Do we need multiple arguments?

function plus(x,y) {
return x + y;

}
plus(5,7);

becomes

function plus(x) {
function plusx(y) {

return x + y;
}
return plusx;

}
var plusfive = plus(5);
plusfive(7);

Martin Henz From the Lambda Calculus to JavaScript



Another Example

function power(x,y) {
if (y === 0) return 1;
return x * power(x,y-1);

}
power(2,4);
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Do we need multiple arguments?

function power(x,y) {
if (y === 0) return 1;
return x * power(x,y-1);

}
power(2,4);

translates to:

function power(x) {
return function(y) {

if (y === 0) return 1;
return x * power(x)(y-1);

};
}
power(2)(4);
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Do we need numbers?

Representing 0 using Church numerals:

function zero(f) {
return function(x) {

return x;
}

}
zero(’something’)(’somethingelse’)
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Do we need numbers?

Representing 1 using Church numerals:

function one(f) {
return function(x) {

return f(x);
}

}
one(function(x) { return x*2; })(4)

Martin Henz From the Lambda Calculus to JavaScript



Do we need numbers?

Representing 2 using church numerals:

function two(f) {
return function(x) {

return f(f(x));
}

}
two(function(x) { return x*2; })(4)
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Getting the number back

function two(f) {
return function(x) {

return f(f(x));
}

}
function church2js(c) {

return c(function(x) { return x+1; })(0);
}
church2js(two);
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Can you do the reverse?

Wanted:
Define a function js2church that takes a JediScript number
as argument and returns its Church numeral?
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Multiplication

function times(x) {
return function(y) {

return function(f) {
return x(y(f));

}
}

}
function two(f) {

return function(x) {
return f(f(x));

}
}
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Multiplication

function three(f) {
return function(x) {

return f(f(f(x)));
}

}
function church2js(c) {

return c(function(x) { return x+1; })(0);
}
church2js(times(two)(three));
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Conditionals

Conditional statements
if (20 < 10) { return 5; } else { return 7; }

Conditional expressions
(20 < 10) ? 5 : 7
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Do we need conditionals?

Idea
Represent booleans with functions

The function “true”
function True(x) {

return function(y) {
return x;

}
}
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Do we need conditionals?

Idea
Represent booleans with functions

The function “false”
function False(x) {

return function(y) {
return y;

}
}
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Do we need conditionals?

Conditional in JediScript
True ? 5 : 7;

Conditional using Encoding
True(5)(7);
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Factorial using Conditional Expressions

function factorial(x) {
return (x === 0) ? 1

: x * factorial(x - 1);
}
factorial(5);
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Step 1: Eliminate Recursive Call

function F(f) {
return function(x) {

return (x === 0) ? 1
: x * f(x - 1);

};
}
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Step 2: Find a Fix-Point Function (aka Y-Combinator)

We need a function Y with the following properties:

Y (F ) ≡ F (Y (F ))
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Step 2: A Y-Combinator

function (f) {
return (function (x) {

return f(function(y) {
return x(x)(y);

});
})

(function (x) {
return f(function(y) {

return x(x)(y);
});

});
}
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The Pure (Untyped) Lambda Calculus

As a sublanguage of JediScript, the Lambda Calculus looks like
this:

L ::= 〈id〉 | (L)(L); | function(〈id〉) { return L; }
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So: Why don’t we program using the Lambda
Calculus?

Answer
Other design goals are equally important!

Some design goals for full JavaScript
Expressive
Easy to learn
Convenient to use

At the expense of...
simplicity!
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Lambda Calculus: Some History

Introduced by Alonzo Church in 1930s as a minimal formal
system for recursion theory
Later found to be equivalent to other computing
frameworks (Church-Turing thesis)
Used extensively in programming language theory and
theoretical computer science
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Summary

Simplicity is an important and highly useful driving force
behind science and engineering

Enables insights that would otherwise remain lost in a
thicket of details
In practice, simplicity competes with other goals; keep it in
mind when thinking about complex systems
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Homework

Write a lambda expression EXP such that

lambda2jediscript((EXP)(jediscript2lambda(6)));

will result in the factorial of 6 when entered in the Web Console
of Firefox.
You will need:

conditionals using the shown encoding
your implementation of lambda2jediscript and
jediscript2lambda

the Y combinator shown above
addition, multiplication
predecessor “n - 1” is the hardest

Martin Henz From the Lambda Calculus to JavaScript


