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Inefficient Algorithm

function f i b ( n ) {
i f ( n <= 1) {

return 1;
} else {

return f i b ( n − 1) + f i b ( n − 2 ) ;
} }
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Trace of Recursion
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Memoization

var f i b s = [ ] ;
function f i b ( n ) {

i f ( f i b s [ n ] !== undef ined ) {
return f i b s [ n ] ;

} else i f ( n <= 1) {
return 1;

} else {
var new f ib = f i b ( n − 1) + f i b ( n − 2 ) ;
f i b s [ n ] = new f ib ;
return new f ib ;

} }
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A Simple Loop for Fibonacci Numbers

function f i b ( n ) {
i f ( n <= 1) {

return 1;
} else {

var l a s t = 1 , nextToLast = 1 ; answer = 1;
var i = 2 ;
while ( i <= n ) {

answer = l a s t + nextToLast ;
nextToLast = l a s t ;
l a s t = answer ;
i = i + 1 ;

}
return answer ;

} }
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Egg Dropping Puzzle

Given

n eggs, building with k floors

Wanted

Smallest number of egg dropping experiments required to find
out in all cases, which floors an egg can be safely dropped from
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Assumptions

An egg that survives a fall can be used again.

A broken egg must be discarded.

The effect of a fall is the same for all eggs.

If an egg breaks when dropped, then it would break if
dropped from a higher floor.

If an egg survives a fall then it would survive a shorter fall.

A first-floor drop may break eggs, and eggs may survive a
drop from the highest floor.
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Special Case: One Egg

Number of eggs = 1, number of floors = 21

We need at most 21 experiments
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Special Case: Two Eggs

Animated scenario

click here
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Observations

Sub-tasks

At each point in time, we have a number of eggs n available
and a number of floors k to check

Contiguous floors to check

The height of the floors does not matter. At each point in time
we need to check a certain number of contiguous floors, say
from 10 to 14.

Height does not matter

Checking 10 to 14 is the same as checking 20 to 24.
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A simple algorithm

function eggDrop ( n , k ) {
i f ( k =< 1 | | n === 1) {

return k ;
} else {

var min = la rge cons tan t ;
var x = 1;
var res = undef ined ;
while ( x <= k ) {

res = max( eggDrop ( n−1, x−1) ,
eggDrop ( n , k−x ) ) ;

i f ( res < min ) min = res ;
x = x + 1;

}
return min + 1;

} }
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Solution Idea

Observation

We compute eggDrop(i,j) over and over again.

Remember results in a table

Allocate a 2-D table eggFloor that remembers the results; after
computing s = eggDrop(i,j), remember s in a table.

eggDrop [ i ] [ j ] = s ;
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Optimal Binary Search Tree

Given

a set of words {w1, . . . ,wn}

probabilities of each word’s occurrence {p1, . . . , pn}

Wanted

Binary tree that includes all words and has the lowest expected
cost:

expected cost =
n∑

i=1

dipi

where di is the depth of word i in the tree
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Sample Input
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Three Possible Binary Search Trees
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Comparison of the Three Trees
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Structure of Optimal Binary Search Tree
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Idea

Proceed in order of growing tree size

For each range of words, compute optimal tree

Memoization

For each range, store optimal tree for later retrieval
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Computation of Optimal Binary Search Tree
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Run Time

For each cell of table

Consider all possible roots

Overall runtime

O(N3)
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