A Theoretician’s Programming Language

Do we need...

@ Function definition?

Martin Henz From the Lambda Calculus to JavaScript

A Theoretician’s Programming Language

Do we need...

@ Function definition? granted!

Martin Henz From the Lambda Calculus to JavaScript

A Theoretician’s Programming Language

Do we need...

@ Function definition? granted!
@ Function application?

Martin Henz From the Lambda Calculus to JavaScript

A Theoretician’s Programming Language

Do we need...

@ Function definition? granted!
@ Function application? granted!

Martin Henz From the Lambda Calculus to JavaScript

A Theoretician’s Programming Language

Do we need...

@ Function definition? granted!
@ Function application? granted!
@ Functions with multiple parameters?

Martin Henz From the Lambda Calculus to JavaScript

A Theoretician’s Programming Language

Do we need...

@ Function definition? granted!
@ Function application? granted!
@ Functions with multiple parameters? no!

Martin Henz From the Lambda Calculus to JavaScript

A Theoretician’s Programming Language

Do we need...

@ Function definition? granted!

@ Function application? granted!

@ Functions with multiple parameters? no!
@ Numbers?

Martin Henz From the Lambda Calculus to JavaScript

A Theoretician’s Programming Language

Do we need...

@ Function definition? granted!

@ Function application? granted!

@ Functions with multiple parameters? no!
@ Numbers? no!

Martin Henz From the Lambda Calculus to JavaScript

A Theoretician’s Programming Language

Do we need...

Function definition? granted!

@ Function application? granted!

@ Functions with multiple parameters? no!
o

o

Numbers? no!
Conditionals?

Martin Henz From the Lambda Calculus to JavaScript

A Theoretician’s Programming Language

Do we need...

Function definition? granted!

@ Function application? granted!

@ Functions with multiple parameters? no!
o

o

Numbers? no!
Conditionals? no!

Martin Henz From the Lambda Calculus to JavaScript

A Theoretician’s Programming Language

Do we need...

Function definition? granted!
@ Function application? granted!

@ Functions with multiple parameters? no!
@ Numbers? no!
o
°

Conditionals? no!
Recursive functions?

Martin Henz From the Lambda Calculus to JavaScript

A Theoretician’s Programming Language

Do we need...

Function definition? granted!
@ Function application? granted!

@ Functions with multiple parameters? no!
@ Numbers? no!
o
°

Conditionals? no!
Recursive functions? no!

Martin Henz From the Lambda Calculus to JavaScript

A Theoretician’s Programming Language

Do we need...

Function definition? granted!
@ Function application? granted!

@ Functions with multiple parameters? no!
@ Numbers? no!
o
°

Conditionals? no!
Recursive functions? no!

Martin Henz From the Lambda Calculus to JavaScript

Some Examples

function square (x) {
return x * X;

}

square (13) ;

Martin Henz From the Lambda Calculus to JavaScript

Do we need multiple arguments?

function plus(x,y) {
return x + y;

}
plus (5,7);

Martin Henz From the Lambda Calculus to JavaScript

Do we need multiple arguments?

function plus(x,y) {
return x + y;

}
plus(5,7);

becomes

function plus(x) {
function plusx(y) {
return x + y;
}
return plusx;
}
var plusfive = plus(5);
plusfive (7);

Martin Henz From the Lambda Calculus to JavaScript

Another Example

function power (x,y) {
if (y === 0) return 1;
return x * power (x,y—-1);
}
power (2,4);

Martin Henz From the Lambda Calculus to JavaScript

Do we need multiple arguments?

function power (x,y) {
if (y === 0) return 1;
return x * power (x,y-1);
}
power (2,4);

translates to:

function power (x) {
return function (y) {
if (y === 0) return 1;
return x * power (x) (y—-1);
}i
}
power (2) (4);

Martin Henz From the Lambda Calculus to JavaScript

Do we need numbers?

Representing 0 using Church numerals:

function zero(f) {
return function(x) {
return x;

}

zero (' something’) (' somethingelse’)

Martin Henz From the Lambda Calculus to JavaScript

Do we need numbers?

Representing 1 using Church numerals:

function one (f) {
return function (x) {
return f (x);

}
}

one (function (x) { return xx2; }) (4)

Martin Henz From the Lambda Calculus to JavaScript

Do we need numbers?

Representing 2 using church numerals:

function two (f) {
return function (x) {
return f (f(x));

}
}

two (function(x) { return x=*2; }) (4)

Martin Henz From the Lambda Calculus to JavaScript

Getting the number back

function two (f) {

return function(x) {

return f (f(x));
}

}
function church2js(c) {

return c (function(x) { return x+1; }) (0);
}
church2js (two) ;

Martin Henz From the Lambda Calculus to JavaScript

Can you do the reverse?

