17: Dynamic Programming

CS1101S: Programming Methodology

Martin Henz

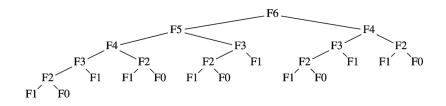
October 19, 2012

1 Fibonacci Numbers

- 2 Dropping Eggs Puzzle
- 3 Optimal Binary Search Tree

1 Fibonacci Numbers

Dropping Eggs Puzzle


Optimal Binary Search Tree

```
function fib(n) {
    if (n <= 1) {
        return 1;
    } else {
        return fib(n - 1) + fib(n - 2);
} }</pre>
```

Fibonacci Numbers

Dropping Eggs Puzzle Optimal Binary Search Tree

Trace of Recursion

Fibonacci Numbers	
Dropping Eggs Puzzle	
Optimal Binary Search Tree	
Memoization	

```
var fibs = [];
function fib(n) {
  if (fibs[n]!==undefined) {
     return fibs[n];
  } else if (n <= 1) {
     return 1:
  } else {
     var new_fib = fib (n - 1) + fib (n - 2);
     fibs[n] = new_fib;
     return new_fib;
```

A Simple Loop for Fibonacci Numbers

```
function fib(n) {
  if (n <= 1) {
    return 1:
  } else {
    var last = 1, nextToLast = 1; answer = 1;
    var i = 2;
    while (i <= n) {
      answer = last + nextToLast;
      nextToLast = last;
      last = answer;
      i = i + 1:
    return answer:
} }
```


Fibonacci Numbers

2 Dropping Eggs Puzzle

Optimal Binary Search Tree

Egg Dropping Puzzle

Given *n* eggs, building with *k* floors

Wanted

Smallest number of egg dropping experiments required to find out in all cases, which floors an egg can be safely dropped from

Assumptions

- An egg that survives a fall can be used again.
- A broken egg must be discarded.
- The effect of a fall is the same for all eggs.
- If an egg breaks when dropped, then it would break if dropped from a higher floor.
- If an egg survives a fall then it would survive a shorter fall.
- A first-floor drop may break eggs, and eggs may survive a drop from the highest floor.

Special Case: One Egg

Number of eggs = 1, number of floors = 21 We need at most 21 experiments

Special Case: Two Eggs

Animated scenario

click here

Observations

Sub-tasks

At each point in time, we have a number of eggs n available and a number of floors k to check

Contiguous floors to check

The height of the floors does not matter. At each point in time we need to check a certain number of contiguous floors, say from 10 to 14.

Height does not matter

Checking 10 to 14 is the same as checking 20 to 24.

A simple algorithm

```
function eggDrop(n, k) {
   if (k = < 1 || n = = 1) {
      return k:
   } else {
      var min = large_constant;
      var x = 1;
      var res = undefined;
      while (x \le k) {
          res = max(eggDrop(n-1, x-1),
                      eggDrop(n, k-x));
          if (res < min) min = res;
          x = x + 1:
       }
       return min + 1:
      CS1101S: Programming Methodology
                            17: Dynamic Programming
```

Observation

We compute eggDrop(i,j) over and over again.

Remember results in a table Allocate a 2-D table eggFloor that remembers the results; after computing s = eggDrop(i,j), remember s in a table.

eggDrop[i][j] = s;

Dropping Eggs Puzzle

Optimal Binary Search Tree

Optimal Binary Search Tree

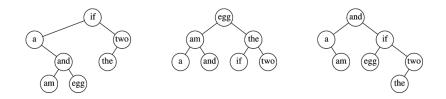
Given

- a set of words $\{w_1, \ldots, w_n\}$
- probabilities of each word's occurrence $\{p_1, \ldots, p_n\}$

Wanted

Binary tree that includes all words and has the lowest expected cost:

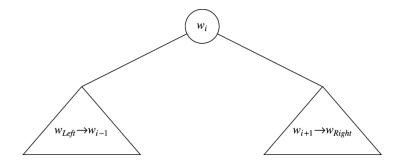
expected cost =
$$\sum_{i=1}^{n} d_i p_i$$

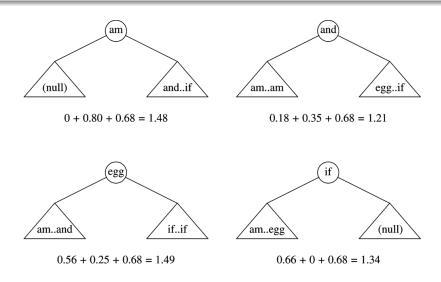

where d_i is the depth of word *i* in the tree

Fibonacci Numbers	
Dropping Eggs Puzzle	
Optimal Binary Search Tree	

Sample Input

Word	Probability						
a	0.22						
am	0.18						
and	0.20						
egg	0.05						
if	0.25						
the	0.02						
two	0.08						


Three Possible Binary Search Trees


Comparison of the Three Trees

Input		T	ree #1	Т	ree #2	Tree #3			
Word w _i	Probability <i>p</i> i	Access Cost Once Sequence		Acc Once	ess Cost Sequence	Access Cost Once Sequence			
а	0.22	2	0.44	3	0.66	2	0.44		
am	0.18	4	0.72	2	2 0.36		0.54		
and	0.20	3	0.60	3 0.60		1	0.20		
egg	0.05	4	0.20	1 0.05		3	0.15		
if	0.25	1	0.25	3	0.75	2	0.50		
the	0.02	3	0.06	2	0.04	4	0.08		
two	0.08	2	0.16	3 0.24		3	0.24		
Totals	1.00		2.43		2.70		2.15		

Structure of Optimal Binary Search Tree

Example

CS1101S: Programming Methodology

17: Dynamic Programming

	Fibonacci Numbers	
	Dropping Eggs Puzzle	
	Optimal Binary Search Tree	
dea		

Proceed in order of growing tree size

For each range of words, compute optimal tree

Memoization

For each range, store optimal tree for later retrieval

Computation of Optimal Binary Search Tree

	Left=1 Left=2		Left=3		Left=4		Left=5		Left=6		Left=7			
Iteration=1	aa		amam		andand		eggegg		ifif		thethe		twotwo	
	.22	а	.18	am	.20	and	.05	egg	.25	if	.02	the	.08	two
Iteration=2	aam		amand		andegg		eggif		ifthe		thetwo			
neration-2	.58	а	.56	and	.30	and	.35	if	.29	if	.12	two		
Iteration=3	aand		amegg		andif		eggthe		iftwo					
neration-5	1.02	am	.66	and	.80	if	.39	if	.47	if				
Iteration=4	aegg am		if	andthe		eggtwo								
ncranon-4	1.17	am	1.21	and	.84	if	.57	if						
Iteration=5	aif am		am.	.the	andtwo									
neration=5	1.83	and	1.27	and	1.02	1.02 if								
Iteration=6	athe amt		.two											
neration=0	1.89	and	1.53	and										
Iteration=7	at	wo												
noradion-/	2.15	and												

CS1101S: Programming Methodology

17: Dynamic Programming

Run Time

For each cell of table Consider all possible roots

Overall runtime

 $O(N^3)$