
Fibonacci Numbers
Dropping Eggs Puzzle

Optimal Binary Search Tree

17: Dynamic Programming

CS1101S: Programming Methodology

Martin Henz

October 19, 2012

CS1101S: Programming Methodology 17: Dynamic Programming

Fibonacci Numbers
Dropping Eggs Puzzle

Optimal Binary Search Tree

1 Fibonacci Numbers

2 Dropping Eggs Puzzle

3 Optimal Binary Search Tree

CS1101S: Programming Methodology 17: Dynamic Programming

Fibonacci Numbers
Dropping Eggs Puzzle

Optimal Binary Search Tree

1 Fibonacci Numbers

2 Dropping Eggs Puzzle

3 Optimal Binary Search Tree

CS1101S: Programming Methodology 17: Dynamic Programming

Fibonacci Numbers
Dropping Eggs Puzzle

Optimal Binary Search Tree

Inefficient Algorithm

function f i b (n) {
i f (n <= 1) {

return 1;
} else {

return f i b (n − 1) + f i b (n − 2) ;
} }

CS1101S: Programming Methodology 17: Dynamic Programming

Fibonacci Numbers
Dropping Eggs Puzzle

Optimal Binary Search Tree

Trace of Recursion

CS1101S: Programming Methodology 17: Dynamic Programming

Fibonacci Numbers
Dropping Eggs Puzzle

Optimal Binary Search Tree

Memoization

var f i b s = [] ;
function f i b (n) {

i f (f i b s [n] !== undef ined) {
return f i b s [n] ;

} else i f (n <= 1) {
return 1;

} else {
var new f ib = f i b (n − 1) + f i b (n − 2) ;
f i b s [n] = new f ib ;
return new f ib ;

} }

CS1101S: Programming Methodology 17: Dynamic Programming

Fibonacci Numbers
Dropping Eggs Puzzle

Optimal Binary Search Tree

A Simple Loop for Fibonacci Numbers

function f i b (n) {
i f (n <= 1) {

return 1;
} else {

var l a s t = 1 , nextToLast = 1 ; answer = 1;
var i = 2 ;
while (i <= n) {

answer = l a s t + nextToLast ;
nextToLast = l a s t ;
l a s t = answer ;
i = i + 1 ;

}
return answer ;

} }

CS1101S: Programming Methodology 17: Dynamic Programming

Fibonacci Numbers
Dropping Eggs Puzzle

Optimal Binary Search Tree

1 Fibonacci Numbers

2 Dropping Eggs Puzzle

3 Optimal Binary Search Tree

CS1101S: Programming Methodology 17: Dynamic Programming

Fibonacci Numbers
Dropping Eggs Puzzle

Optimal Binary Search Tree

Egg Dropping Puzzle

Given

n eggs, building with k floors

Wanted

Smallest number of egg dropping experiments required to find
out in all cases, which floors an egg can be safely dropped from

CS1101S: Programming Methodology 17: Dynamic Programming

Fibonacci Numbers
Dropping Eggs Puzzle

Optimal Binary Search Tree

Assumptions

An egg that survives a fall can be used again.

A broken egg must be discarded.

The effect of a fall is the same for all eggs.

If an egg breaks when dropped, then it would break if
dropped from a higher floor.

If an egg survives a fall then it would survive a shorter fall.

A first-floor drop may break eggs, and eggs may survive a
drop from the highest floor.

CS1101S: Programming Methodology 17: Dynamic Programming

Fibonacci Numbers
Dropping Eggs Puzzle

Optimal Binary Search Tree

Special Case: One Egg

Number of eggs = 1, number of floors = 21

We need at most 21 experiments

CS1101S: Programming Methodology 17: Dynamic Programming

Fibonacci Numbers
Dropping Eggs Puzzle

Optimal Binary Search Tree

Special Case: Two Eggs

Animated scenario

click here

CS1101S: Programming Methodology 17: Dynamic Programming

http://archive.ite.journal.informs.org/Vol4No1/Sniedovich/index.php

Fibonacci Numbers
Dropping Eggs Puzzle

Optimal Binary Search Tree

Observations

Sub-tasks

At each point in time, we have a number of eggs n available
and a number of floors k to check

Contiguous floors to check

The height of the floors does not matter. At each point in time
we need to check a certain number of contiguous floors, say
from 10 to 14.