Define a function js2church that takes a JediScript number
as argument and returns its Church numeral?

Martin Henz From the Lambda Calculus to JavaScript

Multiplication

function times (x) {
return function (y) {
return function (f) {
return x(y(£f));

}
function two (f) {
return function(x) {
return f (f(x));

Martin Henz From the Lambda Calculus to JavaScript

Multiplication

function three(f) {
return function(x) {
return f£(£f(£(x)));

}
function church2js(c) {
return c(function(x) { return x+1; }) (0);

}

church2js (times (two) (three));

Martin Henz From the Lambda Calculus to JavaScript

Conditionals

Conditional statements
if (20 < 10) { return 5; } else { return 7; }

Conditional expressions
(20 < 10) 2?2 5 : 7

Martin Henz From the Lambda Calculus to JavaScript

Do we need conditionals?

Represent booleans with functions

The function “true”

function True (x) {
return function(y) {

return x;

}

Martin Henz From the Lambda Calculus to JavaScript

Do we need conditionals?

Represent booleans with functions

The function “false”

function False (x) {
return function(y) {

return y;

}

Martin Henz From the Lambda Calculus to JavaScript

Do we need conditionals?

Conditional in JediScript
True ? 5 : 7;

Conditional using Encoding
True (5) (7) ;

Martin Henz From the Lambda Calculus to JavaScript

Factorial using Conditional Expressions

function factorial (x) {
return (x === 0) 2 1
: X % factorial(x - 1);
}

factorial (5);

Martin Henz From the Lambda Calculus to JavaScript

Step 1: Eliminate Recursive Call

function F(f) {
return function(x) {
return (x === 0) 2?2 1
X * £f(x - 1);
}i

Martin Henz From the Lambda Calculus to JavaScript

Step 2: Find a Fix-Point Function (aka Y-Combinator)

We need a function Y with the following properties:

Martin Henz From the Lambda Calculus to JavaScript

Step 2: A Y-Combinator

function (f) {
return (function (x) {
return f (function(y) {
return x(x) (y);
}) i
})
(function (x) {
return f (function (y) {
return x(x) (y);

1)

Martin Henz From the Lambda Calculus to JavaScript

The Pure (Untyped) Lambda Calculus

As a sublanguage of JediScript, the Lambda Calculus looks like
this:

L = (id) | (L)(L); | function((id)) { returnl,; }

Martin Henz From the Lambda Calculus to JavaScript

So: Why don’t we program using the Lambda

Calculus?

Other design goals are equally important!

Martin Henz From the Lambda Calculus to JavaScript

So: Why don’t we program using the Lambda

Calculus?

Other design goals are equally important!

Some design goals for full JavaScript

@ Expressive
@ Easytolearn
@ Convenient to use

Martin Henz From the Lambda Calculus to JavaScript

So: Why don’t we program using the Lambda

Calculus?

Other design goals are equally important!

Some design goals for full JavaScript

@ Expressive
@ Easytolearn
@ Convenient to use

At the expense of...

Martin Henz From the Lambda Calculus to JavaScript

So: Why don’t we program using the Lambda

Calculus?

Other design goals are equally important!

Some design goals for full JavaScript

@ Expressive
@ Easytolearn
@ Convenient to use

At the expense of...
simplicity!

Martin Henz From the Lambda Calculus to JavaScript

Lambda Calculus: Some History

@ Introduced by Alonzo Church in 1930s as a minimal formal
system for recursion theory

@ Later found to be equivalent to other computing
frameworks (Church-Turing thesis)

@ Used extensively in programming language theory and
theoretical computer science

Martin Henz From the Lambda Calculus to JavaScript

@ Simplicity is an important and highly useful driving force
behind science and engineering

Martin Henz From the Lambda Calculus to JavaScript

@ Simplicity is an important and highly useful driving force
behind science and engineering

@ Enables insights that would otherwise remain lost in a
thicket of details

Martin Henz From the Lambda Calculus to JavaScript

@ Simplicity is an important and highly useful driving force
behind science and engineering

@ Enables insights that would otherwise remain lost in a
thicket of details

@ In practice, simplicity competes with other goals; keep it in
mind when thinking about complex systems

Martin Henz From the Lambda Calculus to JavaScript

Homework

Write a lambda expression EXP such that
lambdaZ2jediscript ((EXP) (jediscript2lambda (6)));

will result in the factorial of 6 when entered in the Web Console
of Firefox.
You will need:

@ conditionals using the shown encoding

@ your implementation of 1ambda2 jediscript and
Jjediscript2lambda

@ the Y combinator shown above
@ addition, multiplication
@ predecessor “n - 1”7 is the hardest

Martin Henz From the Lambda Calculus to JavaScript