Height does not matter

Checking 10 to 14 is the same as checking 20 to 24.

CS1101S: Programming Methodology 17: Dynamic Programming

Fibonacci Numbers
Dropping Eggs Puzzle

Optimal Binary Search Tree

A simple algorithm

function eggDrop (n , k) {
i f (k =< 1 | | n === 1) {

return k ;
} else {

var min = la rge cons tan t ;
var x = 1;
var res = undef ined ;
while (x <= k) {

res = max(eggDrop (n−1, x−1) ,
eggDrop (n , k−x)) ;

i f (res < min) min = res ;
x = x + 1;

}
return min + 1;

} }
CS1101S: Programming Methodology 17: Dynamic Programming

Fibonacci Numbers
Dropping Eggs Puzzle

Optimal Binary Search Tree

Solution Idea

Observation

We compute eggDrop(i,j) over and over again.

Remember results in a table

Allocate a 2-D table eggFloor that remembers the results; after
computing s = eggDrop(i,j), remember s in a table.

eggDrop [i] [j] = s ;

CS1101S: Programming Methodology 17: Dynamic Programming

Fibonacci Numbers
Dropping Eggs Puzzle

Optimal Binary Search Tree

1 Fibonacci Numbers

2 Dropping Eggs Puzzle

3 Optimal Binary Search Tree

CS1101S: Programming Methodology 17: Dynamic Programming

Fibonacci Numbers
Dropping Eggs Puzzle

Optimal Binary Search Tree

Optimal Binary Search Tree

Given

a set of words {w1, . . . ,wn}

probabilities of each word’s occurrence {p1, . . . , pn}

Wanted

Binary tree that includes all words and has the lowest expected
cost:

expected cost =
n∑

i=1

dipi

where di is the depth of word i in the tree

CS1101S: Programming Methodology 17: Dynamic Programming

Fibonacci Numbers
Dropping Eggs Puzzle

Optimal Binary Search Tree

Sample Input

CS1101S: Programming Methodology 17: Dynamic Programming

Fibonacci Numbers
Dropping Eggs Puzzle

Optimal Binary Search Tree

Three Possible Binary Search Trees

CS1101S: Programming Methodology 17: Dynamic Programming

Fibonacci Numbers
Dropping Eggs Puzzle

Optimal Binary Search Tree

Comparison of the Three Trees

CS1101S: Programming Methodology 17: Dynamic Programming

Fibonacci Numbers
Dropping Eggs Puzzle

Optimal Binary Search Tree

Structure of Optimal Binary Search Tree

CS1101S: Programming Methodology 17: Dynamic Programming

Fibonacci Numbers
Dropping Eggs Puzzle

Optimal Binary Search Tree

Example

CS1101S: Programming Methodology 17: Dynamic Programming

Fibonacci Numbers
Dropping Eggs Puzzle

Optimal Binary Search Tree

Idea

Proceed in order of growing tree size

For each range of words, compute optimal tree

Memoization

For each range, store optimal tree for later retrieval

CS1101S: Programming Methodology 17: Dynamic Programming

Fibonacci Numbers
Dropping Eggs Puzzle

Optimal Binary Search Tree

Computation of Optimal Binary Search Tree

CS1101S: Programming Methodology 17: Dynamic Programming

Fibonacci Numbers
Dropping Eggs Puzzle

Optimal Binary Search Tree

Run Time

For each cell of table

Consider all possible roots

Overall runtime

O(N3)

CS1101S: Programming Methodology 17: Dynamic Programming

	Fibonacci Numbers
	Dropping Eggs Puzzle
	Optimal Binary Search Tree

